Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Authors = Anne Griebel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3815 KiB  
Review
A Review of Leaf-Level Flammability Traits in Eucalypt Trees
by Nicolas Younes, Marta Yebra, Matthias M. Boer, Anne Griebel and Rachael H. Nolan
Fire 2024, 7(6), 183; https://doi.org/10.3390/fire7060183 - 28 May 2024
Cited by 11 | Viewed by 3974
Abstract
With more frequent and intense fires expected under future climate conditions, it is important to understand the mechanisms that control flammability in Australian forests. We followed a systematic review approach to determine which physical traits make eucalypts leaves more or less flammable. Specifically, [...] Read more.
With more frequent and intense fires expected under future climate conditions, it is important to understand the mechanisms that control flammability in Australian forests. We followed a systematic review approach to determine which physical traits make eucalypts leaves more or less flammable. Specifically, we reviewed 20 studies that covered 35 eucalypt species across five countries and found that leaf water content, leaf area (LA), and specific leaf area (SLA) are the main drivers of leaf flammability. These traits are easy and straightforward to measure, while more laborious traits (e.g., volatile organic compounds and structural carbohydrates) are seldom measured and reported. Leaf flammability also varies with species, and, while the biochemistry plays a role in how leaves burn, it plays a minor role in fire behaviour at landscape scales. This review highlights the range of different protocols used to measure flammability and leaf water content, warranting caution when comparing traits and results between studies. As a result, we propose a standardised protocol to measure leaf water content and advocate for long-term measurements of leaf traits and flammability. This study not only contributes to the understanding of how and why eucalypt leaves burn but also encourages research into the relative importance of traits in influencing flammability and provides a guide for selecting traits that can be monitored using satellite images to inform fire management policies and strategies. Full article
Show Figures

Figure 1

23 pages, 4793 KiB  
Article
Temporal Dynamics of Canopy Properties and Carbon and Water Fluxes in a Temperate Evergreen Angiosperm Forest
by Alexandre A. Renchon, Vanessa Haverd, Cathy M. Trudinger, Belinda E. Medlyn, Anne Griebel, Daniel Metzen, Jürgen Knauer, Matthias M. Boer and Elise Pendall
Forests 2024, 15(5), 801; https://doi.org/10.3390/f15050801 - 30 Apr 2024
Cited by 2 | Viewed by 2015
Abstract
The forest–atmosphere exchange of carbon and water is regulated by meteorological conditions as well as canopy properties such as leaf area index (LAI, m2 m−2), photosynthetic capacity (PC μmol m−2 s−1), or surface conductance in optimal conditions [...] Read more.
The forest–atmosphere exchange of carbon and water is regulated by meteorological conditions as well as canopy properties such as leaf area index (LAI, m2 m−2), photosynthetic capacity (PC μmol m−2 s−1), or surface conductance in optimal conditions (Gs,opt, mmol m−2 s−1), which can vary seasonally and inter-annually. This variability is well understood for deciduous species but is poorly characterized in evergreen forests. Here, we quantify the seasonal dynamics of a temperate evergreen eucalypt forest with estimates of LAI, litterfall, carbon and water fluxes, and meteorological conditions from measurements and model simulations. We merged MODIS Enhanced Vegetation Index (EVI) values with site-based LAI measurements to establish a 17-year sequence of monthly LAI. We ran the Community Atmosphere Biosphere Land Exchange model (CABLE-POP (version r5046)) with constant and varying LAI for our site to quantify the influence of seasonal canopy dynamics on carbon and water fluxes. We observed that the peak of LAI occurred in late summer–early autumn, with a higher and earlier peak occurring in years when summer rainfall was greater. Seasonality in litterfall and allocation of net primary productivity (FNPP) to leaf growth (af, 0–1) drove this pattern, suggesting a complete renewal of the canopy before the timing of peak LAI. Litterfall peaked in spring, followed by a high af in summer, at the end of which LAI peaked, and PC and Gs,opt reached their maximum values in autumn, resulting from a combination of high LAI and efficient mature leaves. These canopy dynamics helped explain observations of maximum gross ecosystem production (FGEP) in spring and autumn and net ecosystem carbon loss in summer at our site. Inter-annual variability in LAI was positively correlated with Net Ecosystem Production (FNEP). It would be valuable to apply a similar approach to other temperate evergreen forests to identify broad patterns of seasonality in leaf growth and turnover. Because incorporating dynamic LAI was insufficient to fully capture the dynamics of FGEP, observations of seasonal variation in photosynthetic capacity, such as from solar-induced fluorescence, should be incorporated in land surface models to improve ecosystem flux estimates in evergreen forests. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

20 pages, 4398 KiB  
Article
Remarkable Resilience of Forest Structure and Biodiversity Following Fire in the Peri-Urban Bushland of Sydney, Australia
by Elise Pendall, Alison Hewitt, Matthias M. Boer, Yolima Carrillo, Nancy F. Glenn, Anne Griebel, Jason H. Middleton, Peter J. Mumford, Peter Ridgeway, Paul D. Rymer and Greg L. Steenbeeke
Climate 2022, 10(6), 86; https://doi.org/10.3390/cli10060086 - 16 Jun 2022
Cited by 7 | Viewed by 5638
Abstract
In rapidly urbanizing areas, natural vegetation becomes fragmented, making conservation planning challenging, particularly as climate change accelerates fire risk. We studied urban forest fragments in two threatened eucalypt-dominated (scribbly gum woodland, SGW, and ironbark forest, IF) communities across ~2000 ha near Sydney, Australia, [...] Read more.
In rapidly urbanizing areas, natural vegetation becomes fragmented, making conservation planning challenging, particularly as climate change accelerates fire risk. We studied urban forest fragments in two threatened eucalypt-dominated (scribbly gum woodland, SGW, and ironbark forest, IF) communities across ~2000 ha near Sydney, Australia, to evaluate effects of fire frequency (0–4 in last 25 years) and time since fire (0.5 to >25 years) on canopy structure, habitat quality and biodiversity (e.g., species richness). Airborne lidar was used to assess canopy height and density, and ground-based surveys of 148 (400 m2) plots measured leaf area index (LAI), plant species composition and habitat metrics such as litter cover and hollow-bearing trees. LAI, canopy density, litter, and microbiotic soil crust increased with time since fire in both communities, while tree and mistletoe cover increased in IF. Unexpectedly, plant species richness increased with fire frequency, owing to increased shrub richness which offset decreased tree richness in both communities. These findings indicate biodiversity and canopy structure are generally resilient to a range of times since fire and fire frequencies across this study area. Nevertheless, reduced arboreal habitat quality and subtle shifts in community composition of resprouters and obligate seeders signal early concern for a scenario of increasing fire frequency under climate change. Ongoing assessment of fire responses is needed to ensure that biodiversity, canopy structure and ecosystem function are maintained in the remaining fragments of urban forests under future climate change which will likely drive hotter and more frequent fires. Full article
(This article belongs to the Special Issue Climate System Uncertainty and Biodiversity Conservation)
Show Figures

Figure 1

17 pages, 4423 KiB  
Article
Species and Competition Interact to Influence Seasonal Stem Growth in Temperate Eucalypts
by Ella Plumanns-Pouton, Lauren T. Bennett, Julio C. Najera-Umaña, Anne Griebel and Nina Hinko-Najera
Forests 2022, 13(2), 224; https://doi.org/10.3390/f13020224 - 1 Feb 2022
Cited by 1 | Viewed by 2918
Abstract
Insights on tree species and competition effects on seasonal stem growth are critical to understanding the impacts of changing climates on tree productivity, particularly for eucalypts species that occur in narrow climatic niches and have unreliable tree rings. To improve our understanding of [...] Read more.
Insights on tree species and competition effects on seasonal stem growth are critical to understanding the impacts of changing climates on tree productivity, particularly for eucalypts species that occur in narrow climatic niches and have unreliable tree rings. To improve our understanding of climate effects on forest productivity, we examined the relative importance of species, competition and climate to the seasonal stem growth of co-occurring temperate eucalypts. We measured monthly stem growth of three eucalypts (Eucalyptus obliqua, E. radiata, and E. rubida) over four years in a natural mixed-species forest in south-eastern Australia, examining the relative influences of species, competition index (CI) and climate variables on the seasonal basal area increment (BAI). Seasonal BAI varied with species and CI, and was greatest in spring and/or autumn, and lowest in summer. Our study highlights the interactive effects of species and competition on the seasonal stem growth of temperate eucalypts, clearly indicating that competitive effects are strongest when conditions are favourable to growth (spring and autumn), and least pronounced in summer, when reduced BAI was associated with less rainfall. Thus, our study indicates that management to reduce inter-tree competition would have minimal influence on stem growth during less favourable (i.e., drier) periods. Full article
(This article belongs to the Special Issue Effect of Climate Change on Forest Growth and Phenology)
Show Figures

Figure 1

18 pages, 2328 KiB  
Concept Paper
What Do the Australian Black Summer Fires Signify for the Global Fire Crisis?
by Rachael H. Nolan, David M. J. S. Bowman, Hamish Clarke, Katharine Haynes, Mark K. J. Ooi, Owen F. Price, Grant J. Williamson, Joshua Whittaker, Michael Bedward, Matthias M. Boer, Vanessa I. Cavanagh, Luke Collins, Rebecca K. Gibson, Anne Griebel, Meaghan E. Jenkins, David A. Keith, Allen P. Mcilwee, Trent D. Penman, Stephanie A. Samson, Mark G. Tozer and Ross A. Bradstockadd Show full author list remove Hide full author list
Fire 2021, 4(4), 97; https://doi.org/10.3390/fire4040097 - 17 Dec 2021
Cited by 76 | Viewed by 24390
Abstract
The 2019–20 Australian fire season was heralded as emblematic of the catastrophic harm wrought by climate change. Similarly extreme wildfire seasons have occurred across the globe in recent years. Here, we apply a pyrogeographic lens to the recent Australian fires to examine the [...] Read more.
The 2019–20 Australian fire season was heralded as emblematic of the catastrophic harm wrought by climate change. Similarly extreme wildfire seasons have occurred across the globe in recent years. Here, we apply a pyrogeographic lens to the recent Australian fires to examine the range of causes, impacts and responses. We find that the extensive area burnt was due to extreme climatic circumstances. However, antecedent hazard reduction burns (prescribed burns with the aim of reducing fuel loads) were effective in reducing fire severity and house loss, but their effectiveness declined under extreme weather conditions. Impacts were disproportionately borne by socially disadvantaged regional communities. Urban populations were also impacted through prolonged smoke exposure. The fires produced large carbon emissions, burnt fire-sensitive ecosystems and exposed large areas to the risk of biodiversity decline by being too frequently burnt in the future. We argue that the rate of change in fire risk delivered by climate change is outstripping the capacity of our ecological and social systems to adapt. A multi-lateral approach is required to mitigate future fire risk, with an emphasis on reducing the vulnerability of people through a reinvigoration of community-level capacity for targeted actions to complement mainstream fire management capacity. Full article
Show Figures

Figure 1

16 pages, 3933 KiB  
Article
Can UAV-Based Infrared Thermography Be Used to Study Plant-Parasite Interactions between Mistletoe and Eucalypt Trees?
by Wouter H. Maes, Alfredo R. Huete, Michele Avino, Matthias M. Boer, Remy Dehaan, Elise Pendall, Anne Griebel and Kathy Steppe
Remote Sens. 2018, 10(12), 2062; https://doi.org/10.3390/rs10122062 - 19 Dec 2018
Cited by 45 | Viewed by 6868
Abstract
Some of the remnants of the Cumberland Plain woodland, an endangered dry sclerophyllous forest type of New South Wales, Australia, host large populations of mistletoe. In this study, the extent of mistletoe infection was investigated based on a forest inventory. We found that [...] Read more.
Some of the remnants of the Cumberland Plain woodland, an endangered dry sclerophyllous forest type of New South Wales, Australia, host large populations of mistletoe. In this study, the extent of mistletoe infection was investigated based on a forest inventory. We found that the mistletoe infection rate was relatively high, with 69% of the Eucalyptus fibrosa and 75% of the E. moluccana trees being infected. Next, to study the potential consequences of the infection for the trees, canopy temperatures of mistletoe plants and of infected and uninfected trees were analyzed using thermal imagery acquired during 10 flights with an unmanned aerial vehicle (UAV) in two consecutive summer seasons. Throughout all flight campaigns, mistletoe canopy temperature was 0.3–2 K lower than the temperature of the eucalypt canopy it was growing in, suggesting higher transpiration rates. Differences in canopy temperature between infected eucalypt foliage and mistletoe were particularly large when incoming radiation peaked. In these conditions, eucalypt foliage from infected trees also had significantly higher canopy temperatures (and likely lower transpiration rates) compared to that of uninfected trees of the same species. The study demonstrates the potential of using UAV-based infrared thermography for studying plant-water relations of mistletoe and its hosts. Full article
(This article belongs to the Special Issue High-Resolution Thermal Imaging for Vegetation Monitoring)
Show Figures

Graphical abstract

Back to TopTop