What Do the Australian Black Summer Fires Signify for the Global Fire Crisis?
Abstract
:1. Introduction
2. Extent of the Black Summer Fires
3. Causes of the Black Summer Fires: Climate or Land Management? Lightning or Anthropogenic Ignition Sources?
4. How Effective Was Fire Management in Reducing Impacts of the Black Summer Fires?
5. Who and What Was Affected by the Black Summer Fires?
6. What Key Changes to Policy and Capacity Have Ensued from Governmental Inquiries?
7. Is Australia Better Equipped for a Future of Extreme Fire Seasons?
Limits to Co-Existing with Fire in a Changing Climate
8. Conclusions: What Do the Australian Black Summer Fires Signify for the Global Fire Crisis?
9. Materials & Methods
9.1. Sources of Fire Ignition for the NSW Fires
9.2. Historical Trends of Fuel Moisture, Fuel Loads and Fire Weather
9.3. Analyses of the Effects of Prior Burns on Fire Severity
- Probability of high fire severity was lower inside past fire boundaries than outside (73,914 sample points)
- Probability of high fire severity was lower where past fire was more severe (1833 sample points)
- Probability of high fire severity was lower where past fire was more recent, with a reduced effect of past fire under elevated fire weather conditions (73,764 sample points)
- Probability of high fire severity was lower where the past fire was an unplanned wildfire, compared to a prescribed fire, with prescribed fire having a reduced effect under elevated fire weather conditions (1833 sample points)
9.4. Analyses on Determinants of House Loss
9.5. Assessing Demographic Characteristics of Populations Affected by the 2019–20 Fire Season
9.6. Assessing Vegetation Fire Interval Status Prior to and Following the 2019–20 Fire Season
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duane, A.; Castellnou, M.; Brotons, L. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim. Chang. 2021, 165, 43. [Google Scholar] [CrossRef]
- Boer, M.M.; Resco de Dios, V.; Bradstock, R. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Chang. 2020, 10, 171–172. [Google Scholar] [CrossRef]
- Bowman, D.; Williamson, G.; Yebra, M.; Lizundia-Loiola, J.; Pettinari, M.L.; Shah, S.; Bradstock, R.; Chuvieco, E. Wildfires: Australia needs national monitoring agency. Nature 2020, 584, 188–191. [Google Scholar] [CrossRef]
- Nolan, R.H.; Boer, M.M.; Collins, L.; Resco de Dios, V.; Clarke, H.; Jenkins, M.; Kenny, B.; Bradstock, R.A. Causes and consequences of eastern Australia’s 2019–20 season of mega-fires. Glob. Change Biol. 2020, 26, 1039–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, L.; Bradstock, R.A.; Clarke, H.; Clarke, M.F.; Nolan, R.H.; Penman, T.D. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environ. Res. Lett. 2021, 16, 044029. [Google Scholar] [CrossRef]
- Johnston, F.H.; Borchers-Arriagada, N.; Morgan, G.G.; Jalaludin, B.; Palmer, A.J.; Williamson, G.J.; Bowman, D.M.J.S. Unprecedented health costs of smoke-related PM2.5 from the 2019–20 Australian megafires. Nat. Sustain. 2021, 4, 42–47. [Google Scholar] [CrossRef]
- Howard, Z.; Carlson, S.; Baldwin, Z.; Johnston, F.; Durrheim, D.; Dalton, C. High community burden of smoke-related symptoms in the Hunter and New England regions during the 2019–2020 Australian bushfires. Public Health Res. Pract. 2020, 30, e30122007. [Google Scholar] [CrossRef]
- Christian, K.; Yorks, J.; Das, S. Differences in the evolution of pyrocumulonimbus and volcanic stratospheric plumes as observed by CATS and CALIOP space-based lidars. Atmosphere 2020, 11, 1035. [Google Scholar] [CrossRef]
- Kablick, G.P., III; Allen, D.R.; Fromm, M.D.; Nedoluha, G.E. Australian pyroCb smoke generates synoptic-scale stratospheric anticyclones. Geophys. Res. Lett. 2020, 47, e2020GL088101. [Google Scholar] [CrossRef]
- Lundberg, K. Moved by fire: Green criminology in flux. Crime Media Culture 2020, 1–18. [Google Scholar] [CrossRef]
- Chester, L. The 2019–2020 Australian bushfires: A potent mix of climate change, problematisation, Indigenous disregard, a fractured federation, volunteerism, social media, and more. Rev. Evol. Political Econ. 2020, 1, 245–264. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Taylor, C. New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies. Proc. Natl. Acad. Sci. USA 2020, 117, 12481–12485. [Google Scholar] [CrossRef] [PubMed]
- Kanowski, P.J.; Whelan, R.J.; Ellis, S. Inquiries following the 2002–2003 Australian bushfires: Common themes and future directions for Australian bushfire mitigation and management. Aust. For. 2005, 68, 76–86. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; O’Brien, J.A.; Goldammer, J.G. Pyrogeography and the global quest for sustainable fire management. Annu. Rev. Environ. Resour. 2013, 38, 57–80. [Google Scholar] [CrossRef]
- Commonwealth of Australia. Royal Commission into National Natural Disaster Arrangements—Report; Commonwealth of Australia: Canberra, Australia, 2020. [Google Scholar]
- Bowman, D.; Williamson, G.J.; Price, O.F.; Ndalila, M.N.; Bradstock, R.A. Australian forests, megafires and the risk of dwindling carbon stocks. Plant Cell Environ. 2021, 44, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Abram, N.J.; Henley, B.J.; Sen Gupta, A.; Lippmann, T.J.R.; Clarke, H.; Dowdy, A.J.; Sharples, J.J.; Nolan, R.H.; Zhang, T.; Wooster, M.J.; et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2021, 2, 8. [Google Scholar] [CrossRef]
- Gallagher, R.V.; Allen, S.; Mackenzie, B.D.E.; Yates, C.J.; Gosper, C.R.; Keith, D.A.; Merow, C.; White, M.D.; Wenk, E.; Maitner, B.S.; et al. High fire frequency and the impact of the 2019–2020 megafires on Australian plant diversity. Divers. Distrib. 2021, 27, 1166–1179. [Google Scholar] [CrossRef]
- Collins, L. Eucalypt forests dominated by epicormic resprouters are resilient to repeated canopy fires. J. Ecol. 2020, 108, 310–324. [Google Scholar] [CrossRef]
- State Government of NSW and Department of Planning Industry and Environment. Fire Extent and Severity Mapping (FESM). Available online: https://datasets.seed.nsw.gov.au/dataset/fire-extent-and-severity-mapping-fesm (accessed on 28 June 2021).
- Reddy, P.J.; Sharples, J.J.; Lewis, S.C.; Perkins-Kirkpatrick, S.E. Modulating influence of drought on the synergy between heatwaves and dead fine fuel moisture content of bushfire fuels in the Southeast Australian region. Weather Clim. Extrem. 2021, 31, 11. [Google Scholar] [CrossRef]
- Deb, P.; Moradkhani, H.; Abbaszadeh, P.; Kiem, A.S.; Engström, J.; Keellings, D.; Sharma, A. Causes of the Widespread 2019–2020 Australian Bushfire Season. Earth’s Future 2020, 8, e2020EF001671. [Google Scholar] [CrossRef]
- Ehsani, M.R.; Arevalo, J.; Risanto, C.B.; Javadian, M.; Devine, C.J.; Arabzadeh, A.; Venegas-Quinones, H.L.; Dell’Oro, A.P.; Behrangi, A. 2019–2020 Australia fire and its relationship to hydroclimatological and vegetation variabilities. Water 2020, 12, 3067. [Google Scholar] [CrossRef]
- Dowdy, A.J. Seamless climate change projections and seasonal predictions for bushfires in Australia. J. South Hemisph. Earth Syst. Sci. 2020, 70, 120–138. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Special Climate Statement 73—Extreme heat and fire weather in December 2019 and January 2020; Bureau of Meteorology: Melbourne, Australia, 2020.
- van Oldenborgh, G.J.; Krikken, F.; Lewis, S.; Leach, N.J.; Lehner, F.; Saunders, K.R.; van Weele, M.; Haustein, K.; Li, S.; Wallom, D.; et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. Discuss. 2021, 2020, 1–46. [Google Scholar] [CrossRef]
- Canadell, J.G.; Meyer, C.P.; Cook, G.D.; Dowdy, A.; Briggs, P.R.; Knauer, J.; Pepler, A.; Haverd, V. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 2021, 12, 6921. [Google Scholar] [CrossRef] [PubMed]
- Bradstock, R.A.; Nolan, R.H.; Collins, L.; Resco de Dios, V.; Clarke, H.; Jenkins, M.; Kenny, B.; Boer, M.M. A broader perspective on the causes and consequences of eastern Australia’s 2019–2020 season of mega-fires: A response to Adams et al. Glob. Chang. Biol. 2020, 26, e8–e9. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Williamson, G.J.; Gibson, R.K.; Bradstock, R.A.; Keenan, R.J. The severity and extent of the Australia 2019–20 Eucalyptus forest fires are not the legacy of forest management. Nat. Ecol. Evol. 2021, 5, 1003–1010. [Google Scholar] [CrossRef]
- NSW Government. Final Report of the NSW Bushfire Inquiry; NSW Government: Sydney, Australia, 2020.
- Grant, M.A.; Duff, T.J.; Penman, T.D.; Pickering, B.J.; Cawson, J.G. Mechanical mastication reduces fuel structure and modelled fire behaviour in Australian shrub encroached ecosystems. Forests 2021, 12, 812. [Google Scholar] [CrossRef]
- Cirulis, B.; Clarke, H.; Boer, M.; Penman, T.; Price, O.; Bradstock, R. Quantification of inter-regional differences in risk mitigation from prescribed burning across multiple management values. Int. J. Wildland Fire 2020, 29, 414–426. [Google Scholar] [CrossRef] [Green Version]
- Duff, T.J.; Cawson, J.G.; Penman, T.D. Determining burnability: Predicting completion rates and coverage of prescribed burns for fuel management. For. Ecol. Manag. 2019, 433, 431–440. [Google Scholar] [CrossRef]
- Price, O.H.; Nolan, R.H.; Samson, S.A. Fuel consumption rates in resprouting eucalypt forest during hazard reduction burns, cultural burns and wildfires. For. Ecol. Manag. 2022, 505, 119894. [Google Scholar] [CrossRef]
- Hislop, S.; Stone, C.; Haywood, A.; Skidmore, A. The effectiveness of fuel reduction burning for wildfire mitigation in sclerophyll forests. Aust. For. 2020, 83, 255–264. [Google Scholar] [CrossRef]
- Zhang, Y.; Beggs, P.J.; McGushin, A.; Bambrick, H.; Trueck, S.; Hanigan, I.C.; Morgan, G.G.; Berry, H.L.; Linnenluecke, M.K.; Johnston, F.H.; et al. The 2020 special report of the MJA-Lancet Countdown on health and climate change: Lessons learnt from Australia’s “Black Summer”. Med. J. Aust. 2020, 213, 490–492.e410. [Google Scholar] [CrossRef]
- Filkov, A.I.; Ngo, T.; Matthews, S.; Telfer, S.; Penman, T.D. Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment. Retrospective analysis and current trends. J. Saf. Sci. Resil. 2020, 1, 44–56. [Google Scholar] [CrossRef]
- Akter, S.; Grafton, R.Q. Do fires discriminate? Socio-economic disadvantage, wildfire hazard exposure and the Australian 2019–20 ‘Black Summer’ fires. Clim. Chang. 2021, 165, 53. [Google Scholar] [CrossRef]
- Williamson, B.; Markham, F.; Weir, J.K. Aboriginal Peoples and the Response to the 2019–2020 Bushfires; Working Paper No. 134/2020; Centre for Aboriginal Economic Policy Research, Australian National University: Canberra, Australia, 2020.
- Williamson, B.; Weir, J.; Cavanagh, V. Strength from Perpetual grief: How Aboriginal People Experience the Bushfire Crisis. The Conversation, 2020. Available online: https://theconversation.com/strength-from-perpetual-grief-how-aboriginal-people-experience-the-bushfire-crisis-129448 (accessed on 1 December 2021).
- Australian Institute of Aboriginal and Torres Strait Islander Studies. Available online: https://aiatsis.gov.au/explore/welcome-country#toc-what-is-country- (accessed on 1 December 2021).
- van Eeden, L.; Nimmo, D.; Mahony, M.; Herman, K.; Ehmke, G.; Driessen, J.; O’Connor, J.; Bino, G.; Taylor, M.; Dickman, C. Australia’s 2019–2020 Bushfires: The Wildlife Toll Interim Report.; WWF-Australia: Ultimo, Australia, 2020. [Google Scholar]
- NSW Government. Fish Kills in NSW 2019–2020. Available online: https://www.dpi.nsw.gov.au/fishing/habitat/threats/fish-kills-2019-2020 (accessed on 10 May 2021).
- Kirchhoff, C.; Callaghan, C.T.; Keith, D.A.; Indiarto, D.; Taseski, G.; Ooi, M.K.J.; Le Breton, T.D.; Mesaglio, T.; Kingsford, R.T.; Cornwell, W.K. Rapidly mapping fire effects on biodiversity at a large-scale using citizen science. Sci. Total Environ. 2021, 755, 142348. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.; Wallis, K.; Lane, A. Quantifying the impacts of bushfire on populations of wild koalas (Phascolarctos cinereus): Insights from the 2019/20 fire season. Ecol. Manag. Restor. 2021, 22, 80–88. [Google Scholar] [CrossRef]
- Le Breton, T.D.; Lyons, M.B.; Nolan, R.H.; Penman, T.; Williamson, G.; Ooi, M.K.J. Megafire-induced interval squeeze threatens vegetation at landscape scales. Front. Ecol. Environ. in press.
- Nolan, R.H.; Gauthey, A.; Losso, A.; Medlyn, B.E.; Smith, R.; Chhajed, S.S.; Fuller, K.; Song, M.; Li, X.; Beaumont, L.J.; et al. Hydraulic failure and tree size linked with canopy die-back in eucalypt forest during extreme drought. New Phytol. 2021, 230, 1354–1365. [Google Scholar] [CrossRef]
- Nolan, R.H.; Collins, L.; Leigh, A.; Ooi, M.K.J.; Curran, T.J.; Fairman, T.A.; Resco de Dios, V.; Bradstock, R. Limits to post-fire vegetation recovery under climate change. Plant Cell Environ. 44, 3471–3489. [CrossRef]
- Australian Bureau of Statistics. Australian Statistical Geography Standard (ASGS): Volume 1—Main Structure and Greater Capital City Statistical Areas. July 2016. Available online: www.abs.gov.au (accessed on 5 June 2021).
- Australian Bureau of Statistics. Estimates of Aboriginal and Torres Strait Islander Australians. June 2016. Available online: https://www.abs.gov.au/statistics/people/aboriginal-and-torres-strait-islander-peoples/estimates-aboriginal-and-torres-strait-islander-australians/latest-release (accessed on 5 June 2021).
- Gibbons, P.; van Bommel, L.; Gill, A.M.; Cary, G.J.; Driscoll, D.A.; Bradstock, R.A.; Knight, E.; Moritz, M.A.; Stephens, S.L.; Lindenmayer, D.B. Land management practices associated with house loss in wildfires. PLoS ONE 2012, 7, e29212. [Google Scholar] [CrossRef]
- Price, O.; Bradstock, R. Landscape scale influences of forest area and housing density on house loss in the 2009 Victorian bushfires. PLoS ONE 2013, 8, e73421. [Google Scholar] [CrossRef] [Green Version]
- Di Virgilio, G.; Evans, J.P.; Blake, S.A.P.; Armstrong, M.; Dowdy, A.J.; Sharples, J.; McRae, R. Climate change increases the potential for extreme wildfires. Geophys. Res. Lett. 2019, 46, 8517–8526. [Google Scholar] [CrossRef]
- Haynes, K. Theme 3a—People and Property Impacts: The Social Benefits of Cultural Burning; NSW Bushfire Risk Management Research Hub: Sydney, Australia, 2020. [Google Scholar]
- NSW Department of Planning Industry and Environment. Our Place on Country: Aboriginal Outcomes Strategy 2020–2023; NSW Department of Planning Industry and Environment: Sydney, Australia, 2020.
- Whittaker, J.; Haynes, K.; Wilkinson, C.; Tofa, M.; Dilworth, T.; Collins, J.; Tait, L. Black Summer—How the NSW Community Responded to the 2019–2020 Bushfire Season; Bushfire and Natural Hazards CRC: Melbourne, Austrilia, 2021. [Google Scholar]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [Green Version]
- Kelly, L.T.; Giljohann, K.M.; Duane, A.; Aquilué, N.; Archibald, S.; Batllori, E.; Bennett, A.F.; Buckland, S.T.; Canelles, Q.; Clarke, M.F.; et al. Fire and biodiversity in the Anthropocene. Science 2020, 370, eabb0355. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.; Emerick, K. Adaptation to Climate Change: Evidence from US Agriculture. Am. Econ. J.-Econ. Policy 2016, 8, 106–140. [Google Scholar] [CrossRef] [Green Version]
- Gawith, D.; Hodge, I.; Morgan, F.; Daigneault, A. Climate change costs more than we think because people adapt less than we assume. Ecol. Econ. 2020, 173, 106636. [Google Scholar] [CrossRef]
- Reid, K.; Beilin, R.; McLennan, J. Communities and responsibility: Narratives of place-identity in Australian bushfire landscapes. Geoforum 2020, 109, 35–43. [Google Scholar] [CrossRef]
- Fischer, A.P.; Spies, T.A.; Steelman, T.A.; Moseley, C.; Johnson, B.R.; Bailey, J.D.; Ager, A.A.; Bourgeron, P.; Charnley, S.; Collins, B.M.; et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 2016, 14, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Indian, J. The concept of local knowledge in rural Australian fire management. In Community Bushfire Safety; Handmer, J., Haynes, K., Eds.; CSIRO Publishing: Clayton, Australia, 2008. [Google Scholar]
- McWethy, D.B.; Schoennagel, T.; Higuera, P.E.; Krawchuk, M.; Harvey, B.J.; Metcalf, E.C.; Schultz, C.; Miller, C.; Metcalf, A.L.; Buma, B.; et al. Rethinking resilience to wildfire. Nat. Sustain. 2019, 2, 797–804. [Google Scholar] [CrossRef]
- Norman, B.; Newman, P.; Steffen, W. Apocalypse now: Australian bushfires and the future of urban settlements. Npj Urban Sustain. 2021, 1, 2. [Google Scholar] [CrossRef]
- King, D.; Bird, D.; Haynes, K.; Boon, H.; Cottrell, A.; Millar, J.; Okada, T.; Box, P.; Keogh, D.; Thomas, M. Voluntary relocation as an adaptation strategy to extreme weather events. Int. J. Disaster Risk Reduct. 2014, 8, 83–90. [Google Scholar] [CrossRef]
- O’Halloran, M.; Davies, A. A shared risk: Volunteer shortages in Australia’s rural bushfire brigades. Aust. Geogr. 2020, 51, 421–435. [Google Scholar] [CrossRef]
- McConnell, K. COVID-19—Population impacts on rural and regional Australia. Interaction 2021, 49, 13–15. [Google Scholar]
- Keith, D.A.; Martin, T.G.; McDonald-Madden, E.; Walters, C. Uncertainty and adaptive management for biodiversity conservation. Biol. Conserv. 2011, 144, 1175–1178. [Google Scholar] [CrossRef]
- Prichard, S.J.; Hessburg, P.F.; Hagmann, R.K.; Povak, N.A.; Dobrowski, S.Z.; Hurteau, M.D.; Kane, V.R.; Keane, R.E.; Kobziar, L.N.; Kolden, C.A.; et al. Adapting western North American forests to climate change and wildfires: 10 common questions. Ecol. Appl. 2021, e02433. [Google Scholar] [CrossRef]
- Matthews, S. A process-based model of fine fuel moisture. Int. J. Wildland Fire 2006, 15, 155–168. [Google Scholar] [CrossRef]
- Nolan, R.H.; Hedo, J.; Arteaga, C.; Sugai, T.; Resco de Dios, V. Physiological drought responses improve predictions of live fuel moisture dynamics in a Mediterranean forest. Agric. For. Meteorol. 2018, 263, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Resco de Dios, V.; Fellows, A.W.; Nolan, R.H.; Boer, M.M.; Bradstock, R.A.; Domingo, F.; Goulden, M.L. A semi-mechanistic model for predicting the moisture content of fine litter. Agric. For. Meteorol. 2015, 203, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Eamus, D.; Boulain, N.; Cleverly, J.; Breshears, D.D. Global change-type drought-induced tree mortality: Vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecol. Evol. 2013, 3, 2711–2729. [Google Scholar] [CrossRef]
- Nolan, R.H.; Boer, M.M.; Resco de Dios, V.; Caccamo, G.; Bradstock, R.A. Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia. Geophys. Res. Lett. 2016, 43, 4229–4238. [Google Scholar] [CrossRef] [Green Version]
- Frost, A.J.; Ramchurn, A.; Smith, A. The Australian Landscape Water Balance Model (AWRA-L v6); Technical Description of the Australian Water Resources Assessment Landscape Model Version 6, Bureau of Meteorology Technical Report; Bureau of Meteorology: Melbourne, Australia, 2018.
- Monteith, J.L.; Unsworth, M.H. Principles of Environmental Physics; Edward Arnold: London, UK, 1990. [Google Scholar]
- Jones, D.; Wang, Q.W.; Fawcett, R. High-quality spatial climate data-sets for Australia. Aust. Meteorol. Mag. 2009, 58, 233–248. [Google Scholar] [CrossRef]
- Gould, J.S.; McCaw, W.L.; Cheney, N.P. Quantifying fine fuel dynamics and structure in dry eucalypt forest (Eucalyptus marginata) in Western Australia for fire management. For. Ecol. Manag. 2011, 262, 531–546. [Google Scholar] [CrossRef]
- Hines, F.; Tolhurst, K.G.; Wilson, A.A.G.; McCarthy, G.J. Overall Fuel Hazard Assessment Guide, 4th ed.; Fire and Adaptive Management Report No. 82; Victorian Government Department of Sustainability and Environment: Melbourne, Australia, 2010.
- Olson, J.E. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 1963, 44, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Watson, P. Fuel Load Dynamics in NSW Vegetation, Part 1: Forests and Grassy Woodlands; Centre for Environmental Risk Management of Bushfires, University of Wollongong: Wollongong, Australia, 2012. [Google Scholar]
- Kenny, B.; Roberts, L. Building a comprehensive fuel map—From research to operational use. In Proceedings of the 5th International Fire Behaviour and Fuels Conference, Melbourne, Australia, 2016, 11–15 April 2016. [Google Scholar]
- Luke, R.H.; McArthur, A.G. Bushfires in Australia; Australian Government Publishing Service: Canberra, Australia, 1978. [Google Scholar]
- Dowdy, A.J. Climatological variability of fire weather in Australia. J. Appl. Meteorol. Climatol. 2018, 57, 221–234. [Google Scholar] [CrossRef]
- Keetch, J.J.; Byram, G.M. A Drought Factor Index for Forest Fire Control; US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 1968.
- NSW Office of Environment and Heritage. The NSW State Vegetation Type Map: Methodology for a Regional-Scale Map of NSW Plant Community Types; NSW Office of Environment and Heritage: Sydney, Australia, 2017.
- Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote. Sens. Environ. 2020, 240, 111702. [Google Scholar] [CrossRef]
- Nolan, R.H.; de Dios, V.R.; Boer, M.M.; Caccamo, G.; Goulden, M.L.; Bradstock, R.A. Predicting dead fine fuel moisture at regional scales using vapour pressure deficit from MODIS and gridded weather data. Remote. Sens. Environ. 2016, 174, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.S.W. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Keith, D.A. Ocean Shores to Desert Dunes: Native Vegetation of New South Wales and the ACT; NSW Department of Environment & Conservation: Hurstville, Australia, 2004.
Hypothesis | Generalised Linear Mixed-Effect Binomial Models (GLMM) |
---|---|
H1 | Severity ~ Location × FFDI + TPI + TRI + Slope + Aspect + DFMC + vegetation + (1|FireGroundID/PastFireID) |
H2 | Severity ~ PastSeverity × FFDI + TPI + TRI + Slope + Aspect + DFMC + vegetation + (1|FireGroundID/PastFireID) |
H3 | Severity ~ TimeSinceFire × FFDI + TPI + TRI + Slope + Aspect + DFMC + vegetation + (1|FireGroundID/PastFireID) |
H4 | Severity ~ FireType × FFDI + TPI + TRI + Slope + Aspect + DFMC + vegetation + (1|FireGroundID/PastFireID) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nolan, R.H.; Bowman, D.M.J.S.; Clarke, H.; Haynes, K.; Ooi, M.K.J.; Price, O.F.; Williamson, G.J.; Whittaker, J.; Bedward, M.; Boer, M.M.; et al. What Do the Australian Black Summer Fires Signify for the Global Fire Crisis? Fire 2021, 4, 97. https://doi.org/10.3390/fire4040097
Nolan RH, Bowman DMJS, Clarke H, Haynes K, Ooi MKJ, Price OF, Williamson GJ, Whittaker J, Bedward M, Boer MM, et al. What Do the Australian Black Summer Fires Signify for the Global Fire Crisis? Fire. 2021; 4(4):97. https://doi.org/10.3390/fire4040097
Chicago/Turabian StyleNolan, Rachael H., David M. J. S. Bowman, Hamish Clarke, Katharine Haynes, Mark K. J. Ooi, Owen F. Price, Grant J. Williamson, Joshua Whittaker, Michael Bedward, Matthias M. Boer, and et al. 2021. "What Do the Australian Black Summer Fires Signify for the Global Fire Crisis?" Fire 4, no. 4: 97. https://doi.org/10.3390/fire4040097
APA StyleNolan, R. H., Bowman, D. M. J. S., Clarke, H., Haynes, K., Ooi, M. K. J., Price, O. F., Williamson, G. J., Whittaker, J., Bedward, M., Boer, M. M., Cavanagh, V. I., Collins, L., Gibson, R. K., Griebel, A., Jenkins, M. E., Keith, D. A., Mcilwee, A. P., Penman, T. D., Samson, S. A., ... Bradstock, R. A. (2021). What Do the Australian Black Summer Fires Signify for the Global Fire Crisis? Fire, 4(4), 97. https://doi.org/10.3390/fire4040097