Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Authors = Abdallah A. Galal ORCID = 0000-0003-0413-5618

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7287 KiB  
Article
A Study of Drilling Parameter Optimization of Functionally Graded Material Steel–Aluminum Alloy Using 3D Finite Element Analysis
by Ahmed M. Galal, Abdallah. A. Elsherbiny and Mona A. AbouEleaz
J. Manuf. Mater. Process. 2024, 8(4), 155; https://doi.org/10.3390/jmmp8040155 - 23 Jul 2024
Cited by 2 | Viewed by 1669
Abstract
Composite materials, such as aluminum alloy FGMs, provide advantageous weight reduction properties compared to homogenous pure structures while still preserving sufficient stiffness for diverse applications. Despite various research on drilling simulation concepts and ideas for these materials, there still needs to be an [...] Read more.
Composite materials, such as aluminum alloy FGMs, provide advantageous weight reduction properties compared to homogenous pure structures while still preserving sufficient stiffness for diverse applications. Despite various research on drilling simulation concepts and ideas for these materials, there still needs to be an agreement on the process modeling. Researchers have looked into a lot of different numerical methods, including Lagrangian, Eulerian, arbitrary Lagrangian–Eulerian (ALE), and coupled Eulerian–Lagrangian (CEL), to find solutions to problems like divergence issues and too much mesh distribution, which become more of a problem at higher speeds. This research provides a global analysis of bottom-up meshing for eleven 1 mm layers using ABAQUS® software. It combines the internal surface contact approach with the Lagrangian domain’s kinematic framework. The model uses the Johnson–Cook constitutive equation to precisely predict cutting forces, stress, and strain distributions, optimizing cutting parameters to improve drilling performance. According to Taguchi analysis, the most favorable parameters for reducing cutting force and improving performance are a rotational speed of 700 rpm, a feed rate of 1 mm/s, and a depth of cut of 3 mm. The findings suggest that increasing the feed rate and depth of cut substantially affects the cutting force, while the rotational speed has a comparatively little effect. These ideal settings serve as a foundation for improving FGM drilling efficiency. Full article
Show Figures

Figure 1

20 pages, 2335 KiB  
Article
Molecular Diversity and Combining Ability in Newly Developed Maize Inbred Lines under Low-Nitrogen Conditions
by Mohamed M. Kamara, Elsayed Mansour, Ahmed E. A. Khalaf, Mohamed A. M. Eid, Abdallah A. Hassanin, Ahmed M. Abdelghany, Ahmed M. S. Kheir, Ahmed A. Galal, Said I. Behiry, Cristina Silvar and Salah El-Hendawy
Life 2024, 14(5), 641; https://doi.org/10.3390/life14050641 - 17 May 2024
Cited by 7 | Viewed by 2033
Abstract
Nitrogen is an essential element for maize growth, but excessive application can lead to various environmental and ecological issues, including water pollution, air pollution, greenhouse gas emissions, and biodiversity loss. Hence, developing maize hybrids resilient to low-N conditions is vital for sustainable agriculture, [...] Read more.
Nitrogen is an essential element for maize growth, but excessive application can lead to various environmental and ecological issues, including water pollution, air pollution, greenhouse gas emissions, and biodiversity loss. Hence, developing maize hybrids resilient to low-N conditions is vital for sustainable agriculture, particularly in nitrogen-deficient soils. Combining ability and genetic relationships among parental lines is crucial for breeding superior hybrids under diverse nitrogen levels. This study aimed to assess the genetic diversity of maize inbred lines using simple sequence repeat (SSR) markers and evaluate their combining ability to identify superior hybrids under low-N and recommended conditions. Local and exotic inbred lines were genotyped using SSR markers, revealing substantial genetic variation with high gene diversity (He = 0.60), moderate polymorphism information content (PIC = 0.54), and an average of 3.64 alleles per locus. Twenty-one F1 hybrids were generated through a diallel mating design using these diverse lines. These hybrids and a high yielding commercial check (SC-131) were field-tested under low-N and recommended N conditions. Significant variations (p < 0.01) were observed among nitrogen levels, hybrids, and their interaction for all recorded traits. Additive genetic variances predominated over non-additive genetic variances for grain yield and most traits. Inbred IL3 emerged as an effective combiner for developing early maturing genotypes with lower ear placement. Additionally, inbreds IL1, IL2, and IL3 showed promise as superior combiners for enhancing grain yield and related traits under both low-N and recommended conditions. Notably, hybrids IL1×IL4, IL2×IL5, IL2×IL6, and IL5×IL7 exhibited specific combining abilities for increasing grain yield and associated traits under low-N stress conditions. Furthermore, strong positive associations were identified between grain yield and specific traits like plant height, ear length, number of rows per ear, and number of kernels per row. Due to their straightforward measurability, these relationships underscore the potential of using these traits as proxies for indirect selection in early breeding generations, particularly under low-N stress. This research contributes to breeding nitrogen-efficient maize hybrids and advances our understanding of the genetic foundations for tolerance to nitrogen limitations. Full article
(This article belongs to the Special Issue Effects of Environmental Factors on Challenges of Plant Breeding)
Show Figures

Figure 1

20 pages, 51434 KiB  
Article
Suppression of Root Rot Fungal Diseases in Common Beans (Phaseolus vulgaris L.) through the Application of Biologically Synthesized Silver Nanoparticles
by Ezzeldin Ibrahim, Abdelmonim Ali Ahmad, El-Sayed Abdo, Mohamed Ahmed Bakr, Mohamed Ali Khalil, Yasmine Abdallah, Solabomi Olaitan Ogunyemi, Mohamed Mohany, Salim S. Al-Rejaie, Linfei Shou, Bin Li and Anwar A. Galal
Nanomaterials 2024, 14(8), 710; https://doi.org/10.3390/nano14080710 - 18 Apr 2024
Cited by 10 | Viewed by 2655
Abstract
The biosynthesis of silver nanoparticles (AgNPs) using plant extracts has become a safe replacement for conventional chemical synthesis methods to fight plant pathogens. In this study, the antifungal activity of biosynthesized AgNPs was evaluated both in vitro and under greenhouse conditions against root [...] Read more.
The biosynthesis of silver nanoparticles (AgNPs) using plant extracts has become a safe replacement for conventional chemical synthesis methods to fight plant pathogens. In this study, the antifungal activity of biosynthesized AgNPs was evaluated both in vitro and under greenhouse conditions against root rot fungi of common beans (Phaseolus vulgaris L.), including Macrophomina phaseolina, Pythium graminicola, Rhizoctonia solani, and Sclerotium rolfsii. Among the eleven biosynthesized AgNPs, those synthesized using Alhagi graecorum plant extract displayed the highest efficacy in suppressing those fungi. The findings showed that using AgNPs made with A. graecorum at a concentration of 100 μg/mL greatly slowed down the growth of mycelium for R. solani, P. graminicola, S. rolfsii, and M. phaseolina by 92.60%, 94.44%, 75.93%, and 79.63%, respectively. Additionally, the minimum inhibitory concentration (75 μg/mL) of AgNPs synthesized by A. graecorum was very effective against all of these fungi, lowering the pre-emergence damping-off, post-emergence damping-off, and disease percent and severity in vitro and greenhouse conditions. Additionally, the treatment with AgNPs led to increased root length, shoot length, fresh weight, dry weight, and vigor index of bean seedlings compared to the control group. The synthesis of nanoparticles using A. graecorum was confirmed using various physicochemical techniques, including UV spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) analysis. Collectively, the findings of this study highlight the potential of AgNPs as an effective and environmentally sustainable approach for controlling root rot fungi in beans. Full article
Show Figures

Graphical abstract

28 pages, 4645 KiB  
Article
Antioxidant, Anti-Cancer Activity and Phytochemicals Profiling of Kigelia pinnata Fruits
by Khaled M. A. Ramadan, Hossam S. El-Beltagi, Heba I. Mohamed, Tarek A. Shalaby, Ahmed Galal, Abdallah Tageldein Mansour, Mohamed M. Aboul Fotouh and Eslam S. A. Bendary
Separations 2022, 9(11), 379; https://doi.org/10.3390/separations9110379 - 18 Nov 2022
Cited by 22 | Viewed by 5463
Abstract
Over the past few years, research studies on the therapeutic benefits of medicinal plants with potent antioxidant activity and few side effects have grown significantly. This has sparked interest in determining whether naturally occurring antioxidants could take the place of synthetic antioxidants, which [...] Read more.
Over the past few years, research studies on the therapeutic benefits of medicinal plants with potent antioxidant activity and few side effects have grown significantly. This has sparked interest in determining whether naturally occurring antioxidants could take the place of synthetic antioxidants, which are currently being constricted because of their toxic and carcinogenic properties. The identification and quantification of phytochemicals in the methanolic extract of Kigelia pinnata fruits was measured using gas chromatography–mass spectrometry (GC-MS) and ultra-high-performance liquid chromatography–mass spectrometry (UPLC-MS/MS) techniques. Additionally, the methanolic extract of fruits was used to determine antioxidant activity. Free radical-scavenging (DPPH) and ferric ion-reducing antioxidant power were measured using spectrophotometry, and total antioxidant capacity (TAC) was compared with two common antioxidants, vitamin C and α-tocopherol. Moreover, mature fruits have high DDPH, ferric ion-reducing antioxidant power and total antioxidant capacity. Furthermore, mature fruits have high levels of total phenolic, flavonoid, and tannin content; these compounds are thought to be the sources of the antioxidant activity. The major constituents of the methanolic extracts from the mature fruits of K. pinnata were found to be larixinic acid, 3,5-Dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one (DMDP), and 5-Hydrxoymethylfurfural. We performed the elemental analysis of the whole fruit. Huh-7 (liver cancer), PANC-1 (pancreatic cancer), Colo-205 (colorectal cancer), HT-29 (colorectal cancer), SNU-16 (gastric carcinoma), SW620 (colorectal adenocarcinoma) and HCT116 (colon carcinoma) were tested in vitro for anticancer activity. Both methanolic and ethyl acetate extracts of mature fruits had a positive effect on all cancer cell lines as compared to the doxorubicin drug. In addition, the methanolic extracts of mature fruits showed more potent cytotoxic effects than the ethyl acetate extracts. Moreover, the most pronounced cytotoxic effects of the methanolic extract were detected in SW620 (colorectal adenocarcinoma), with an IC50 value of 6.79 μg/mL, SNU-16 (gastric carcinoma), with and IC50 value of 8.69 μg/ ml, and in PANC-1 (pancreatic cancer) with an IC50 value of 10.34 μg/mL. Moreover, the results show that the water, ethyl acetate and methanolic extracts of mature fruits have antioxidant capacity, ferric ion-reducing antioxidant power, DPPH scavenging activity and also anticancer activity. Therefore, the present study suggests that the phytochemical profiles of mature fruits of K. pinnata may be used as potential natural antioxidants and anti-cancer cell lines. Full article
Show Figures

Figure 1

11 pages, 5210 KiB  
Article
The Biogenically Efficient Synthesis of Silver Nanoparticles Using the Fungus Trichoderma harzianum and Their Antifungal Efficacy against Sclerotinia sclerotiorum and Sclerotium rolfsii
by Ranya M. S. El-Ashmony, Nouf S. S. Zaghloul, Marija Milošević, Mohamed Mohany, Salim S. Al-Rejaie, Yasmine Abdallah and Anwar A. Galal
J. Fungi 2022, 8(6), 597; https://doi.org/10.3390/jof8060597 - 2 Jun 2022
Cited by 19 | Viewed by 3716
Abstract
Silver nanoparticles (AgNs) are known as a promising alternative tool to control fungal diseases. AgNs were biologically synthesized using Trichoderma harzianum filtrate as an ecofriendly approach. The presence of AgNs was confirmed by changing the color to brown, followed by UV-Vis spectroscopy, transmission [...] Read more.
Silver nanoparticles (AgNs) are known as a promising alternative tool to control fungal diseases. AgNs were biologically synthesized using Trichoderma harzianum filtrate as an ecofriendly approach. The presence of AgNs was confirmed by changing the color to brown, followed by UV-Vis spectroscopy, transmission electron microscopy (TEM), and Energy-dispersive spectra (EDS). TEM studies showed that the size of AgNs average was 31.13 nm and the shape was spherical. In vitro assays of AgNs showed a significant inhibitory effect on the growth of Sclerotinia sclerotiorum (S. sclerotiorum) and Sclerotium rolfsii (S. rolfsii). The percentage inhibition on mycelial linear growth, dry weight, and sclerotia formation of S. sclerotiorum and S. rolfsii at 100−L were 87.8, 82.7, 96.4, 52.8, 55.1, and 85.4%, respectively. The obtained results suggested that the biosynthesized AgNs have antifungal activity against S. sclerotiorum and S. rolfsii. Foliar spray of bean and sunflower plants with AgNs caused a decrease in disease severity, which promoted the plant protection against S. sclerotiorum and S. rolfsii, respectively. Substantially, this study will extend our understanding of the AgNs antifungal action for suppressing fungal diseases. Full article
Show Figures

Figure 1

16 pages, 2286 KiB  
Article
Periodic Property and Instability of a Rotating Pendulum System
by Ji-Huan He, Tarek S. Amer, Shimaa Elnaggar and Abdallah A. Galal
Axioms 2021, 10(3), 191; https://doi.org/10.3390/axioms10030191 - 18 Aug 2021
Cited by 81 | Viewed by 3908
Abstract
The current paper investigates the dynamical property of a pendulum attached to a rotating rigid frame with a constant angular velocity about the vertical axis passing to the pivot point of the pendulum. He’s homotopy perturbation method is used to obtain the analytic [...] Read more.
The current paper investigates the dynamical property of a pendulum attached to a rotating rigid frame with a constant angular velocity about the vertical axis passing to the pivot point of the pendulum. He’s homotopy perturbation method is used to obtain the analytic solution of the governing nonlinear differential equation of motion. The fourth-order Runge-Kutta method (RKM) and He’s frequency formulation are used to verify the high accuracy of the obtained solution. The stability condition of the motion is examined and discussed. Some plots of the time histories of the gained solutions are portrayed graphically to reveal the impact of the distinct parameters on the dynamical motion. Full article
Show Figures

Figure 1

Back to TopTop