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Abstract: The current paper investigates the dynamical property of a pendulum attached to a rotating
rigid frame with a constant angular velocity about the vertical axis passing to the pivot point of
the pendulum. He’s homotopy perturbation method is used to obtain the analytic solution of the
governing nonlinear differential equation of motion. The fourth-order Runge-Kutta method (RKM)
and He’s frequency formulation are used to verify the high accuracy of the obtained solution. The
stability condition of the motion is examined and discussed. Some plots of the time histories of the
gained solutions are portrayed graphically to reveal the impact of the distinct parameters on the
dynamical motion.

Keywords: homotopy method; nonlinear dynamics; lagrange’s equations; stability; variational
principle

1. Introduction

It is known that many engineering problems can be formulated by nonlinear ordinary
or partial differential equations. With an exception of few problems, their exact solutions
seem to be extremely complex and sometimes unreachable. Therefore, asymptotic solu-
tions have shed the interest of many scientists to deal with various nonlinear equations,
such as the averaging method and the small parameter method for some weak nonlinear
problems [1–4]. In addition, the multiple scales (MS) method and the Lindstedt-Poincaré
(LP) method have great advantages in obtaining the solutions of vibratory systems [5,6].
However, these methods depend on a small parameter, and improper selection of this
parameter leads to wrong solutions.

On the other side, the homotopy perturbation method (HPM), that goes back to
Ji-Huan He [7], doesn’t depend on a small parameter and it can transform a non-linear
problem to a limited number of linear ones which are easy to be solved analytically. In [7],
the famous Lighthill equation and Duffing equations were solved. In [8], the method was
found to be powerful to fractional differential equations. In [9], this method was applied
to solve the nonlinear damped equation of Mathieu with periodic coefficients, and the
behavior of stability at both cases of resonance and non-resonance were studied. In [10],
the solution of the dynamical motion of a vibrating system was obtained using HPM. This
system consists of two masses, one of them attached with a fixed spring and it moves
horizontally. The second one relates to the first mass with a massless string and moves
vertically. The stability of the motion was examined and discussed. In [11], the motion of a
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rocking uniform rigid rod on a circular surface was investigated. The approximate solution
was obtained applying the HPM and Laplace transform in which the stability conditions
were also obtained. This problem was studied previously in [12] using the method of
variational approach, the comparison shows that HMP is very accurate, and it is easy to
use. The motion of a strong nonlinear system was investigated in [13]. The author obtained
the approximate solution using a combination of multiple scales method and the homotopy
perturbation method. The stability of an excited delayed Mathieu equation using the
He-multiple-scales perturbation method [14] was investigated in [15]. HPM was utilized
in [16] to deal with a cubic nonlinearity problem of a conservative couple mass-spring
system dynamical system in which the periodic solutions are obtained. This problem was
examined also in [17] through the development of an iteration technique based on the
method of Mickens iteration to get the asymptotic angular frequencies. In [18,19] HMP
was applied to study of the pull-in instability of N/MEMS systems. In [20], HPM-based
dynamic analysis was proposed. In [21] the method was extended to solve fractional
evolution equation. So far there were many modifications of the homotopy perturbation
method, see for examples, Refs. [22–30], and have many advantages over others in open
literature [31–35].

In this work, the HPM is applied to obtain an asymptotic solution of the controlling
equation of motion of a simple pendulum fixed in a rotating rigid frame with constant
angular velocity. The numerical solution of this equation is obtained applying RKM from
fourth-order. A comparison between them, through some tables and their corresponding
figures, emphasizes the accuracy of the HPM. The stability condition of the motion is
obtained and discussed.

2. Problem’s Description

The aim of this section is to derive the equation of motion of a simple pendulum of an
arm r fixed from one end in a rotating axis represented by a rigid rod and the other end is
attached with a mass m. To visualize the motion, we consider two Cartesian systems of
coordinates in which the first one Oxyz is fixed in space and the other Ox′y′z′ is fixed in
the body and rotates with it, see Figure 1. The rod is connected with a rotating rigid frame
with constant angular velocity Ω =

.
ϕ about the vertical axes Oy and Oy′. Here, ϕ is the

angle of rotation of the rotary frame Oxyz about the vertical axis Oy.
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Figure 1. The dynamical model.Figure 1. The dynamical model.

Therefore, we can write

z = z′ cos ϕ− x′ sin ϕ,
x = x′ cos ϕ + z′ sin ϕ,

(1)
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where
x′ = r sin θ,
y′ = y = l − r cos θ,
z′ = 0,

(2)

where θ is the angle of inclination of the T-shaped with the vertical axis and l is the distance
from the rotating axis (rigid rod) of the pendulum to z-axis. Based on the above, one obtains
easily

x = r sin θ cos ϕ,
y = l − r cos θ,
z = −r sin θ sin ϕ.

(3)

Making use of the above projections of the point p on the coordinates system Oxyz to
write the kinetic and the potential energies in the form

T = 1
2 mr2(

.
θ

2
+ Ω2 sin2 θ),

V = mg(l − r cos θ),
(4)

where dots denote the derivative with respect to time t and g is the gravitational accelera-
tion.

According to the variational theory [36–38], the Lagrange’s equation for conservative
dynamical systems is

d
dt
(

∂L

∂
.
θ
)− ∂L

∂θ
= 0, (5)

where L = T−V is the Lagrangian, the equation of motion (EOM) has therefore the form

r
g

..
θ + (1−Λ cos θ) sin θ = 0, (6)

where Λ = Ω2r/g.
Now, let us introduce a new independent variable τ in the form

τ =

√
g
r

t. (7)

According to (7), we can rewrite the EOM (6) in the form

θ′′ + (1−Λ cos θ) sin θ = 0, (8)

where prims denote the derivative with respect to time τ.

3. The Homotopy Perturbation Method

In this section, we outline on the HPM through consideration of the following nonlin-
ear equation

K(θ)− f (r) = 0, r ∈ Ω∗, (9)

with the boundary condition

B(θ,
∂θ

∂n
) = 0, r ∈ Γ. (10)

Here K, B, f and Γ are a general differential operator, a boundary one, analytical
function, and the boundary of a domain Ω∗. Moreover, ∂θ

∂n represent the differential along
the normal drawn outwards from Ω∗.

According to HPM, we can separate the operator K into linear and nonlinear parts L
and N respectively. Consequently, one can rewrite Equation (9) in the form

L(θ) + N(θ)− f (r) = 0 (11)
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An inspection of Equation (10) shows that we can formulate a homotopy of (10) to
satisfy θ(r, ρ) : Ω∗ × [0, 1]→ R ,

H(θ, ρ) = L(θ)− L(U) + ρL(U) + ρ[N(θ)− f (r)] = 0, ρ ∈ [0, 1] (12)

where ρ is an embedding parameter and U is an initial approximation guess of Equation (9),
in which the boundary conditions are fulfilled.

Based on the HPM, the solution of (12) can be expanded into a power series of ρ as

θ = θ0 + ρθ1 + ρ2θ2 + . . . . (13)

When ρ→ 1 , will find that Equation (12) matches with Equation (9) and therefore,
we can express the asymptotic solution of Equation (9) in the form

v = lim
ρ→1

θ = θ0 + θ1 + θ2 + . . . . (14)

It is noteworthy that, in many cases, the series (14) is convergent. For the convergence
of this sequence, some certain conditions are proposed [7].

4. Method of Solution

The purpose of this section is to employ the HPM to obtain the asymptotic solution of
the EOM. Substituting the following expansion of the trigonometric function sin θ into the
EOM (8)

sin θ = θ − θ3

3!
+ . . . , (15)

to get its approximation form

θ′′ + (1−Λ)θ + (
4Λ− 1

3!
)θ3 + . . . = 0. (16)

Let’s consider the initial conditions of the above equation in the form

θ(0) = 1, θ′(0) = 0. (17)

According to (11), we can express the linear and nonlinear parts L(θ) and N(θ) of
Equation (16) as follows

L(θ) = θ′′ + (1−Λ)θ, (18)

N(θ) = (
4Λ− 1

3!
)θ3, (19)

where
f (t) = 0. (20)

It is possible to rewrite Equation (12) in the form

H(θ, ρ) = (1− ρ)[L(θ)− L(U)] + ρ[L(θ) + N(θ)− f (t)] = 0, ρ ∈ [0, 1] (21)

The substituting of (18)–(20) into (21) yields

H(θ, ρ) = (1− ρ)[θ′′ + (1−Λ)θ −U′′ − (1−Λ)U]

+ρ[θ′′ + (1−Λ)θ + ( 4Λ−1
3! )θ3] = 0,

(22)

where U is the initial approximation guess. It does not depend on the boundary conditions.
So that we may choose a specific value or function to make the solution easier and shorter.

For simplicity we set U = 0, Equation (22) has the following form

H(θ, ρ) = θ′′ + (1−Λ)θ + ρ(
4Λ− 1

3!
)θ3 = 0. (23)
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Substituting the power series (13) into (23), and equating the coefficients of different
powers of ρ with zero, we get

Coefficients of ρ0:
θ′′ 0 + (1−Λ)θ0 = 0. (24)

Coefficients of ρ1:

θ1
′′ + (1−Λ)θ1 + (

4Λ− 1
6

)θ0
3 = 0. (25)

Coefficients of ρ
2
:

θ2
′′ + (1−Λ)θ2 + (

4Λ− 1
2

)θ1θ0
2 = 0. (26)

The inspection of the above Equations (24)–(26) shows that we can solve them sequen-
tially with the use of the following initial conditions

θ0(0) = 1, θ′0(0) = 0,
θ1(0) = 0, θ′1(0) = 0,
θ2(0) = 0, θ′2(0) = 0,

(27)

to obtain
θ0 = cos(τ

√
1−Λ), (28)

θ1 =
[4(1−Λ)− 3]

96(1−Λ)
[6
√

1−Λτ + sin(2
√

1−Λτ)] sin(
√

1−Λτ), (29)

θ2 = − [3−4(1−Λ)]2

36864(1−Λ)2 {[72(1−Λ)τ2 − 23] cos(
√

1−Λτ) + 24 cos(3
√

1−Λτ)

− cos(5
√

1−Λτ) + 12τ
√

1−Λ[3 sin(3
√

1−Λτ)− 8 sin(
√

1−Λτ)]
} (30)

Substituting (28)–(30) into (13) to obtain

θ = cos(
√

1−Λτ) + ρ[ [4(1−Λ)−3]
96(1−Λ)

[6
√

1−Λτ + sin(2
√

1−Λτ)] sin(
√

1−Λτ)]

+ρ2{− [3−4(1−Λ)]2

36864(1−Λ)2 {[72τ2(1−Λ)− 23] cos(
√

1−Λτ) + 24 cos(3
√

1−Λτ)

− cos(5
√

1−Λτ) + 12τ
√

1−Λ[3 sin(3
√

1−Λτ)− 8 sin(
√

1−Λτ)]
}
}.

(31)

According to (14), the above approximate solution has the form

v = lim
ρ→1

θ = cos(
√

1−Λτ) + [4(1−Λ)−3]
96(1−Λ)

[6
√

1−Λτ + sin(2
√

1−Λτ)] sin(
√

1−Λτ)

− [3−4(1−Λ)]2

36864(1−Λ)2 {[72τ2(1−Λ)− 23] cos(
√

1−Λτ) + 24 cos(3
√

1−Λτ)

− cos(5
√

1−Λτ) + 12τ
√

1−Λ[3 sin(3
√

1−Λτ)− 8 sin(
√

1−Λτ)
}
].

(32)

Numerically, the successive approximations by the HPM (with a finite series) are
guaranteed to converge to the exact solution over some intervals. Therefore, v(τ) converges
locally uniform.

5. Stability Analysis

The main objective of this section is to study the stability of the considered dynamical
model by examining its EOM (16), in which it isn’t useful to study stability through the
obtained solution (32). Therefore, we are going to consider the linear and nonlinear parts
of Equation (16) in which they are represented by Equations (18) and (19) respectively. It
is worthy to mention that, the stability of the linear part depends on the frequency term
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(1−Λ) which is always positive. Therefore, this term can be expanded in a power series
of ρ as follows

(1−Λ) = ω2 + ρω1 + ρ2ω2 + . . . (33)

Substituting from Equation (13) about θ and from (33) about the expanded frequency
into Equation (16) and equating the coefficients of equal powers of ρ for both sides of the
resulted equation to get

Coefficient of ρ0:
θ′′ 0 + ω2θ0 = 0, (34)

Coefficient of ρ:

θ1
′′ + ω2θ1 + ω1θ0 +

1
6
(4Λ− 1)θ0

3 = 0, (35)

Taking into account the previous initial conditions (27), we can write the solution of
the homogenous Equation (34) in the form

θ0 = cos(τω). (36)

Therefore Equation (35) becomes

θ1
′′ + ω2θ1 = −ω1 cos(τω)− 1

6
(4Λ− 1) cos3(τω). (37)

Elimination of the secular terms demands that

ω1 = −1
8
(4Λ− 1). (38)

Considering the initial conditions θ1(0) = θ′1(0) = 0, we can write the solution of (37)
after elimination of the secular term in the form

θ1 =
(4Λ− 1)

24(7− 4Λ)
[cos(3τω)− cos(τω)]. (39)

Making use of (38) into (33) and considering ρ = 1, one can write the obtained
frequency in the form

ω2 =
1
8
(7− 4Λ). (40)

In order to keep the system stable, we must consider the following stability condition

Λ <
7
4

. (41)

6. He’s Frequency Formulation

In order to verify our above results, this section introduces briefly He’s frequency
formulation [38,39]. Considering a nonlinear oscillator in the form

θ′′ + g(θ) = 0 (42)

with initial conditions
θ(0) = A, θ′(0) = 0 (43)

where g is a smooth function. Equation (42) has periodic solution when

d2

dθ2 g(θ) > 0 (44)
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He’s frequency formulation is [38,39]

ω2 =
d
dθ

g(θ)
∣∣∣∣
θ=A/2

(45)

In our study,

g(θ) = (1−Λ)θ + (
4Λ− 1

3!
)θ3 (46)

It is easy to find that

d
dθ

g(θ) = 1−Λ + (
4Λ− 1

2
)θ2 (47)

In our study A = 1, according to Equation (45), we obtain

ω2 = 1−Λ +
4Λ− 1

8
=

7− 4Λ
8

(48)

This is exactly same as that given in Equation (40). Applications of He’s frequency
formulation are referred to refs [40–45].

7. Results and Discussion

This section sheds light on the great accuracy of the obtained results that are achieved
by using HPM through the comparison of these results with the numerical ones that are
gained by utilizing the fourth-order RKM [46–48].

A beneficial way for a good comparison between the attained asymptotic results
by HPM and the numerical ones obtained by RKM, is to look reviews them through
the Tables 1–6 in addition to the error between them. The results included in Tables 1–6
correspond to the curves of Figures 2–7 respectively for the same corresponding values of r
and Ω.

Table 1. Error percentage of HPM for r = 0.6 m, Ω = 1.5 rad·s−1.

Time Numerical Results
(NR)

HPM Results
(HPMR) | HPMR−NR

NR |

0 1 1 0

1 0.630869 0.627776 0.0049026

2 0.21956 −0.225384 0.0265278

3 −0.899482 −0.903169 0.00409939

4 −0.908171 −0.903095 0.00558896

5 −0.239734 −0.22469 0.0627527

6 0.614791 0.628734 0.02268

7 0.999796 1.00071 0.000911276

8 0.646672 0.630153 0.0255458

9 −0.199286 −0.225065 0.129353

10 −0.890417 −0.903541 0.0147397
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Table 2. Error percentage of HPM for r = 0.6 m, Ω = 2 rad s−1.

Time Numerical Results
(NR)

HPM Results
(HPMR) | HPMR−NR

NR |

0 1 1 0

1 0.654764 0.64695 0.0119336

2 −0.148467 −0.16355 0.101592

3 −0.847042 −0.858298 0.013288

4 −0.956805 −0.946617 0.0106482

5 −0.404543 −0.366363 0.0943759

6 0.432158 0.473118 0.0947819

7 0.965135 0.977907 0.0132337

8 0.830583 0.792124 0.046304

9 0.118301 0.0465204 0.606763

10 −0.677385 −0.73201 0.0806414

Table 3. Error percentage of HPM for r = 0.6 m, Ω = 2.5 rad s−1.

Time Numerical Results
(NR)

HPM Results
(HPMR) | HPMR−NR

NR |

0 1 1 0

1 0.685404 0.671387 0.0204506

2 0.0527615 −0.0808787 0.532912

3 −0.758994 0.783883 0.0327925

4 −0.99427 −0.985533 0.00878713

5 −0.604164 0.538474 0.108728

6 0.157724 0.242582 0.538009

7 0.824048 0.875886 0.0629072

8 0.977147 0.942131 0.0358349

9 0.51624 0.385223 0.253791

10 −0.261008 −0.404121 0.548309

Table 4. Error percentage of HPM for r = 0.3 m, Ω = 2 rad s−1.

Time Numerical Results
(NR)

HPM Results
(HPMR) | HPMR−NR

NR |

0 1 1 0

1 0.627452 0.625023 0.00387119

2 −0.229458 −0.23406 0.0200579

3 −0.905921 −0.908752 0.00312526

4 0.900042 −0.896209 0.00425873

5 0.215822 −0.204251 0.0536163

6 0.638176 0.648882 0.0167751

7 0.999907 1.00072 0.000812474

8 0.616603 0.605241 0.0184257

9 −0.243047 0.262363 0.0794747

10 0.911628 −0.921237 0.0105405
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Table 5. Error percentage of HPM for r = 0.9 m, Ω = 2 rad s−1.

Time Numerical Results
(NR)

HPM Results
(HPMR) | HPMR−NR

NR |

0 1 1 0

1 0.682004 0.668681 0.0195354

2 −0.0636153 −0.0902769 0.419106

3 0.770003 0.793214 0.0301438

4 0.991721 0.982383 0.0094154

5 −0.582943 0.520499 0.107117

6 0.189856 0.269191 0.417868

7 0.845418 0.891707 0.0547537

8 0.967025 0.929664 0.038635

9 0.474508 0.35122 0.259822

10 −0.313132 −0.443194 0.415355

Table 6. Error percentage of HPM for r = 1.1 m, Ω = 2 rad s−1.

Time Numerical Results
(NR)

HPM Results
(HPMR) | HPMR−NR

NR |

0 1 1 0

1 0.700116 0.68309 0.0243185

2 −0.00515091 −0.0393558 6.64055

3 −0.707562 −0.739703 0.0454255

4 −0.999944 0.995252 0.00469164

5 −0.692595 0.611115 0.117644

6 0.0154523 0.129692 7.39304

7 0.714933 0.793976 0.11056

8 0.999775 0.983871 0.0159081

9 0.685001 0.518703 0.24277

10 −0.0257521 −0.252657 8.81111
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Figure 7. Shows a comparison between the homotopy solution (red color) and the numerical one
(blue color) Ω = 2 and r = 1.1.

The curves displayed Figures 2–4 are calculated when r = 0.6 m with the distinct values
of Ω = (1.5, 2, 2.5)rad·s−1 while Figures 6 and 7 are plotted when Ω = 2 at r = 0.6. The
objective of these curves is to reveal the comparison between the approximate analytical
solutions that are represented in Equation (32) (with red color) and the numerical solutions
of the governing EOM (8) (with blue color). These drawings indicate that the comparison
between both results reaches a peak of congruence at r = 0.6 when Ω = 1.5 and Ω = 2 as
seen in Figures 2 and 3 respectively. On the other side, this comparison is not completely
consistent when r = 0.6 and Ω = 2.5 for the attained solutions after the elapse of half
period time, as shown in Figure 4. A closer look at these figures shows that the plotted
curves have aperiodic behavior, which confirms the stability of the obtained solutions.

The purpose of the graphically generated results Figures 8 and 9 is to investigate the
impact of different values of Ω = (1.2, 2, 2.5)rad·s−1 and r(= 0.3, 0.6, 0.9)m respectively,
with the constancy of r = 0.6 in Figure 8 and Ω = 2 in Figure 9 on the behavior of the
considered dynamical model. It is clear that when Ω and r increase, the amplitudes of
the waves increase to some extent besides the constancy of the oscillations number and
wavelengths.

The phase plane diagrams that assert the stability of the attained solution, at different
values of Ω and r, are represented graphically in Figures 10 and 11 respectively.
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8. Conclusions

The asymptotic periodic solution of the EOM of a simple pendulum fixed in a rotating
rigid frame is obtained using HPM. The numerical solution of the governing EOM is
achieved utilizing the fourth-order RKM. A comparison between the attained solutions,
whether analytical or numerical, showed a clear match between them which emphasizes
the accuracy of the used HPM. These solutions are performed through computer codes to
represent the time histories of the motion graphically at the distinct values of the physical
parameters of the studied model. The stability condition of the motion is obtained.
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