Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Authors = Abdalla Bowirrat ORCID = 0000-0001-8185-0688

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 3631 KiB  
Article
Genetic and Regulatory Mechanisms of Comorbidity of Anxiety, Depression and ADHD: A GWAS Meta-Meta-Analysis Through the Lens of a System Biological and Pharmacogenomic Perspective in 18.5 M Subjects
by Kai-Uwe Lewandrowski, Kenneth Blum, Alireza Sharafshah, Kyriaki Z. Thanos, Panayotis K. Thanos, Richa Zirath, Albert Pinhasov, Abdalla Bowirrat, Nicole Jafari, Foojan Zeine, Milan Makale, Colin Hanna, David Baron, Igor Elman, Edward J. Modestino, Rajendra D. Badgaiyan, Keerthy Sunder, Kevin T. Murphy, Ashim Gupta, Alex P. L. Lewandrowski, Rossano Kepler Alvim Fiorelli and Sergio Schmidtadd Show full author list remove Hide full author list
J. Pers. Med. 2025, 15(3), 103; https://doi.org/10.3390/jpm15030103 - 5 Mar 2025
Cited by 1 | Viewed by 3505
Abstract
Background: In the United States, approximately 1 in 5 children experience comorbidities with mental illness, including depression and anxiety, which lead to poor general health outcomes. Adolescents with substance use disorders exhibit high rates of co-occurring mental illness, with over 60% meeting diagnostic [...] Read more.
Background: In the United States, approximately 1 in 5 children experience comorbidities with mental illness, including depression and anxiety, which lead to poor general health outcomes. Adolescents with substance use disorders exhibit high rates of co-occurring mental illness, with over 60% meeting diagnostic criteria for another psychiatric condition in community-based treatment programs. Comorbidities are influenced by both genetic (DNA antecedents) and environmental (epigenetic) factors. Given the significant impact of psychiatric comorbidities on individuals’ lives, this study aims to uncover common mechanisms through a Genome-Wide Association Study (GWAS) meta-meta-analysis. Methods: GWAS datasets were obtained for each comorbid phenotype, followed by a GWAS meta-meta-analysis using a significance threshold of p < 5E−8 to validate the rationale behind combining all GWAS phenotypes. The combined and refined dataset was subjected to bioinformatic analyses, including Protein–Protein Interactions and Systems Biology. Pharmacogenomics (PGx) annotations for all potential genes with at least one PGx were tested, and the genes identified were combined with the Genetic Addiction Risk Severity (GARS) test, which included 10 genes and eleven Single Nucleotide Polymorphisms (SNPs). The STRING-MODEL was employed to discover novel networks and Protein–Drug interactions. Results: Autism Spectrum Disorder (ASD) was identified as the top manifestation derived from the known comorbid interaction of anxiety, depression, and attention deficit hyperactivity disorder (ADHD). The STRING-MODEL and Protein–Drug interaction analysis revealed a novel network associated with these psychiatric comorbidities. The findings suggest that these interactions are linked to the need to induce “dopamine homeostasis” as a therapeutic outcome. Conclusions: This study provides a reliable genetic and epigenetic map that could assist healthcare professionals in the therapeutic care of patients presenting with multiple psychiatric manifestations, including anxiety, depression, and ADHD. The results highlight the importance of targeting dopamine homeostasis in managing ASD linked to these comorbidities. These insights may guide future pharmacogenomic interventions to improve clinical outcomes in affected individuals. Full article
(This article belongs to the Section Omics/Informatics)
Show Figures

Figure 1

22 pages, 2985 KiB  
Review
Dopamine Dysregulation in Reward and Autism Spectrum Disorder
by Kenneth Blum, Abdalla Bowirrat, Keerthy Sunder, Panayotis K. Thanos, Colin Hanna, Mark S. Gold, Catherine A. Dennen, Igor Elman, Kevin T. Murphy and Milan T. Makale
Brain Sci. 2024, 14(7), 733; https://doi.org/10.3390/brainsci14070733 - 22 Jul 2024
Cited by 8 | Viewed by 6511
Abstract
Autism spectrum disorder (ASD) is primarily characterized by core deficits in social skills, communication, and cognition and by repetitive stereotyped behaviors. These manifestations are variable between individuals, and ASD pathogenesis is complex, with over a thousand implicated genes, many epigenetic factors, and multiple [...] Read more.
Autism spectrum disorder (ASD) is primarily characterized by core deficits in social skills, communication, and cognition and by repetitive stereotyped behaviors. These manifestations are variable between individuals, and ASD pathogenesis is complex, with over a thousand implicated genes, many epigenetic factors, and multiple environmental influences. The mesolimbic dopamine (DA) mediated brain reward system is held to play a key role, but the rapidly expanding literature reveals intricate, nuanced signaling involving a wide array of mesolimbic loci, neurotransmitters and receptor subtypes, and neuronal variants. How altered DA signaling may constitute a downstream convergence of the manifold causal origins of ASD is not well understood. A clear working framework of ASD pathogenesis may help delineate common stages and potential diagnostic and interventional opportunities. Hence, we summarize the known natural history of ASD in the context of emerging data and perspectives to update ASD reward signaling. Then, against this backdrop, we proffer a provisional framework that organizes ASD pathogenesis into successive levels, including (1) genetic and epigenetic changes, (2) disrupted mesolimbic reward signaling pathways, (3) dysregulated neurotransmitter/DA signaling, and finally, (4) altered neurocognitive and social behavior and possible antagonist/agonist based ASD interventions. This subdivision of ASD into a logical progression of potentially addressable parts may help facilitate the rational formulation of diagnostics and targeted treatments. Full article
(This article belongs to the Section Neuropsychiatry)
Show Figures

Figure 1

11 pages, 541 KiB  
Article
Selenoprotein P in a Rodent Model of Exercise; Theorizing Its Interaction with Brain Reward Dysregulation, Addictive Behavior, and Aging
by Patrick Mohr, Colin Hanna, Aidan Powell, Samantha Penman, Kenneth Blum, Alireza Sharafshah, Kai-Uwe Lewandrowski, Rajendra D. Badgaiyan, Abdalla Bowirrat, Albert Pinhasov and Panayotis K. Thanos
J. Pers. Med. 2024, 14(5), 489; https://doi.org/10.3390/jpm14050489 - 3 May 2024
Cited by 3 | Viewed by 2304
Abstract
Exercise promotes health and wellness, including its operation as a protective factor against a variety of psychological, neurological, and chronic diseases. Selenium and its biomarker, selenoprotein P (SEPP1), have been implicated in health, including cancer prevention, neurological function, and dopamine signaling. SEPP1 blood [...] Read more.
Exercise promotes health and wellness, including its operation as a protective factor against a variety of psychological, neurological, and chronic diseases. Selenium and its biomarker, selenoprotein P (SEPP1), have been implicated in health, including cancer prevention, neurological function, and dopamine signaling. SEPP1 blood serum levels were compared with a one-way ANOVA between sedentary (SED), moderately exercised (MOD) [10 m/min starting at 10 min, increasing to 60 min], and high-intensity interval training (HIIT) exercised rats [30 min in intervals of 2-min followed by a 1-min break, speed progressively increased from 10 to 21 m/min]. HIIT rats showed significantly higher serum SEPP1 concentrations compared to MOD and SED. More specifically, HIIT exercise showed an 84% increase in SEPP1 levels compared to sedentary controls. MOD rats had greater serum SEPP1 concentrations compared to SED, a 33% increase. The results indicated that increased exercise intensity increases SEPP1 levels. Exercise-induced increases in SEPP1 may indicate an adaptive response to the heightened oxidative stress. Previous studies found a significant increase in dopamine D2 receptor (D2R) binding in these same rats, suggesting a potential association between SEPP1 and dopamine signaling during exercise. Modulating antioxidants like SEPP1 through personalized therapies, including exercise, has broad implications for health, disease, and addiction. Full article
(This article belongs to the Section Personalized Therapy and Drug Delivery)
Show Figures

Figure 1

16 pages, 2403 KiB  
Case Report
Positive Clinical Outcomes for Severe Reported Pain Using Robust Non-Addictive Home Electrotherapy—A Case-Series
by Anish Bajaj, David Han, Igor Elman, Panayotis K. Thanos, Catherine A. Dennen, Rajendra D. Badgaiyan, Abdalla Bowirrat, Debmalya Barh and Kenneth Blum
J. Pers. Med. 2023, 13(2), 336; https://doi.org/10.3390/jpm13020336 - 15 Feb 2023
Cited by 1 | Viewed by 2497
Abstract
The North American opioid epidemic has resulted in over 800,000 related premature overdose fatalities since 2000, with the United States leading the world in highest opioid deaths per capita. Despite increased federal funding in recent years, intended to address this crisis, opioid overdose [...] Read more.
The North American opioid epidemic has resulted in over 800,000 related premature overdose fatalities since 2000, with the United States leading the world in highest opioid deaths per capita. Despite increased federal funding in recent years, intended to address this crisis, opioid overdose mortality has continued to increase. Legally prescribed opioids also chronically induce a problematic reduction in affect. While an ideal analgesic has yet to be developed, some effective multimodal non-opioid pharmacological regimens for acute pain management are being more widely utilized. Some investigators have suggested that a safer and more scientifically sound approach might be to induce “dopamine homeostasis” through non-pharmacological approaches, since opioid use even for acute pain of short duration is now being strongly questioned. There is also increasing evidence suggesting that some more robust forms of electrotherapy could be applied as an effective adjunct to avoid the problems associated with opioids. This 4-patient case-series presents such an approach to treatment of severe pain. All 4 of these chiropractic treatment cases involved a component of knee osteoarthritis, in addition to other reported areas of pain. Each patient engaged in a home recovery strategy using H-Wave® device stimulation (HWDS) to address residual extremity issues following treatment of spinal subluxation and other standard treatments. A simple statistical analysis was conducted to determine the change in pain scores (Visual Analogue Scale) of pre and post electrotherapy treatments, resulting in significant reductions in self-reported pain (p-value = 0.0002). Three of the four patients continued using the home therapy device long-term as determined by a post-analysis questionnaire. This small case-series demonstrated notably positive outcomes, suggesting consideration of home use of HWDS for safe, non-pharmacological and non-addictive treatment of severe pain. Full article
Show Figures

Figure 1

23 pages, 4429 KiB  
Review
Future Newborns with Opioid-Induced Neonatal Abstinence Syndrome (NAS) Could Be Assessed with the Genetic Addiction Risk Severity (GARS) Test and Potentially Treated Using Precision Amino-Acid Enkephalinase Inhibition Therapy (KB220) as a Frontline Modality Instead of Potent Opioids
by Mauro Ceccanti, Kenneth Blum, Abdalla Bowirrat, Catherine A. Dennen, Eric R. Braverman, David Baron, Thomas Mclaughlin, John Giordano, Ashim Gupta, Bernard W. Downs, Debasis Bagchi, Debmalya Barh, Igor Elman, Panayotis K. Thanos, Rajendra D. Badgaiyan, Drew Edwards and Mark S. Gold
J. Pers. Med. 2022, 12(12), 2015; https://doi.org/10.3390/jpm12122015 - 6 Dec 2022
Cited by 4 | Viewed by 4225
Abstract
In this nonsystematic review and opinion, including articles primarily selected from PubMed, we examine the pharmacological and nonpharmacological treatments of neonatal abstinence syndrome (NAS) in order to craft a reasonable opinion to help forge a paradigm shift in the treatment and prevention of [...] Read more.
In this nonsystematic review and opinion, including articles primarily selected from PubMed, we examine the pharmacological and nonpharmacological treatments of neonatal abstinence syndrome (NAS) in order to craft a reasonable opinion to help forge a paradigm shift in the treatment and prevention of primarily opioid-induced NAS. Newborns of individuals who use illicit and licit substances during pregnancy are at risk for withdrawal, also known as NAS. In the US, the reported prevalence of NAS has increased from 4.0 per 1000 hospital births in 2010 to 7.3 per 1000 hospital births in 2017, which is an 82% increase. The management of NAS is varied and involves a combination of nonpharmacologic and pharmacologic therapy. The preferred first-line pharmacological treatment for NAS is opioid therapy, specifically morphine, and the goal is the short-term improvement in NAS symptomatology. Nonpharmacological therapies are individualized and typically focus on general care measures, the newborn–parent/caregiver relationship, the environment, and feeding. When used appropriately, nonpharmacologic therapies can help newborns with NAS avoid or reduce the amount of pharmacologic therapy required and the length of hospitalization. In addition, genetic polymorphisms of the catechol-o-methyltransferase (COMT) and mu-opioid receptor (OPRM1) genes appear to affect the length of stay and the need for pharmacotherapy in newborns with prenatal opioid exposure. Therefore, based on this extensive literature and additional research, this team of coauthors suggests that, in the future, in addition to the current nonpharmacological therapies, patients with opioid-induced NAS should undergo genetic assessment (i.e., the genetic addiction risk severity (GARS) test), which can subsequently be used to guide DNA-directed precision amino-acid enkephalinase inhibition (KB220) therapy as a frontline modality instead of potent opioids. Full article
Show Figures

Figure 1

20 pages, 2076 KiB  
Commentary
Theorizing the Role of Dopaminergic Polymorphic Risk Alleles with Intermittent Explosive Disorder (IED), Violent/Aggressive Behavior and Addiction: Justification of Genetic Addiction Risk Severity (GARS) Testing
by Edward Justin Modestino, Kenneth Blum, Catherine A. Dennen, B. William Downs, Debasis Bagchi, Luis Llanos-Gomez, Igor Elman, David Baron, Panayotis K. Thanos, Rajendra D. Badgaiyan, Eric R. Braverman, Ashim Gupta, Mark S. Gold and Abdalla Bowirrat
J. Pers. Med. 2022, 12(12), 1946; https://doi.org/10.3390/jpm12121946 - 23 Nov 2022
Cited by 12 | Viewed by 4929
Abstract
Scientific studies have provided evidence that there is a relationship between violent and aggressive behaviors and addictions. Genes involved with the reward system, specifically the brain reward cascade (BRC), appear to be associated with various addictions and impulsive, aggressive, and violent behaviors. In [...] Read more.
Scientific studies have provided evidence that there is a relationship between violent and aggressive behaviors and addictions. Genes involved with the reward system, specifically the brain reward cascade (BRC), appear to be associated with various addictions and impulsive, aggressive, and violent behaviors. In our previous research, we examined the Taq A1 allele (variant D2 dopamine receptor gene) and the DAT-40 base repeat (a variant of the dopamine transporter gene) in 11 Caucasian boys at the Brown School in San Marcus, Texas, diagnosed with intermittent explosive disorder. Thirty supernormal controls were screened to exclude several reward–deficit behaviors, including pathological violence, and genotyped for the DRD2 gene. Additionally, 91 controls were screened to exclude ADHD, pathological violence, alcoholism, drug dependence, and tobacco abuse, and their results were compared with DAT1 genotype results. In the schoolboys vs. supercontrols, there was a significant association with the D2 variant and a trend with the dopamine transporter variant. Results support our hypothesis and the involvement of at least two gene risk alleles with adolescent violent/aggressive behaviors. This study and the research presented in this paper suggest that violent/aggressive behaviors are associated with a greater risk of addiction, mediated via various genes linked to the BRC. This review provides a contributory analysis of how gene polymorphisms, especially those related to the brain reward circuitry, are associated with violent behaviors. Full article
Show Figures

Figure 1

17 pages, 1279 KiB  
Communication
Genetic Addiction Risk Severity Assessment Identifies Polymorphic Reward Genes as Antecedents to Reward Deficiency Syndrome (RDS) Hypodopaminergia’s Effect on Addictive and Non-Addictive Behaviors in a Nuclear Family
by Catherine A. Dennen, Kenneth Blum, Abdalla Bowirrat, Panayotis K. Thanos, Igor Elman, Mauro Ceccanti, Rajendra D. Badgaiyan, Thomas McLaughlin, Ashim Gupta, Anish Bajaj, David Baron, B. William Downs, Debasis Bagchi and Mark S. Gold
J. Pers. Med. 2022, 12(11), 1864; https://doi.org/10.3390/jpm12111864 - 8 Nov 2022
Cited by 6 | Viewed by 3990
Abstract
This case series presents the novel genetic addiction risk score (GARS), which shows a high prevalence of polymorphic risk alleles of reward genes in a nuclear family with multiple reward deficiency syndrome (RDS) behavioral issues expressing a hypodopaminergic antecedent. The family consists of [...] Read more.
This case series presents the novel genetic addiction risk score (GARS), which shows a high prevalence of polymorphic risk alleles of reward genes in a nuclear family with multiple reward deficiency syndrome (RDS) behavioral issues expressing a hypodopaminergic antecedent. The family consists of a mother, father, son, and daughter. The mother experienced issues with focus, memory, anger, and amotivational syndrome. The father experienced weight issues and depression. The son experienced heavy drinking, along with some drug abuse and anxiety. The daughter experienced depression, lethargy, brain fog, focus issues, and anxiety, among others. A major clinical outcome of the results presented to the family members helped reduce personal guilt and augment potential hope for future healing. Our laboratory’s prior research established that carriers of four or more alleles measured by GARS (DRD1-DRD4, DAT1, MOR, GABABR3, COMT, MAOAA, and 5HTLPR) are predictive of the addiction severity index (ASI) for drug abuse, and carriers of seven or more alleles are predictive of severe alcoholism. This generational case series shows the impact that genetic information has on reducing stigma and guilt in a nuclear family struggling with RDS behaviors. The futuristic plan is to introduce an appropriate DNA-guided “pro-dopamine regulator” into the recovery and enhancement of life. Full article
Show Figures

Figure 1

23 pages, 924 KiB  
Review
Immunosenescence and Aging: Neuroinflammation Is a Prominent Feature of Alzheimer’s Disease and Is a Likely Contributor to Neurodegenerative Disease Pathogenesis
by Abdalla Bowirrat
J. Pers. Med. 2022, 12(11), 1817; https://doi.org/10.3390/jpm12111817 - 2 Nov 2022
Cited by 20 | Viewed by 5550
Abstract
Alzheimer’s disease (AD) is a chronic multifactorial and complex neuro-degenerative disorder characterized by memory impairment and the loss of cognitive ability, which is a problem affecting the elderly. The pathological intracellular accumulation of abnormally phosphorylated Tau proteins, forming neurofibrillary tangles, and extracellular amyloid-beta [...] Read more.
Alzheimer’s disease (AD) is a chronic multifactorial and complex neuro-degenerative disorder characterized by memory impairment and the loss of cognitive ability, which is a problem affecting the elderly. The pathological intracellular accumulation of abnormally phosphorylated Tau proteins, forming neurofibrillary tangles, and extracellular amyloid-beta (Aβ) deposition, forming senile plaques, as well as neural disconnection, neural death and synaptic dysfunction in the brain, are hallmark pathologies that characterize AD. The prevalence of the disease continues to increase globally due to the increase in longevity, quality of life, and medical treatment for chronic diseases that decreases the mortality and enhance the survival of elderly. Medical awareness and the accurate diagnosis of the disease also contribute to the high prevalence observed globally. Unfortunately, no definitive treatment exists that can be used to modify the course of AD, and no available treatment is capable of mitigating the cognitive decline or reversing the pathology of the disease as of yet. A plethora of hypotheses, ranging from the cholinergic theory and dominant Aβ cascade hypothesis to the abnormally excessive phosphorylated Tau protein hypothesis, have been reported. Various explanations for the pathogenesis of AD, such as the abnormal excitation of the glutamate system and mitochondrial dysfunction, have also been suggested. Despite the continuous efforts to deliver significant benefits and an effective treatment for this distressing, globally attested aging illness, multipronged approaches and strategies for ameliorating the disease course based on knowledge of the underpinnings of the pathogenesis of AD are urgently needed. Immunosenescence is an immune deficit process that appears with age (inflammaging process) and encompasses the remodeling of the lymphoid organs, leading to alterations in the immune function and neuroinflammation during advanced aging, which is closely linked to the outgrowth of infections, autoimmune diseases, and malignant cancers. It is well known that long-standing inflammation negatively influences the brain over the course of a lifetime due to the senescence of the immune system. Herein, we aim to trace the role of the immune system in the pathogenesis of AD. Thus, we explore alternative avenues, such as neuroimmune involvement in the pathogenesis of AD. We determine the initial triggers of neuroinflammation, which is an early episode in the pre-symptomatic stages of AD and contributes to the advancement of the disease, and the underlying key mechanisms of brain damage that might aid in the development of therapeutic strategies that can be used to combat this devastating disease. In addition, we aim to outline the ways in which different aspects of the immune system, both in the brain and peripherally, behave and thus to contribute to AD. Full article
Show Figures

Figure 1

22 pages, 2081 KiB  
Communication
Genetic Addiction Risk and Psychological Profiling Analyses for “Preaddiction” Severity Index
by Kenneth Blum, David Han, Abdalla Bowirrat, Bernard William Downs, Debasis Bagchi, Panayotis K. Thanos, David Baron, Eric R. Braverman, Catherine A. Dennen, Ashim Gupta, Igor Elman, Rajendra D. Badgaiyan, Luis Llanos-Gomez, Jag Khalsa, Debmalya Barh, Thomas McLaughlin and Mark S. Gold
J. Pers. Med. 2022, 12(11), 1772; https://doi.org/10.3390/jpm12111772 - 27 Oct 2022
Cited by 9 | Viewed by 5455
Abstract
Since 1990, when our laboratory published the association of the DRD2 Taq A1 allele and severe alcoholism in JAMA, there has been an explosion of genetic candidate association studies, including genome-wide association studies (GWAS). To develop an accurate test to help identify those [...] Read more.
Since 1990, when our laboratory published the association of the DRD2 Taq A1 allele and severe alcoholism in JAMA, there has been an explosion of genetic candidate association studies, including genome-wide association studies (GWAS). To develop an accurate test to help identify those at risk for at least alcohol use disorder (AUD), a subset of reward deficiency syndrome (RDS), Blum’s group developed the genetic addiction risk severity (GARS) test, consisting of ten genes and eleven associated risk alleles. In order to statistically validate the selection of these risk alleles measured by GARS, we applied strict analysis to studies that investigated the association of each polymorphism with AUD or AUD-related conditions, including pain and even bariatric surgery, as a predictor of severe vulnerability to unwanted addictive behaviors, published since 1990 until now. This analysis calculated the Hardy–Weinberg Equilibrium of each polymorphism in cases and controls. Pearson’s χ2 test or Fisher’s exact test was applied to compare the gender, genotype, and allele distribution if available. The statistical analyses found the OR, 95% CI for OR, and the post risk for 8% estimation of the population’s alcoholism prevalence revealed a significant detection. Prior to these results, the United States and European patents on a ten gene panel and eleven risk alleles have been issued. In the face of the new construct of the “preaddiction” model, similar to “prediabetes”, the genetic addiction risk analysis might provide one solution missing in the treatment and prevention of the neurological disorder known as RDS. Full article
Show Figures

Figure 1

16 pages, 1174 KiB  
Commentary
Should Reward Deficiency Syndrome (RDS) Be Considered an Umbrella Disorder for Mental Illness and Associated Genetic and Epigenetic Induced Dysregulation of Brain Reward Circuitry?
by Kenneth Blum, Catherine A. Dennen, Igor Elman, Abdalla Bowirrat, Panayotis K. Thanos, Rajendra D. Badgaiyan, B. William Downs, Debasis Bagchi, David Baron, Eric R. Braverman, Ashim Gupta, Richard Green, Thomas McLaughlin, Debmalya Barh and Mark S. Gold
J. Pers. Med. 2022, 12(10), 1719; https://doi.org/10.3390/jpm12101719 - 14 Oct 2022
Cited by 12 | Viewed by 6104
Abstract
Reward Deficiency Syndrome (RDS) is defined as a breakdown of reward neurotransmission that results in a wide range of addictive, compulsive, and impulsive behaviors. RDS is caused by a combination of environmental (epigenetic) influences and DNA-based (genetic) neurotransmission deficits that interfere with the [...] Read more.
Reward Deficiency Syndrome (RDS) is defined as a breakdown of reward neurotransmission that results in a wide range of addictive, compulsive, and impulsive behaviors. RDS is caused by a combination of environmental (epigenetic) influences and DNA-based (genetic) neurotransmission deficits that interfere with the normal satisfaction of human physiological drives (i.e., food, water, and sex). An essential feature of RDS is the lack of integration between perception, cognition, and emotions that occurs because of (1) significant dopaminergic surges in motivation, reward, and learning centers causing neuroplasticity in the striato-thalamic-frontal cortical loop; (2) hypo-functionality of the excitatory glutamatergic afferents from the amygdala–hippocampus complex. A large volume of literature regarding the known neurogenetic and psychological underpinnings of RDS has revealed a significant risk of dopaminergic gene polymorphic allele overlap between cohorts of depression and subsets of schizophrenia. The suggestion is that instead of alcohol, opioids, gambling disorders, etc. being endophenotypes, the true phenotype is RDS. Additionally, reward deficiency can result from depleted or hereditary hypodopaminergia, which can manifest as a variety of personality traits and mental/medical disorders that have been linked to genetic studies with dopamine-depleting alleles. The carrying of known DNA antecedents, including epigenetic insults, results in a life-long vulnerability to RDS conditions and addictive behaviors. Epigenetic repair of hypodopaminergia, the causative basis of addictive behaviors, may involve precision DNA-guided therapy achieved by combining the Genetic Addiction Risk Severity (GARS) test with a researched neutraceutical having a number of variant names, including KB220Z. This nutraceutical formulation with pro-dopamine regulatory capabilities has been studied and published in peer-reviewed journals, mostly from our laboratory. Finally, it is our opinion that RDS should be given an ICD code and deserves to be included in the DSM-VI because while the DSM features symptomology, it is equally important to feature etiological roots as portrayed in the RDS model. Full article
Show Figures

Figure 1

18 pages, 1705 KiB  
Case Report
DNA Directed Pro-Dopamine Regulation Coupling Subluxation Repair, H-Wave® and Other Neurobiologically Based Modalities to Address Complexities of Chronic Pain in a Female Diagnosed with Reward Deficiency Syndrome (RDS): Emergence of Induction of “Dopamine Homeostasis” in the Face of the Opioid Crisis
by Anish Bajaj, Kenneth Blum, Abdalla Bowirrat, Ashim Gupta, David Baron, David Fugel, Ayo Nicholson, Taylor Fitch, B. William Downs, Debasis Bagchi, Catherine A. Dennen and Rajendra D. Badgaiyan
J. Pers. Med. 2022, 12(9), 1416; https://doi.org/10.3390/jpm12091416 - 30 Aug 2022
Cited by 5 | Viewed by 3411
Abstract
Addiction is a complex multifactorial condition. Established genetic factors can provide clear guidance in assessing the risk of addiction to substances and behaviors. Chronic stress can accumulate, forming difficult to recognize addiction patterns from both genetic and epigenetic (environmental) factors. Furthermore, psychological/physical/chemical stressors [...] Read more.
Addiction is a complex multifactorial condition. Established genetic factors can provide clear guidance in assessing the risk of addiction to substances and behaviors. Chronic stress can accumulate, forming difficult to recognize addiction patterns from both genetic and epigenetic (environmental) factors. Furthermore, psychological/physical/chemical stressors are typically categorized linearly, delaying identification and treatment. The patient in this case report is a Caucasian female, aged 36, who presented with chronic pain and partial disability following a surgically repaired trimalleolar fracture. The patient had a history of unresolved attention deficit disorder and an MRI scan of her brain revealed atrophy and functional asymmetry. In 2018, the patient entered the Bajaj Chiropractic Clinic, where initial treatment focused on re-establishing integrity of the spine and lower extremity biomechanics and graduated into cognitive behavior stabilization assisted by DNA pro-dopamine regulation guided by Genetic Addiction Risk Severity testing. During treatment (2018–2021), progress achieved included: improved cognitive clarity, focus, sleep, anxiety, and emotional stability in addition to pain reduction (75%); elimination of powerful analgesics; and reduced intake of previously unaddressed alcoholism. To help reduce hedonic addictive behaviors and pain, coupling of H-Wave with corrective chiropractic care seems prudent. We emphasize the importance of genetic assessment along with attempts at inducing required dopaminergic homeostasis via precision KB220PAM. It is hypothesized that from preventive care models, a new standard is emerging including self-awareness and accountability for reward deficiency as a function of hypodopaminergia. This case study documents the progression of a patient dealing with the complexities of an injury, pain management, cognitive impairment, anxiety, depression, and the application of universal health principles towards correction versus palliative care. Full article
Show Figures

Figure 1

13 pages, 708 KiB  
Commentary
Neurogenetic and Epigenetic Aspects of Cannabinoids
by Catherine A. Dennen, Kenneth Blum, Abdalla Bowirrat, Jag Khalsa, Panayotis K. Thanos, David Baron, Rajendra D. Badgaiyan, Ashim Gupta, Eric R. Braverman and Mark S. Gold
Epigenomes 2022, 6(3), 27; https://doi.org/10.3390/epigenomes6030027 - 26 Aug 2022
Cited by 9 | Viewed by 4807
Abstract
Cannabis is one of the most commonly used and abused illicit drugs in the world today. The United States (US) currently has the highest annual prevalence rate of cannabis consumption in the world, 17.9% in individuals aged 12 or older, and it is [...] Read more.
Cannabis is one of the most commonly used and abused illicit drugs in the world today. The United States (US) currently has the highest annual prevalence rate of cannabis consumption in the world, 17.9% in individuals aged 12 or older, and it is on the rise. With increasing cannabis use comes the potential for an increase in abuse, and according to the Substance Abuse and Mental Health Services Administration (SAMHSA), approximately 5.1% of Americans had Cannabis Use Disorder (CUD) in 2020. Research has shown that genetics and epigenetics play a significant role in cannabis use and CUD. In fact, approximately 50–70% of liability to CUD and 40–48% of cannabis use initiation have been found to be the result of genetic factors. Cannabis usage and CUD have also been linked to an increased risk of psychiatric disorders and Reward Deficiency Syndrome (RDS) subsets like schizophrenia, depression, anxiety, and substance use disorder. Comprehension of the genetic and epigenetic aspects of cannabinoids is necessary for future research, treatment plans, and the production of pure cannabinoid compounds, which will be essential for FDA approval. In conclusion, having a better understanding of the epigenetic and genetic underpinnings of cannabis use, CUD, and the endocannabinoid system as a whole will aid in the development of effective FDA-approved treatment therapies and the advancement of personalized medicine. Full article
Show Figures

Figure 1

13 pages, 934 KiB  
Article
Statistical Validation of Risk Alleles in Genetic Addiction Risk Severity (GARS) Test: Early Identification of Risk for Alcohol Use Disorder (AUD) in 74,566 Case–Control Subjects
by Kenneth Blum, David Han, Ashim Gupta, David Baron, Eric R. Braverman, Catherine A. Dennen, Shan Kazmi, Luis Llanos-Gomez, Rajendra D. Badgaiyan, Igor Elman, Panayotis K. Thanos, Bill W. Downs, Debasis Bagchi, Marjorie C. Gondre-Lewis, Mark S. Gold and Abdalla Bowirrat
J. Pers. Med. 2022, 12(9), 1385; https://doi.org/10.3390/jpm12091385 - 26 Aug 2022
Cited by 16 | Viewed by 3264
Abstract
Since 1990, when our laboratory published the association of the DRD2 Taq A1 allele and severe alcoholism in JAMA, there has been an explosion of genetic candidate association studies, including GWAS. To develop an accurate test to help identify those at risk [...] Read more.
Since 1990, when our laboratory published the association of the DRD2 Taq A1 allele and severe alcoholism in JAMA, there has been an explosion of genetic candidate association studies, including GWAS. To develop an accurate test to help identify those at risk for at least Alcohol Use Disorder (AUD), Blum’s group developed the Genetic Addiction Risk Severity (GARS) test, consisting of ten genes and eleven associated risk alleles. In order to statistically validate the selection of these risk alleles measured by GARS, we applied strict analysis to studies that investigated the association of each polymorphism with AUD or AUD-related conditions published from 1990 until 2021. This analysis calculated the Hardy–Weinberg Equilibrium of each polymorphism in cases and controls. If available, the Pearson’s χ2 test or Fisher’s exact test was applied to comparisons of the gender, genotype, and allele distribution. The statistical analyses found the OR, 95% CI for OR, and a post-risk for 8% estimation of the population’s alcoholism prevalence revealed a significant detection. The OR results showed significance for DRD2, DRD3, DRD4, DAT1, COMT, OPRM1, and 5HTT at 5%. While most of the research related to GARS is derived from our laboratory, we are encouraging more independent research to confirm our findings. Full article
Show Figures

Figure 1

13 pages, 832 KiB  
Commentary
Researching Mitigation of Alcohol Binge Drinking in Polydrug Abuse: KCNK13 and RASGRF2 Gene(s) Risk Polymorphisms Coupled with Genetic Addiction Risk Severity (GARS) Guiding Precision Pro-Dopamine Regulation
by Kenneth Blum, Mark S. Brodie, Subhash C. Pandey, Jean Lud Cadet, Ashim Gupta, Igor Elman, Panayotis K. Thanos, Marjorie C. Gondre-Lewis, David Baron, Shan Kazmi, Abdalla Bowirrat, Marcelo Febo, Rajendra D. Badgaiyan, Eric R. Braverman, Catherine A. Dennen and Mark S. Gold
J. Pers. Med. 2022, 12(6), 1009; https://doi.org/10.3390/jpm12061009 - 20 Jun 2022
Cited by 10 | Viewed by 3425
Abstract
Excessive alcohol intake, e.g., binge drinking, is a serious and mounting public health problem in the United States and throughout the world. Hence the need for novel insights into the underlying neurobiology that may help improve prevention and therapeutic strategies. Therefore, our group [...] Read more.
Excessive alcohol intake, e.g., binge drinking, is a serious and mounting public health problem in the United States and throughout the world. Hence the need for novel insights into the underlying neurobiology that may help improve prevention and therapeutic strategies. Therefore, our group employed a darkness-induced alcohol intake protocol to define the reward deficiency domains of alcohol and other substance use disorders in terms of reward pathways’ reduced dopamine signaling and its restoration via specifically-designed therapeutic compounds. It has been determined that KCNK13 and RASGRF2 genes, respectively, code for potassium two pore domain channel subfamily K member 13 and Ras-specific guanine nucleotide-releasing factor 2, and both genes have important dopamine-related functions pertaining to alcohol binge drinking. We present a hypothesis that identification of KCNK13 and RASGRF2 genes’ risk polymorphism, coupled with genetic addiction risk score (GARS)-guided precision pro-dopamine regulation, will mitigate binge alcohol drinking. Accordingly, we review published reports on the benefits of this unique approach and provide data on favorable outcomes for both binge-drinking animals and drunk drivers, including reductions in alcohol intake and prevention of relapse to drinking behavior. Since driving under the influence of alcohol often leads to incarceration rather than rehabilitation, there is converging evidence to support the utilization of GARS with or without KCNK13 and RASGRF2 risk polymorphism in the legal arena, whereby the argument that “determinism” overrides the “free will” account may be a plausible defense strategy. Obviously, this type of research is tantamount to helping resolve a major problem related to polydrug abuse. Full article
Show Figures

Figure 1

15 pages, 1306 KiB  
Commentary
Precision Behavioral Management (PBM) and Cognitive Control as a Potential Therapeutic and Prophylactic Modality for Reward Deficiency Syndrome (RDS): Is There Enough Evidence?
by Margaret A. Madigan, Ashim Gupta, Abdalla Bowirrat, David Baron, Rajendra D. Badgaiyan, Igor Elman, Catherine A. Dennen, Eric R. Braverman, Mark S. Gold and Kenneth Blum
Int. J. Environ. Res. Public Health 2022, 19(11), 6395; https://doi.org/10.3390/ijerph19116395 - 24 May 2022
Cited by 7 | Viewed by 3315
Abstract
This brief commentary aims to provide an overview of the available and relatively new precision management of reward deficiencies manifested as substance and behavioral disorders. Current and future advances, concepts, and the substantial evidential basis of this potential therapeutic and prophylactic treatment modality [...] Read more.
This brief commentary aims to provide an overview of the available and relatively new precision management of reward deficiencies manifested as substance and behavioral disorders. Current and future advances, concepts, and the substantial evidential basis of this potential therapeutic and prophylactic treatment modality are presented. Precision Behavioral Management (PBM), conceptualized initially as Precision Addiction Management (PAM), certainly deserves consideration as an important modality for the treatment of impaired cognitive control in reward processing as manifested in people with neurobiologically expressed Reward Deficiency Syndrome (RDS). Full article
Show Figures

Figure 1

Back to TopTop