Theorizing the Role of Dopaminergic Polymorphic Risk Alleles with Intermittent Explosive Disorder (IED), Violent/Aggressive Behavior and Addiction: Justification of Genetic Addiction Risk Severity (GARS) Testing
Abstract
:1. Introduction
The Issue
2. Substance Use Disorder (SUD) and Intermittent Explosive Disorder (IED)
3. Neurogenetics of Intermittent Explosive Disorder (IED) and Violent Aggressive Behaviors
4. Specific Reward Genes and IED
5. Specific Genes from the BRC/GARS: Linking Them with IED and Aggressive, Violent, and Impulsive Behaviors
5.1. Dopamine D1 Receptor
5.2. DRD2/ANKK1
5.3. Dopamine D3 Receptor Gene
5.4. Dopamine 4 Receptor Gene
5.5. COMT
5.6. Mu-Opioid Receptor [OPRM1]
5.7. Dopamine Transporter (DAT1)
5.8. Monoamine Oxidase-A (MAO-A)
5.9. Serotonin Transporter Gene (5-HTTLPR)
5.10. GABA (A) Receptor Gene (GABRB3)
5.11. Original Dopaminergic Candidate Association Study in Adolescent IED
6. Violent/Aggressive Behaviors and Addiction Liability
7. Dopaminergic Dysregulation (Surfeit or Deficit) Associated with Addiction and Violent Behavior
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Almeida, R.M.; Ferrari, P.F.; Parmigiani, S.; Miczek, K.A. Escalated aggressive behavior: Dopamine, serotonin and GABA. Eur. J. Pharmacol. 2005, 526, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Rosell, D.R.; Siever, L.J. The neurobiology of aggression and violence. CNS Spectr. 2015, 20, 254–279. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, F.; Byrne, M.K.; Batterham, M.; Grant, L.; Meyer, B.J. Associations between Omega-3 Index, Dopaminergic Genetic Variants and Aggressive and Metacognitive Traits: A Study in Adult Male Prisoners. Nutrients 2022, 14, 1379. [Google Scholar] [CrossRef] [PubMed]
- Coccaro, E.F.; Lee, R.J. Disordered Aggression and Violence in the United States. J. Clin. Psychiatry 2020, 81, 19m12937. [Google Scholar] [CrossRef]
- Umhau, J.C.; Trandem, K.; Shah, M.; George, D.T. The physician’s unique role in preventing violence: A neglected opportunity? BMC Med. 2012, 10, 146. [Google Scholar] [CrossRef] [Green Version]
- David-Ferdon, C.; Hertz, M.F. Electronic media, violence, and adolescents: An emerging public health problem. J. Adolesc Health 2007, 6, S1–S5. [Google Scholar] [CrossRef] [PubMed]
- Puhalla, A.A.; Berman, M.E.; Coccaro, E.F.; Fahlgren, M.K.; McCloskey, M.S. History of childhood abuse and alcohol use disorder: Relationship with intermittent explosive disorder and intoxicated aggression frequency. J. Psychiatr. Res. 2020, 125, 38–44. [Google Scholar] [CrossRef]
- Montalvo-Ortiz, J.L.; Zhang, H.; Chen, C.; Liu, C.; Coccaro, E.F. Genome-Wide DNA Methylation Changes Associated with Intermittent Explosive Disorder: A Gene-Based Functional Enrichment Analysis. Int. J. Neuropsychopharmacol. 2018, 21, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Gillet, C.; Polard, E.; Mauduit, N.; Allain, H. Passage à l’acte et substances psychoactives: Alcool, médicaments, drogues Acting out and psychoactive substances: Alcohol, drugs, illicit substances. Encephale 2001, 27, 351–359. [Google Scholar]
- Kelly, J.F.; Stout, R.L.; Tonigan, J.S.; Magill, M.; Pagano, M.E. Negative affect, relapse, and Alcoholics Anonymous (A.A.): Does A.A. work by reducing anger? J. Stud. Alcohol Drugs 2010, 71, 434–444. [Google Scholar] [CrossRef] [Green Version]
- Witkiewitz, K.; Villarroel, N.A. Dynamic association between negative affect and alcohol lapses following alcohol treatment. J. Consult. Clin. Psychol. 2009, 77, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Salley, R.D.; Teiling, P.A. Dissociated rage attacks in a Vietnam veteran: A Rorschach study. J. Pers. Assess 1984, 48, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, H.B.; Seibel, S.D. Crack cocaine use and its relationship with violence and HIV. Clinics 2009, 64, 857–866. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Cadet, J.L.; Gold, M.S. Psychostimulant use disorder emphasizing methamphetamine and the opioid -dopamine connection: Digging out of a hypodopaminergic ditch. J. Neurol. Sci. 2021, 420, 117252. [Google Scholar] [CrossRef] [PubMed]
- Lombroso, C. The Criminal Man; Durham, N.C., Ed.; Duke University Press: Durham, NC, USA, 2006. [Google Scholar]
- Baron, R.; Richardson, D. Human Aggression; Plenum Press: New York, NY, USA, 1994. [Google Scholar]
- Ferguson, C.J. Genetic contributions to antisocial personality and behavior: A meta-analytic review from an evolutionary perspective. J. Soc. Psychol. 2010, 150, 160–180. [Google Scholar] [CrossRef] [PubMed]
- Cadoret, R.J.; Leve, L.D.; Devor, E. Genetics of aggressive and violent behavior. Psychiatr. Clin. North Am. 1997, 20, 301–322. [Google Scholar] [CrossRef] [PubMed]
- Tiihonen, J.; Rautiainen, M.R.; Ollila, H.M.; Repo-Tiihonen, E.; Virkkunen, M.; Palotie, A.; Pietiläinen, O.; Kristiansson, K.; Joukamaa, M.; Lauerma, H.; et al. Genetic background of extreme violent behavior. Mol. Psychiatry 2015, 20, 786–792. [Google Scholar] [CrossRef] [Green Version]
- Maxson, S.C. Issues in the search for candidate genes in mice as potential animal models of human aggression. Ciba Found Symp. 1996, 194, 21–30; discussion 30–35. [Google Scholar] [CrossRef]
- Blum, K.; Kozlowski, G.P. Ethanol and neuromodulator interactions: A cascade model of reward. In Alcohol and Behavior; Ollat, H., Parvez, S., Parvez, H., Eds.; VSP Press: Utrecht, The Netherlands, 1990; pp. 131–149. [Google Scholar]
- Barlati, S.; Stefana, A.; Bartoli, F.; Bianconi, G.; Bulgari, V.; Candini, V.; Carrà, G.; Cavalera, C.; Clerici, M.; Cricelli, M.; et al. Violence risk and mental disorders (VIORMED-2): A prospective multicenter study in Italy. PLoS ONE 2019, 14, e0214924. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Oscar-Berman, M.; Demetrovics, Z.; Barh, D.; Gold, M.S. Genetic Addiction Risk Score (GARS): Molecular neurogenetic evidence for predisposition to Reward Deficiency Syndrome (RDS). Mol. Neurobiol. 2014, 50, 765–796. [Google Scholar] [CrossRef] [Green Version]
- Fried, L.; Modestino, E.J.; Siwicki, D.; Lott, L.; Thanos, P.K.; Baron, D.; Badgaiyan, R.D.; Ponce, J.V.; Giordano, J.; Downs, W.B.; et al. Hypodopaminergia and “Precision Behavioral Management”(PBM): It is a Generational Family Affair. Curr. Pharm. Biotechnol. 2020, 21, 528–541. [Google Scholar] [CrossRef] [PubMed]
- Vilas, D.; Pont-Sunyer, C.; Tolosa, E. Impulse control disorders in Parkinson’s disease. Park. Relat Disord. 2012, 18, S80–S84. [Google Scholar] [CrossRef] [PubMed]
- Zainal Abidin, S.; Tan, E.L.; Chan, S.C.; Jaafar, A.; Lee, A.X.; Abd Hamid, M.H.; Abdul Murad, N.A.; Pakarul Razy, N.F.; Azmin, S.; Ahmad Annuar, A.; et al. DRD and GRIN2B polymorphisms and their association with the development of impulse control behaviour among Malaysian Parkinson’s disease patients. BMC Neurol. 2015, 15, 59. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Ma, J.Z.; Payne, T.J.; Beuten, J.; Dupont, R.T.; Li, M.D. Significant association of DRD1 with nicotine dependence. Hum Genet 2008, 123, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-J.; Park, B.L.; Yoon, S.; Lee, H.-K.; Joe, K.-H.; Cheon, Y.-H.; Gwon, D.-H.; Cho, S.-N.; Lee, H.W.; NamGung, S.; et al. 5′ UTR polymorphism of dopamine receptor D1 (DRD1) associated with severity and temperament of alcoholism. Biochem. Biophys. Res. Commun. 2007, 357, 1135–1141. [Google Scholar] [CrossRef]
- Misener, V.L.; Luca, P.; Azeke, O.; Crosbie, J.; Waldman, I.; Tannock, R.; Roberts, W.; Malone, M.; Schachar, R.; Ickowicz, A.; et al. Linkage of the dopamine receptor D1 gene to attention-deficit/hyperactivity disorder. Mol. Psychiatry. 2004, 9, 500–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwab-Reese, L.M.; Parker, E.A.; Peek-Asa, C. The Interaction of Dopamine Genes and Financial Stressors to Predict Adulthood Intimate Partner Violence Perpetration. J. Interpers Violence. 2020, 35, 1251–1268. [Google Scholar] [CrossRef] [PubMed]
- Noble, E.P.; Gottschalk, L.A.; Fallon, J.H.; Ritchie, T.L.; Wu, J.C. D2 dopamine receptor polymorphism and brain regional glucose metabolism. Am. J. Med. Genet. 1997, 74, 162–166. [Google Scholar]
- Congdon, E.; Canli, T. A neurogenetic approach to impulsivity. J. Pers. 2008, 76, 1447–1484. [Google Scholar]
- Noble, E.P. D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2003, 116B, 103–125. [Google Scholar] [PubMed]
- White, M.J.; Lawford, B.R.; Morris, C.P.; Young, R.M. Interaction between DRD2 C957T polymorphism and an acute psychosocial stressor on reward-related behavioral impulsivity. Behav. Genet. 2009, 39, 285–295. [Google Scholar] [PubMed] [Green Version]
- White, M.J.; Morris, C.P.; Lawford, B.R.; Young, R.M. Behavioral phenotypes of impulsivity related to the ANKK1 gene are independent of an acute stressor. Behav. Brain. Funct. 2008, 4, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemoda, Z.; Lyons-Ruth, K.; Szekely, A.; Bertha, E.; Faludi, G.; Sasvari-Szekely, M. Association between dopaminergic polymorphisms and borderline personality traits among at-risk young adults and psychiatric inpatients. Behav. Brain. Funct. 2010, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Forbes, E.E.; Brown, S.M.; Kimak, M.; Ferrell, R.E.; Manuck, S.B.; Hariri, A.R. Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Mol. Psychiatry 2009, 14, 60–70. [Google Scholar]
- Caspi, A.; McClay, J.; Moffitt, T.E.; Mill, J.; Martin, J.; Craig, I.W.; Taylor, A.; Poulton, R. Role of genotype in the cycle of violence in maltreated children. Science 2002, 297, 851–854. [Google Scholar] [CrossRef]
- Boardman, J.D.; Menard, S.; Roettger, M.E.; Knight, K.E.; Boutwell, B.B.; Smolen, A. Genes in the dopaminergic system and delinquent behaviors across the life course: The role of social controls and risks. Crim. Justice Behav. 2014, 41, 713–731. [Google Scholar] [CrossRef] [Green Version]
- Vaske, J.; Makarios, M.; Boisvert, D.; Beaver, K.M.; Wright, J.P. The interaction of DRD2 and violent victimization on depression: An analysis by gender and race. J. Affect Disord. 2009, 112, 120–125. [Google Scholar] [CrossRef]
- Thibodeau, E.L.; Cicchetti, D.; Rogosch, F.A. Child maltreatment, impulsivity, and antisocial behavior in African American children: Moderation effects from a cumulative dopaminergic gene index. Dev. Psychopathol. 2015, 27, 1621–1636. [Google Scholar] [CrossRef] [Green Version]
- Chester, D.S.; DeWall, C.N.; Derefinko, K.J.; Estus, S.; Lynam, D.R.; Peters, J.R.; Jiang, Y. Looking for reward in all the wrong places: Dopamine receptor gene polymorphisms indirectly affect aggression through sensation-seeking. Soc. Neurosci. 2016, 11, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Zai, C.C.; Ehtesham, S.; Choi, E.; Nowrouzi, B.; De Luca, V.; Stankovich, L.; Davidge, K.; Freeman, N.; King, N.; Kennedy, J.L.; et al. Dopaminergic system genes in childhood aggression: Possible role for DRD2. World J. Biol. Psychiatry 2012, 13, 65–74. [Google Scholar] [CrossRef]
- Pego, A.M.F.; Leyton, V.; Miziara, I.D.; Bortolin, R.H.; Freitas, R.C.C.; Hirata, M.; Tomaz, P.R.X.; Santos, J.R.; Santos, P.C.J.L.; Yonamine, M. SNPs from BCHE and DRD3 genes associated to cocaine abuse amongst violent individuals from Sao Paulo, Brazil. Forensic. Sci. Int. 2020, 317, 110511. [Google Scholar] [CrossRef] [PubMed]
- Cherepkova, E.V.; Maksimov, V.N.; Kushnarev, A.P.; Shakhmatov, I.I.; Aftanas, L.I. The polymorphism of dopamine receptor D4 (DRD4) and dopamine transporter (DAT) genes in the men with antisocial behaviour and mixed martial arts fighters. World J. Biol. Psychiatry 2019, 20, 402–415. [Google Scholar] [CrossRef] [PubMed]
- Iofrida, C.; Palumbo, S.; Pellegrini, S. Molecular genetics and antisocial behavior: Where do we stand? Exp. Biol. Med. (Maywood) 2014, 239, 1514–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daigle, L.E. Risk heterogeneity and recurrent violent victimization: The role of DRD4. Biodemography Soc. Biol. 2010, 56, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Buchmann, A.F.; Zohsel, K.; Blomeyer, D.; Hohm, E.; Hohmann, S.; Jennen-Steinmetz, C.; Treutlein, J.; Becker, K.; Banaschewski, T.; Schmidt, M.H.; et al. Interaction between prenatal stress and dopamine D4 receptor genotype in predicting aggression and cortisol levels in young adults. Psychopharmacology 2014, 231, 3089–3097. [Google Scholar] [CrossRef] [PubMed]
- Marsman, R.; Oldehinkel, A.J.; Ormel, J.; Buitelaar, J.K. The dopamine receptor D4 gene and familial loading interact with perceived parenting in predicting externalizing behavior problems in early adolescence: The TRacking Adolescents’ Individual Lives Survey (TRAILS). Psychiatry Res. 2013, 209, 66–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobile, M.; Giorda, R.; Marino, C.; Carlet, O.; Pastore, V.; Vanzin, L.; Bellina, M.; Molteni, M.; Battaglia, M. Socioeconomic status mediates the genetic contribution of the dopamine receptor D4 and serotonin transporter linked promoter region repeat polymorphisms to externalization in preadolescence. Dev. Psychopathol. 2007, 4, 1147–1160. [Google Scholar] [CrossRef]
- Bakermans-Kranenburg, M.J.; Van Ijzendoorn, M.H. Gene-environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Dev. Psychobiol. 2006, 48, 406–409. [Google Scholar] [CrossRef]
- Hygen, B.W.; Belsky, J.; Stenseng, F.; Lydersen, S.; Guzey, I.C.; Wichstrøm, L. Child exposure to serious life events, COMT, and ag-gression: Testing differential susceptibility theory. Dev. Psychol. 2015, 51, 1098–1104. [Google Scholar] [CrossRef] [Green Version]
- Brennan, P.A.; Hammen, C.; Sylvers, P.; Bor, W.; Najman, J.; Lind, P.; Montgomery, G.; Smith, A.K. Interactions between the COMT Val108/158Met polymorphism and maternal prenatal smoking predict aggressive behavior outcomes. Biol. Psychol. 2011, 87, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Chen, P.; Li, H.; Kemp, A.H.; Zhang, W. Catechol-O-Methyltransferase Gene Val158Met Polymorphism Moderates the Effect of Social Exclusion and Inclusion on Aggression in Men: Findings From a Mixed Experimental Design. Front. Psychol. 2021, 11, 622914. [Google Scholar] [CrossRef] [PubMed]
- Comings, D.E.; MacMurray, J.P. Molecular heterosis: A review. Mol. Genet. Metab. 2000, 71, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Vinkers, C.H.; Van Gastel, W.A.; Schubart, C.D.; Van Eijk, K.R.; Luykx, J.J.; Van Winkel, R.; Joëls, M.; Ophoff, R.A.; Boks, M.P.; Genetic Risk and Outcome of Psychosis (GROUP) Investigators; et al. The effect of childhood maltreatment and cannabis use on adult psychotic symptoms is modified by the COMT Val1⁵⁸Met polymorphism. Schizophr. Res. 2013, 150, 303–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, S.W.; North, R.A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 1992, 12, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Corley, R.P.; Zeiger, J.S.; Crowley, T.; Ehringer, M.A.; Hewitt, J.K.; Hopfer, C.J.; Lessem, J.; McQueen, M.B.; Rhee, S.H.; Smolen, A.; et al. Association of candidate genes with antisocial drug dependence in adolescents. Drug Alcohol Depend. 2008, 96, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Hayashi, K.; Fairbairn, N.; Milloy, M.-J.; DeBeck, K.; Wood, E.; Kerr, T. Long Term Pre-Treatment Opioid Use Trajectories in Relation to Opioid Agonist Therapy Outcomes among People Who Use Drugs in a Canadian Setting. Addict. Behav. 2021, 112, 106655. [Google Scholar] [CrossRef]
- Coid, J.; Allolio, B.; Rees, L.H. Raised plasma metenkephalin in patients who habitually mutilate themselves. Lancet 1983, 2, 545–546. [Google Scholar]
- Symons, F.J.; Thompson, A.; Rodriguez, M.C. Self-injurious behavior and the efficacy of naltrexone treatment: A quantitative synthesis. Ment. Retard Dev. Disabli. Res. Rev. 2004, 10, 13–22. [Google Scholar]
- Saini, P.; Clements, C.; Gardner, K.J.; Chopra, J.; Latham, C.; Kumar, R.; Taylor, P. Identifying Suicide and Self-Harm Research Priorities in North West England. Crisis 2022, 43, 35–45. [Google Scholar] [CrossRef]
- Macdonald, G.; Leary, M.R. Why does social exclusion hurt?: The relationship between social and physical pain. Psychol. Bull. 2005, 131, 202–223. [Google Scholar]
- Panksepp, J. Feeling the pain of social loss. Science 2003, 302, 237–239. [Google Scholar] [PubMed] [Green Version]
- Siever, L.J. Neurobiology of aggression and violence. Am. J. Psychiatry 2008, 165, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Lötsch, J.; Geisslinger, G. Relevance of Frequent Mu-Opioid Receptor Polymorphisms for Opioid Activity in Healthy Volunteers. Pharm. J. 2006, 6, 200–210. [Google Scholar] [CrossRef] [Green Version]
- Cimino, S.; Carola, V.; Cerniglia, L.; Bussone, S.; Bevilacqua, A.; Tambelli, R. The μ-opioid receptor gene A118G polymorphism is associated with insecure attachment in children with disruptive mood regulation disorder and their mothers. Brain. Behav. 2020, 10, e01659. [Google Scholar] [CrossRef]
- Menon, S.; Lea, R.A.; Roy, B.; Hanna, M.; Wee, S.; Haupt, L.M.; Griffiths, L.R. The human μ-opioid receptor gene polymorphism (A118G) is associated with head pain severity in a clinical cohort of female migraine with aura patients. J. Headache Pain 2012, 13, 513–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchalova, K.; Sadikaj, G.; Moskowitz, D.S.; Zuroff, D.C.; Bartz, J.A. Variation in the μ-opioid receptor gene (OPRM1) and experiences of felt security in response to a romantic partner’s quarrelsome behavior. Mol. Psychiatry 2021, 8, 3847–3857. [Google Scholar] [CrossRef]
- Bertoletti, E.; Zanoni, A.; Giorda, R.; Battaglia, M. Influence of the OPRM1 gene polymorphism upon children’s degree of withdrawal and brain activation in response to facial expressions. Dev. Cogn. Neurosci. 2012, 2, 103–109. [Google Scholar] [CrossRef]
- Troisi, A.; Frazzetto, G.; Carola, V.; Di Lorenzo, G.; Coviello, M.; Siracusano, A.; Gross, C. Variation in the μ-opioid receptor gene (OPRM1) moderates the influence of early maternal care on fearful attachment. Soc. Cogn. Affect. Neurosci. 2012, 7, 542–547. [Google Scholar]
- Way, B.M.; Taylor, S.E.; Eisenberger, N.I. Variation in the mu-opioid receptor gene (OPRM1) is associated with dispositional and neural sensitivity to social rejection. Proc. Natl. Acad. Sci. USA 2009, 106, 15079–15084. [Google Scholar]
- Qadeer, M.I.; Amar, A.; Mann, J.J.; Hasnain, S. Polymorphisms in dopaminergic system genes; association with criminal behavior and self-reported aggression in violent prison inmates from Pakistan. PLoS ONE 2017, 12, e0173571. [Google Scholar] [CrossRef] [Green Version]
- Fine, A.; Mahler, A.; Simmons, C.; Chen, C.; Moyzis, R.; Cauffman, E. Relations between three dopaminergic system genes, school attachment, and adolescent delinquency. Dev. Psychol. 2016, 52, 1893–1903. [Google Scholar] [CrossRef] [PubMed]
- Young, S.E.; Smolen, A.; Corley, R.P.; Krauter, K.S.; DeFries, J.C.; Crowley, T.J.; Hewitt, J.K. Dopamine transporter polymorphism associated with externalizing behavior problems in children. Am. J. Med. Genet. 2002, 114, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Burt, S.A.; Mikolajewski, A.J. Preliminary evidence that specific candidate genes are associated with adolescent-onset antisocial behavior. Aggress Behav. 2008, 34, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Uršič, K.; Zupanc, T.; Paska, A.V. Analysis of promoter polymorphism in monoamine oxidase A (MAOA) gene in completed suicide on Slovenian population. Neurosci. Lett. 2018, 673, 111–115. [Google Scholar] [CrossRef]
- Beaver, K.M.; DeLisi, M.; Vaughn, M.G.; Barnes, J.C. Monoamine oxidase A genotype is associated with gang membership and weapon use. Compr. Psychiatry 2010, 51, 130–134. [Google Scholar] [CrossRef]
- Kolla, N.J.; Vinette, S.A. Monoamine Oxidase A in Antisocial Personality Disorder and Borderline Personality Disorder. Curr. Behav. Neurosci. Rep. 2017, 4, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Kolla, N.J.; Dunlop, K.; Meyer, J.H.; Downar, J. Corticostriatal Connectivity in Antisocial Personality Disorder by MAO-A Genotype and Its Relationship to Aggressive Behavior. Int. J. Neuropsychopharmacol. 2018, 2, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Gerra, G.; Garofano, L.; Bosari, S.; Pellegrini, C.; Zaimovic, A.; Moi, G.; Bussandri, M.; Moi, A.; Brambilla, F.; Mameli, A.; et al. Analysis of monoamine oxidase A (MAO-A) promoter polymorphism in male heroin-dependent subjects: Behavioural and personality correlates. J. Neural. Transm (Vienna) 2004, 111, 611–621. [Google Scholar] [CrossRef]
- Alia-Klein, N.; Goldstein, R.Z.; Kriplani, A.; Logan, J.; Tomasi, D.; Williams, B.; Telang, F.; Shumay, E.; Biegon, A.; Craig, I.W.; et al. Brain monoamine oxidase A activity predicts trait aggression. J. Neurosci. 2008, 28, 5099–5104. [Google Scholar] [CrossRef] [Green Version]
- Kolla, N.J.; Attard, S.; Craig, G.; Blackwood, N.; Hodgins, S. Monoamine oxidase A alleles in violent offenders with antisocial per-sonality disorder: High activity associated with proactive aggression. Crim. Behav. Ment. Health 2014, 24, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Y.; Cate, S.P.; Battistuzzi, C.; Oquendo, M.A.; Brent, D.; Mann, J.J. An association between a functional polymorphism in the monoamine oxidase a gene promoter, impulsive traits and early abuse experiences. Neuropsychopharmacology 2004, 29, 1498–1505. [Google Scholar] [CrossRef] [Green Version]
- Ni, X.; Sicard, T.; Bulgin, N.; Bismil, R.; Chan, K.; McMain, S.; Kennedy, J.L. Monoamine oxidase a gene is associated with borderline personality disorder. Psychiatr. Genet. 2007, 17, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Schlüter, T.; Winz, O.; Henkel, K.; Eggermann, T.; Mohammadkhani-Shali, S.; Dietrich, C.; Heinzel, A.; Decker, M.; Cumming, P.; Zerres, K.; et al. MAOA-VNTR polymorphism modulates context-dependent dopamine release and aggressive behavior in males. Neuroimage 2016, 125, 378–385. [Google Scholar] [CrossRef]
- Stetler, D.A.; Davis, C.; Leavitt, K.; Schriger, I.; Benson, K.; Bhakta, S.; Wang, L.C.; Oben, C.; Watters, M.; Haghnegahdar, T.; et al. Association of low-activity MAOA allelic variants with violent crime in incarcerated offenders. J. Psychiatr. Res. 2014, 58, 69–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tikkanen, R.; Sjöberg, R.L.; Ducci, F.; Goldman, D.; Holi, M.; Tiihonen, J.; Virkkunen, M. Effects of MAOA-genotype, alcohol consumption, and aging on violent behavior. Alcohol Clin. Exp. Res. 2009, 33, 428–434. [Google Scholar] [CrossRef] [Green Version]
- Klasen, M.; Wolf, D.; Eisner, P.D.; Habel, U.; Repple, J.; Vernaleken, I.; Schlüter, T.; Eggermann, T.; Zerres, K.; Zepf, F.D.; et al. Neural networks underlying trait aggression depend on MAOA gene alleles. Brain. Struct Funct. 2018, 223, 873–881. [Google Scholar] [CrossRef]
- Zhang, Y.; Ming, Q.; Wang, X.; Yao, S. The interactive effect of the MAOA-VNTR genotype and childhood abuse on aggressive behaviors in Chinese male adolescents. Psychiatr. Genet. 2016, 26, 117–123. [Google Scholar] [CrossRef]
- Ziermans, T.; Dumontheil, I.; Roggeman, C.; Peyrard-Janvid, M.; Matsson, H.; Kere, J.; Klingberg, T. Working memory brain activity and capacity link MAOA polymorphism to aggressive behavior during development. Transl. Psychiatry 2012, 2, e85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fite, P.J.; Brown, S.; Hossain, W.; Manzardo, A.; Butler, M.G.; Bortolato, M. Tobacco and cannabis use in college students are predicted by sex-dimorphic interactions between MAOA genotype and child abuse. CNS Neurosci. Ther. 2019, 25, 101–111. [Google Scholar] [CrossRef]
- Kuepper, Y.; Grant, P.; Wielpuetz, C.; Hennig, J. MAOA-uVNTR genotype predicts interindividual differences in experimental aggressiveness as a function of the degree of provocation. Behav. Brain. Res. 2013, 247, 73–78. [Google Scholar] [CrossRef]
- Vanyukov, M.M.; Moss, H.B.; Yu, L.M.; Deka, R. A dinucleotide repeat polymorphism at the gene for monoamine oxidase A and measures of aggressiveness. Psychiatry Res. 1995, 59, 35–41. [Google Scholar] [CrossRef]
- Frazzetto, G.; Di Lorenzo, G.; Carola, V.; Proietti, L.; Sokolowska, E.; Siracusano, A.; Gross, C.; Troisi, A. Early trauma and increased risk for physical aggression during adulthood: The moderating role of MAOA genotype. PLoS ONE 2007, 2, e486. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.F.; Menard, S. The Interplay of MAOA and Peer Influences in Predicting Adult Criminal Behavior. Psychiatr. Q. 2017, 88, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Eisenberger, N.I.; Way, B.M.; Taylor, S.E.; Welch, W.T.; Lieberman, M.D. Understanding genetic risk for aggression: Clues from the brain’s response to social exclusion. Biol. Psychiatry 2007, 61, 1100–1108. [Google Scholar] [CrossRef]
- Denson, T.F.; Dobson-Stone, C.; Ronay, R.; Von Hippel, W.; Schira, M.M. A functional polymorphism of the MAOA gene is associated with neural responses to induced anger control. J. Cogn. Neurosci. 2014, J26, 1418–1427. [Google Scholar] [CrossRef] [Green Version]
- Buckholtz, J.W.; Meyer-Lindenberg, A. MAOA and the neurogenetic architecture of human aggression. Trends Neurosci. 2008, 31, 120–129. [Google Scholar] [CrossRef]
- Kinnally, E.L.; Huang, Y.Y.; Haverly, R.; Burke, A.K.; Galfalvy, H.; Brent, D.P.; Oquendo, M.A.; Mann, J.J. Parental care moderates the influence of MAOA-uVNTR genotype and childhood stressors on trait impulsivity and aggression in adult women. Psychiatr. Genet. 2009, 19, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Atramentova, L.A.; Luchko, E.N. Aggression and empathy as genetic differentiation factors of urban population. Genetika 2016, 52, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Tielbeek, J.J.; Karlsson Linnér, R.; Beers, K.; Posthuma, D.; Popma, A.; Polderman, T.J. Meta-analysis of the serotonin transporter promoter variant (5-HTTLPR) in relation to adverse environment and antisocial behavior. Am. J. Med. Genet. B Neuropsychiatr Genet. 2016, 171, 748–760. [Google Scholar] [CrossRef]
- Tung, I.; Lee, S.S. Latent trajectories of adolescent antisocial behavior: Serotonin transporter linked polymorphic region (5-HTTLPR) genotype influences sensitivity to perceived parental support. Dev. Psychopathol. 2017, 29, 185–201. [Google Scholar] [CrossRef] [PubMed]
- Courtet, P.; Baud, P.; Abbar, M.; Boulenger, J.P.; Castelnau, D.; Mouthon, D.; Malafosse, A.; Buresi, C. Association between violent suicidal behavior and the low activity allele of the serotonin transporter gene. Mol. Psychiatry 2001, 6, 338–341. [Google Scholar] [CrossRef]
- Bellivier, F.; Szöke, A.; Henry, C.; Lacoste, J.; Bottos, C.; Nosten-Bertrand, M.; Hardy, P.; Rouillon, F.; Launay, J.M.; Laplanche, J.L.; et al. Possible association between serotonin transporter gene polymorphism and violent suicidal behavior in mood disorders. Biol. Psychiatry 2000, 48, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Retz, W.; Retz-Junginger, P.; Supprian, T.; Thome, J.; Rösler, M. Association of serotonin transporter promoter gene polymorphism with violence: Relation with personality disorders, impulsivity, and childhood ADHD psychopathology. Behav. Sci. Law. 2004, 22, 415–425. [Google Scholar] [CrossRef]
- Gorodetsky, E.; Carli, V.; Sarchiapone, M.; Roy, A.; Goldman, D.; Enoch, M.A. Predictors for self-directed aggression in Italian prisoners include externalizing behaviors, childhood trauma and the serotonin transporter gene polymorphism 5-HTTLPR. Genes. Brain. Behav. 2016, 15, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Hallikainen, T.; Saito, T.; Lachman, H.M.; Volavka, J.; Pohjalainen, T.; Ryynänen, O.P.; Kauhanen, J.; Syvälahti, E.; Hietala, J.; Tiihonen, J. Association between low activity serotonin transporter promoter genotype and early onset alcoholism with habitual impulsive violent behavior. Mol. Psychiatry 1999, 4, 385–388. [Google Scholar] [CrossRef] [Green Version]
- Liao, D.L.; Hong, C.J.; Shih, H.L.; Tsai, S.J. Possible association between serotonin transporter promoter region polymorphism and extremely violent crime in Chinese males. Neuropsychobiology 2004, 50, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Zalsman, G.; Frisch, A.; Bromberg, M.; Gelernter, J.; Michaelovsky, E.; Campino, A.; Erlich, Z.; Tyano, S.; Apter, A.; Weizman, A. Fam-ily-based association study of serotonin transporter promoter in suicidal adolescents: No association with suicidality but possible role in violence traits. Am. J. Med. Genet. 2001, 105, 239–245. [Google Scholar] [CrossRef]
- Gonda, X.; Fountoulakis, K.N.; Csukly, G.; Bagdy, G.; Pap, D.; Molnár, E.; Laszik, A.; Lazary, J.; Sarosi, A.; Faludi, G.; et al. Interaction of 5-HTTLPR genotype and unipolar major depression in the emergence of aggressive/hostile traits. J. Affect Disord. 2011, 132, 432–437. [Google Scholar] [CrossRef]
- Fanelli, G.; Serretti, A. The influence of the serotonin transporter gene 5-HTTLPR polymorphism on suicidal behaviors: A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 88, 375–387. [Google Scholar] [CrossRef]
- Pawlak, J.; Dmitrzak-Weglarz, M.; Wilkosc, M.; Szczepankiewicz, A.; Leszczynska-Rodziewicz, A.; Zaremba, D.; Kapelski, P.; Rajewska-Rager, A.; Hauser, J. Suicide behavior as a quantitative trait and its genetic background. J. Affect Disord. 2016, 206, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Bondy, B.; Erfurth, A.; De Jonge, S.; Krüger, M.; Meyer, H. Possible association of the short allele of the serotonin transporter promoter gene polymorphism (5-HTTLPR) with violent suicide. Mol. Psychiatry 2000, 5, 193–195. [Google Scholar] [CrossRef] [Green Version]
- Rujescu, D.; Giegling, I.; Sato, T.; Moeller, H.J. A polymorphism in the promoter of the serotonin transporter gene is not associated with suicidal behavior. Psychiatr. Genet. 2001, 11, 169–172. [Google Scholar] [CrossRef]
- Chen, T.J.; Blum, K.; Mathews, D.; Fisher, L.; Schnautz, N.; Braverman, E.R.; Schoolfield, J.; Downs, B.W.; Comings, D.E. Are dopaminergic genes involved in a predisposition to pathological aggression? Hypothesizing the importance of “super normal controls” in psychiatric genetic research of complex behavioral disorders. Med. Hypotheses. 2005, 65, 703–707. [Google Scholar] [CrossRef]
- Blum, K.; Chen, A.L.; Giordano, J.; Borsten, J.; Chen, T.J.; Hauser, M.; Simpatico, T.; Femino, J.; Braverman, E.R.; Barh, D. The addictive brain: All roads lead to dopamine. J. Psychoact. Drugs 2012, 44, 134–143. [Google Scholar] [CrossRef]
- Blum, K.; Braverman, E.R.; Holder, J.M.; Lubar, J.F.; Monastra, V.J.; Miller, D.; Lubar, J.O.; Chen, T.J.; Comings, D.E. Reward deficiency syndrome: A biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J. Psychoact. Drugs 2000, 32, 1–112. [Google Scholar] [CrossRef]
- Cuomo, C.; Sarchiapone, M.; Giannantonio, M.D.; Mancini, M.; Roy, A. Aggression, impulsivity, personality traits, and childhood trauma of prisoners with substance abuse and addiction. Am. J. Drug Alcohol Abuse. 2008, 34, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.K.; Bonar, E.E.; Goldstick, J.E.; Walton, M.A.; Winters, J.; Chermack, S.T. Binge-drinking and non-partner aggression are associated with gambling among Veterans with recent substance use in V.A. outpatient treatment. Addict Behav. 2017, 74, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.M.; Van Den Bree, M.; Zammit, S.; Taylor, P.J. Change in the Relationship Between Drinking Alcohol and Risk of Violence Among Adolescents and Young Adults: A Nationally Representative Longitudinal Study. Alcohol Alcohol. 2020, 55, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, V.G.; O’Farrell, T.J.; Murphy, C.M.; Murphy, M.M.; Muchowski, P. Alcohol consumption and partner violence among women entering substance use disorder treatment. Psychol. Addict Behav. 2014, 28, 313–321. [Google Scholar] [CrossRef]
- Norström, T.; Pape, H. Alcohol, suppressed anger and violence. Addiction 2010, 105, 1580–1586. [Google Scholar] [CrossRef]
- Singh, V.; Epstein-Ngo, Q.; Cunningham, R.M.; Stoddard, S.A.; Chermack, S.T.; Walton, M.A. Physical dating violence among adolescents and young adults with alcohol misuse. Drug Alcohol Depend. 2015, 153, 364–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, K.S.; Forrest, W.; Greenlees, I.; Rhind, D.; Jowett, S.; Pinsky, I.; Espelt, A.; Bosque-Prous, M.; Sonderlund, A.L.; Vergani, M.; et al. Alcohol consumption, masculinity, and alcohol-related violence and antisocial behaviour in sportspeople. J. Sci. Med. Sport. 2018, 21, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Neavins, T.M.; Murphy, C.M.; Yiaslas, T.A.; Demorest, M.E. Daily and situational reports of substance use and dating violence among college students: A 10-week prospective study. Addict Behav. Rep. 2020, 12, 100309. [Google Scholar] [CrossRef] [PubMed]
- Phillips, T.J.; Mootz, J.R.; Reed, C. Identification of Treatment Targets in a Genetic Mouse Model of Voluntary Methamphetamine Drinking. Int. Rev. Neurobiol. 2016, 126, 39–85. [Google Scholar] [CrossRef]
- Zhai, Z.W.; Duenas, G.L.; Wampler, J.; Potenza, M.N. Gambling, Substance Use and Violence in Male and Female Adolescents. J. Gambl. Stud. 2020, 36, 1301–1324. [Google Scholar] [CrossRef] [PubMed]
- Carolina Maria Motta Stoffel, B.; Felix Henrique, P.K.; Flavio, P.; Lisia, V.D.; Maria Fátima Olivier, S.; Tatiana, H.L.; Brazilian Crack Group; Marcelo, S.C. Crack users and violence. What is the relationship between trauma, antisocial personality disorder and posttraumatic stress disorder? Addict Behav. 2019, 98, 106012. [Google Scholar] [CrossRef]
- Sommer, J.; Hinsberger, M.; Elbert, T.; Holtzhausen, L.; Kaminer, D.; Seedat, S.; Madikane, S.; Weierstall, R. The interplay between trauma, substance abuse and appetitive aggression and its relation to criminal activity among high-risk males in South Africa. Addict Behav. 2017, 64, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Maremmani, A.G.; Rugani, F.; Bacciardi, S.; Rovai, L.; Pacini, M.; Dell’Osso, L.; Maremmani, I. Does dual diagnosis affect violence and moderate/superficial self-harm in heroin addiction at treatment entry? J. Addict Med. 2014, 8, 116–122. [Google Scholar] [CrossRef]
- Irons, R.; Schneider, J.P. When is domestic violence a hidden face of addiction? J. Psychoact. Drugs 1997, 4, 337–344. [Google Scholar] [CrossRef]
- Arteaga, A.; Fernández-Montalvo, J.; López-Goñi, J.J. Prevalence and differential profile of patients with drug addiction problems who commit intimate partner violence. Am. J. Addict. 2015, 24, 756–764. [Google Scholar] [CrossRef] [Green Version]
- McGinty, E.E.; Choksy, S.; Wintemute, G.J. The Relationship Between Controlled Substances and Violence. Epidemiol. Rev. 2016, 38, 5–31. [Google Scholar] [CrossRef] [Green Version]
- Murray, R.L.; Chermack, S.T.; Walton, M.A.; Winters, J.; Booth, B.M.; Blow, F.C. Psychological aggression, physical aggression, and injury in nonpartner relationships among men and women in treatment for substance-use disorders. J. Stud. Alcohol Drugs 2008, 69, 896–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czermainski, F.R.; Lopes, F.M.; Ornell, F.; Pinto Guimarães, L.S.; Von Diemen, L.; Kessler, F.; Martins de Almeida, R.M. Concurrent Use of Alcohol and Crack Cocaine is Associated with High Levels of Anger and Liability to Aggression. Subst. Use Misuse. 2020, 55, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- Stoddard, S.A.; Meier-Austic, E.; Epstein-Ngo, Q.; Walton, M.; Carter, P.M.; Heinze, J.E.; Zimmerman, M.A.; Cunningham, R. Substance use and mental health predictors of patterns of non-partner youth violence among high-risk urban youth. Drug Alcohol Depend. 2020, 213, 108117. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, K.; Javadinia, S.A.; Saadat, S.H.; Ramezani, M.A.; Sedghijalal, H. Triangular relationship among risky sexual behavior, addiction, and aggression: A systematic review. Electron. Physician. 2017, 9, 5129–5137. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Bowirrat, A.; Braverman, E.R.; Baron, D.; Cadet, J.L.; Kazmi, S.; Elman, I.; Thanos, P.K.; Badgaiyan, R.D.; Downs, W.B.; et al. Reward Deficiency Syndrome (RDS): A Cytoarchitectural Common Neurobiological Trait of All Addictions. Int. J. Environ. Res. Public Health 2021, 18, 11529. [Google Scholar] [CrossRef]
Gene | Polymorphism | Location | Risk Allele(s) |
---|---|---|---|
DRD1 | rs4532 | Chr 5 | A |
DRD2 | rs1800497 | Chr 11 | A |
DRD3 | rs6280 | Chr 3 | C |
DRD4 | rs1800955 | Chr 11 | C |
48 bases Repeat | Chr 11, Exon 3 | 7R, 8R, 9R, 10R, 11R | |
COMT | rs4680 | Chr 22 | G |
OPRM1 | rs1799971 | Chr 6 | G |
DAT1 | 40 bases Repeat | Chr 5, Exon 15 | 3R, 4R, 5R, 6R, 7R, 8R |
MAOA | 30 bases Repeat | Chr X, Promoter | 3.5R, 4R |
Serotonin Transporter SLC6A4 (5-HTTLPR) | 43 bases Repeat plus rs25531 | Chr 17 | LG, S |
GABA(A) Receptor, Alpha-3 GABRB3 | CA-Repeat DNR | Chr 15 (downstream) | 181 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modestino, E.J.; Blum, K.; Dennen, C.A.; Downs, B.W.; Bagchi, D.; Llanos-Gomez, L.; Elman, I.; Baron, D.; Thanos, P.K.; Badgaiyan, R.D.; et al. Theorizing the Role of Dopaminergic Polymorphic Risk Alleles with Intermittent Explosive Disorder (IED), Violent/Aggressive Behavior and Addiction: Justification of Genetic Addiction Risk Severity (GARS) Testing. J. Pers. Med. 2022, 12, 1946. https://doi.org/10.3390/jpm12121946
Modestino EJ, Blum K, Dennen CA, Downs BW, Bagchi D, Llanos-Gomez L, Elman I, Baron D, Thanos PK, Badgaiyan RD, et al. Theorizing the Role of Dopaminergic Polymorphic Risk Alleles with Intermittent Explosive Disorder (IED), Violent/Aggressive Behavior and Addiction: Justification of Genetic Addiction Risk Severity (GARS) Testing. Journal of Personalized Medicine. 2022; 12(12):1946. https://doi.org/10.3390/jpm12121946
Chicago/Turabian StyleModestino, Edward Justin, Kenneth Blum, Catherine A. Dennen, B. William Downs, Debasis Bagchi, Luis Llanos-Gomez, Igor Elman, David Baron, Panayotis K. Thanos, Rajendra D. Badgaiyan, and et al. 2022. "Theorizing the Role of Dopaminergic Polymorphic Risk Alleles with Intermittent Explosive Disorder (IED), Violent/Aggressive Behavior and Addiction: Justification of Genetic Addiction Risk Severity (GARS) Testing" Journal of Personalized Medicine 12, no. 12: 1946. https://doi.org/10.3390/jpm12121946
APA StyleModestino, E. J., Blum, K., Dennen, C. A., Downs, B. W., Bagchi, D., Llanos-Gomez, L., Elman, I., Baron, D., Thanos, P. K., Badgaiyan, R. D., Braverman, E. R., Gupta, A., Gold, M. S., & Bowirrat, A. (2022). Theorizing the Role of Dopaminergic Polymorphic Risk Alleles with Intermittent Explosive Disorder (IED), Violent/Aggressive Behavior and Addiction: Justification of Genetic Addiction Risk Severity (GARS) Testing. Journal of Personalized Medicine, 12(12), 1946. https://doi.org/10.3390/jpm12121946