Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Authors = Íris Carneiro ORCID = 0000-0002-4798-556X

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 35752 KiB  
Article
Microstructural Characterization of Al/CNTs Nanocomposites after Cold Rolling
by Íris Carneiro, José V. Fernandes and Sónia Simões
Nanomaterials 2023, 13(8), 1362; https://doi.org/10.3390/nano13081362 - 14 Apr 2023
Cited by 3 | Viewed by 1704
Abstract
The deformation behaviour of aluminium reinforced by carbon nanotubes (Al/CNTs) nanocomposites during cold rolling was investigated in this work. Deformation processes after production by conventional powder metallurgy routes may be an efficient approach to improve the microstructure and mechanical properties by decreasing the [...] Read more.
The deformation behaviour of aluminium reinforced by carbon nanotubes (Al/CNTs) nanocomposites during cold rolling was investigated in this work. Deformation processes after production by conventional powder metallurgy routes may be an efficient approach to improve the microstructure and mechanical properties by decreasing the porosity. Metal matrix nanocomposites have enormous potential to produce advanced components, mainly in the mobility industry, with powder metallurgy being one of the most reported production processes. For this reason, it is increasingly important to study the deformation behaviour of nanocomposites. In this context, nanocomposites were produced via powder metallurgy. Advanced characterization techniques carried out the microstructural characterization of the as-received powders and produced nanocomposites. The microstructural characterization of the as-received powders and produced nanocomposites was carried out through optical microscopy (OM), and scanning and transmission electron microscopy (SEM and TEM), complemented by electron backscattered diffraction (EBSD). The powder metallurgy route followed by cold rolling is reliable for Al/CNTs nanocomposites. The microstructural characterization shows that the nanocomposites exhibit a different crystallographic orientation than the Al matrix. CNTs in the matrix influence grain rotation during sintering and deformation. Mechanical characterization revealed that during deformation, there is an initial decrease in the hardness and tensile strength for the Al/CNTs and Al matrix. The initial decrease was attributed to the Bauschinger effect being more significant for the nanocomposites. The difference in the mechanical properties of the nanocomposites and Al matrix was attributed to distinct texture evolution during cold rolling. Full article
Show Figures

Figure 1

17 pages, 10172 KiB  
Article
Production and Characterization of Cu/CNT Nanocomposites
by Íris Carneiro, Beatriz Monteiro, Bernardo Ribeiro, José V. Fernandes and Sónia Simões
Appl. Sci. 2023, 13(6), 3378; https://doi.org/10.3390/app13063378 - 7 Mar 2023
Cited by 9 | Viewed by 2790
Abstract
In this research, copper nanocomposites reinforced with carbon nanotubes (CNTs) were produced by ultrasonication and conventional sintering, followed by cold rolling. These nanocomposites may be good candidates due to their excellent properties for components in the electrical, electronics, or aerospace industries with highly [...] Read more.
In this research, copper nanocomposites reinforced with carbon nanotubes (CNTs) were produced by ultrasonication and conventional sintering, followed by cold rolling. These nanocomposites may be good candidates due to their excellent properties for components in the electrical, electronics, or aerospace industries with highly demanding requirements. The main objectives of this work were to produce and characterize the Cu/CNT nanocomposites, identify the strengthening mechanisms, and study the deformation behavior of the nanocomposites during cold rolling. The nanocomposites exhibited an improvement in hardness and tensile strength of 17 and 67%, respectively, attesting to the strengthening effect of the reinforced material. The yield strength of the nanocomposites was determined considering different mechanisms: (1) load transfer, (2) grain refinement or texture, (3) dislocation, and (4) Orowan strengthening mechanisms. The microstructural and calculated results show that the mechanism that contributes the most to the increase in the properties of the nanocomposite is the load transfer. The nanocomposites show a different texture evolution of the Cu matrix during cold rolling. This can be due to differences in the active slip planes between the matrix and the nanocomposite, which affects the lattice rotation. Full article
Show Figures

Figure 1

18 pages, 18433 KiB  
Article
Investigation of Mechanical Properties of Al/CNT Nanocomposites Produced by Powder Metallurgy
by Íris Carneiro and Sónia Simões
Appl. Sci. 2023, 13(1), 54; https://doi.org/10.3390/app13010054 - 21 Dec 2022
Cited by 8 | Viewed by 2569
Abstract
Demanding requirements in automotive and aerospace applications promote the growing need to obtain materials and advanced technology capable of combining low weight with high mechanical properties. Aluminum matrix nanocomposites could be great candidates to respond to such needs. In this sense, this investigation [...] Read more.
Demanding requirements in automotive and aerospace applications promote the growing need to obtain materials and advanced technology capable of combining low weight with high mechanical properties. Aluminum matrix nanocomposites could be great candidates to respond to such needs. In this sense, this investigation aims to study the mechanical properties of nanocomposites of aluminum matrices reinforced with carbon nanotubes (CNTs). The nanocomposites were produced by powder metallurgy with 1.00 vol.% of reinforcement and ultrasonication as the dispersion method. Tensile, Vickers microhardness and nanoindentation tests were carried out in different sections. Microstructural characterizations were conducted in scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD) to understand and relate to the mechanical properties. An increase in the yield strength of 185% was observed for the nanocomposites, which can be attributed to the load transfer mechanism. However, the CNTs observed at the grain boundaries promote a decrease in the ductility of the nanocomposites. The mechanical behavior of the nanocomposites was further investigated by EBSD observation. The results revealed that the nanocomposites have a less extensive area of plastic deformation than the Al matrix, which is consistent with the tensile results. The presence of reinforcement affects the lattice rotation during the tensile test and the active slip systems, thus affecting their deformation behavior. Full article
Show Figures

Figure 1

16 pages, 12341 KiB  
Article
Deformation Behaviour of Cold-Rolled Ni/CNT Nanocomposites
by Íris Carneiro, José V. Fernandes and Sónia Simões
Appl. Sci. 2022, 12(19), 9471; https://doi.org/10.3390/app12199471 - 21 Sep 2022
Cited by 4 | Viewed by 1924
Abstract
Metal matrix nanocomposites (MMNCs) reinforced by carbon nanotubes (CNTs) are good candidates to produce structural components in the mobility industry, given their unique properties. The manufacture of these components can involve plastic deformation. Therefore, it is crucial to understand whether reinforcement can influence [...] Read more.
Metal matrix nanocomposites (MMNCs) reinforced by carbon nanotubes (CNTs) are good candidates to produce structural components in the mobility industry, given their unique properties. The manufacture of these components can involve plastic deformation. Therefore, it is crucial to understand whether reinforcement can influence the deformation behaviour of these nanocomposites. Thus, this work aims to study the deformation behaviour of MMNCs, given their importance and the lack of studies on this topic. Although nickel is not the most widely used metal as a matrix of nanocomposites, it presents mechanical properties superior to other matrices, such as aluminium. In addition, this metal has proven to establish a strong interface and integration of carbon nanotubes, making it an exciting material for the production and study of these nanocomposites. In that sense, nickel matrix nanocomposites are reinforced by 1.00 %vol. CNTs were produced by powder metallurgy using ultrasonication as a dispersion/mixture method. For comparison purposes, a nickel matrix was produced under the same conditions. Samples with and without CNTs were cold-rolled with thickness reductions between 10 and 60% (logarithmic strains between 0.11 and 0.92) to investigate the deformation behaviour. Microstructural characterization was performed using scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD). Microhardness tests were applied to evaluate their mechanical properties. The results revealed that the nanocomposites exhibited a softening for small strains (0.11 and 0.22). This decrease in hardness was attributed to the decline in dislocation density observed by EBSD, due to the rearrangement and annihilation of pre-existing dislocations that originated during production. A possible inversion can explain the decrease in dislocation density when minor strains are applied in the dislocation or deformation trajectory, known as the Bauschinger effect. The difference in the texture evolution of the nanocomposites can be explained by the initial crystallographic orientations, which are influenced by the presence of CNTs. Full article
Show Figures

Figure 1

17 pages, 22593 KiB  
Article
Strengthening Mechanisms of Aluminum Matrix Nanocomposites Reinforced with CNTs Produced by Powder Metallurgy
by Íris Carneiro, José Valdemar Fernandes and Sónia Simões
Metals 2021, 11(11), 1711; https://doi.org/10.3390/met11111711 - 27 Oct 2021
Cited by 11 | Viewed by 3025
Abstract
The present work aims to investigate the strengthening mechanisms in aluminum matrix nanocomposites reinforced by carbon nanotubes (CNTs). A classical powder metallurgy route produced Al-CNT nanocomposites using ultrasonication and ball milling as dispersion/mixture techniques. The microstructural characterization is crucial for this study to [...] Read more.
The present work aims to investigate the strengthening mechanisms in aluminum matrix nanocomposites reinforced by carbon nanotubes (CNTs). A classical powder metallurgy route produced Al-CNT nanocomposites using ultrasonication and ball milling as dispersion/mixture techniques. The microstructural characterization is crucial for this study to reach the objective, being performed mainly by electron backscattered diffraction (EBSD), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). Uniform dispersion without damaging the CNTs structure is the key for the nanocomposite by powder metallurgy production process. The reinforcement effect occurs due to several strengthening mechanisms that act simultaneously. For the Al-CNT nanocomposites produced by ultrasonication as a dispersion/mixture technique, the observed improvement in the mechanical properties of nanocomposites can be attributed to the load transfer from the matrix to the CNTs. The strain hardening and the second-phase hardening can also have a small contribution to the strengthening of the nanocomposites. Full article
(This article belongs to the Special Issue Strengthening Mechanisms of Metals and Alloys)
Show Figures

Figure 1

27 pages, 17072 KiB  
Review
Strengthening Mechanisms in Carbon Nanotubes Reinforced Metal Matrix Composites: A Review
by Íris Carneiro and Sónia Simões
Metals 2021, 11(10), 1613; https://doi.org/10.3390/met11101613 - 11 Oct 2021
Cited by 35 | Viewed by 5084
Abstract
Carbon nanotubes (CNTs)-reinforced metal matrix composites are very attractive advanced nanocomposites due to their potential unusual combination of excellent properties. These nanocomposites can be produced by several techniques, the most reported being powder metallurgy, electrochemical routes, and stir or ultrasonic casting. However, the [...] Read more.
Carbon nanotubes (CNTs)-reinforced metal matrix composites are very attractive advanced nanocomposites due to their potential unusual combination of excellent properties. These nanocomposites can be produced by several techniques, the most reported being powder metallurgy, electrochemical routes, and stir or ultrasonic casting. However, the final mechanical properties are often lower than expected. This can be attributed to a lack of understanding concerning the strengthening mechanisms that act to improve the mechanical properties of the metal matrix via the presence of the CNTs. The dispersion of the CNTs is the main challenge in the production of the nanocomposites, and is independent of the production technique used. This review describes the strengthening mechanism that act in CNT-reinforced metal matrix nanocomposites, such as the load transfer, grain refinement or texture strengthening, second phase, and strain hardening. However, other mechanisms can occur, such as solid solution strengthening, and these depend on the metal matrix used to produce the nanocomposites. Different metallic matrices and different production techniques are described to evaluate their influence on the reinforcement of these nanocomposites. Full article
Show Figures

Figure 1

18 pages, 18206 KiB  
Article
Heat-Treated Ni-CNT Nanocomposites Produced by Powder Metallurgy Route
by Íris Carneiro and Sónia Simões
Materials 2021, 14(18), 5458; https://doi.org/10.3390/ma14185458 - 21 Sep 2021
Cited by 4 | Viewed by 2106
Abstract
Nickel nanocomposites reinforced by carbon nanotubes (Ni-CNTs) are one of the possible candidates for applications in highly demanding industries such as the automotive and aerospace industries. As is well known, one of the limitations on the use of some materials in these applications [...] Read more.
Nickel nanocomposites reinforced by carbon nanotubes (Ni-CNTs) are one of the possible candidates for applications in highly demanding industries such as the automotive and aerospace industries. As is well known, one of the limitations on the use of some materials in these applications is thermal stability. Some components in these industries are frequently subjected to high temperatures, which is crucial to understanding their microstructures and, consequently, their mechanical properties. For this reason, the main objective of this research is to understand the microstructural evolution of Ni-CNTs nanocomposites when subjected to heat treatment. The nanocomposites with varying levels of CNT content were produced by powder metallurgy, and unreinforced nickel was used for comparison purposes under the same conditions. The dispersion of CNTs, a critical aspect of nanocomposites production, was carried out by ultrasonication, which already proved its efficiency in previous research. The heat treatments were performed under high vacuum conditions at high temperatures (700 and 1100 °C for 30 and 120 min, respectively). Microhardness tests analyzed the mechanical properties while the extensive microstructural evaluation was conducted by combining advanced characterization techniques such as scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), and high-resolution TEM. The obtained results are promising and show that the presence of CNTs can contribute to the thermal stability of the Ni-CNT nanocomposites produced. Full article
(This article belongs to the Special Issue Fabrication and Machining of Metal Matrix Composites)
Show Figures

Figure 1

19 pages, 15158 KiB  
Article
Investigation on the Strengthening Mechanisms of Nickel Matrix Nanocomposites
by Íris Carneiro, José Valdemar Fernandes and Sónia Simões
Nanomaterials 2021, 11(6), 1426; https://doi.org/10.3390/nano11061426 - 28 May 2021
Cited by 15 | Viewed by 2478
Abstract
The strengthening effect of carbon nanotubes (CNTs) in metal matrix nanocomposites occurs due to several mechanisms that act simultaneously. The possible strengthening mechanisms for metal matrix nanocomposites reinforced with CNTs consist of: (1) load transfer, (2) grain refinement and texture strengthening, (3) second [...] Read more.
The strengthening effect of carbon nanotubes (CNTs) in metal matrix nanocomposites occurs due to several mechanisms that act simultaneously. The possible strengthening mechanisms for metal matrix nanocomposites reinforced with CNTs consist of: (1) load transfer, (2) grain refinement and texture strengthening, (3) second phase strengthening, and (4) strain hardening. The main focus of this work is to identify the strengthening mechanisms that play a role in the case of the Ni-CNT nanocomposite produced by powder metallurgy. For the dispersion and mixing of the metallic powders with CNTs, two different routes were performed by ultrasonication and ball milling. The results indicated that four different strengthening mechanisms are present in the nanocomposites and had a different contribution to the final mechanical properties. The load transfer and the increase in dislocation density seem to strongly affect the properties and microstructure of the nanocomposite. The grain refinement and the presence of second phase particles have a small contribution in the strengthening of this nanocomposite, since the introduction of CNTs in the Ni matrix slightly affects the size and orientation of the grains in the matrix and a few nanometric particles of Ni3C were identified. Full article
Show Figures

Figure 1

16 pages, 6039 KiB  
Article
Effect of Morphology and Structure of MWCNTs on Metal Matrix Nanocomposites
by Íris Carneiro and Sónia Simões
Materials 2020, 13(23), 5557; https://doi.org/10.3390/ma13235557 - 6 Dec 2020
Cited by 16 | Viewed by 2710
Abstract
The effect of using different carbon nanotubes (CNTs) on the production of nanocomposites was evaluated in this work. The investigated CNTs were multi-walled carbon nanotubes (MWCNTs) with different morphologies and structures. The main objective was to relate the results reported by numerical simulation [...] Read more.
The effect of using different carbon nanotubes (CNTs) on the production of nanocomposites was evaluated in this work. The investigated CNTs were multi-walled carbon nanotubes (MWCNTs) with different morphologies and structures. The main objective was to relate the results reported by numerical simulation with the results obtained experimentally in order to validate these methodologies. A detailed characterization of CNTs was carried out to establish the different main characteristics, such as inner and outer diameters, defects, structure and the number of walls. Metal matrix nanocomposites were produced using the powder metallurgy route. The experimental results show that the morphology and structure of MWCNTs have a significant effect on the dispersion process for nanocomposite production. Straight CNTs with a larger diameter and with few defects allow for the production of nanocomposites with uniform dispersion and strong interface bonding, leading to a higher hardness value. In addition, the CNT introduction into a metal matrix induces a change in the deformation behavior that plays an important role in the strengthening mechanisms. Although some aspects are not considered in the molecular dynamic (MD) simulation, such as the CNT random orientation and CNT agglomeration, some comparative relationships can be performed in order to validate some methodologies. While the structure and morphology of the CNTs have a significant influence on the dispersion process, the influence of the diameter and the functionalization treatment on the properties of the nanocomposites is also identified. The experimental results show that the decrease in the diameter of the CNTs and the use of functionalized CNTs also contribute to the obtention of lower mechanical properties of the nanocomposites, as is pointed out in the results of MD carried out in nanocomposites. Full article
Show Figures

Figure 1

32 pages, 25311 KiB  
Review
Recent Advances in EBSD Characterization of Metals
by Íris Carneiro and Sónia Simões
Metals 2020, 10(8), 1097; https://doi.org/10.3390/met10081097 - 13 Aug 2020
Cited by 70 | Viewed by 24513
Abstract
Electron backscatter diffraction (EBSD) has been attracting enormous interest in the microstructural characterization of metals in recent years. This characterization technique has several advantages over conventional ones, since it allows obtaining a wide range of characterization possibilities in a single method, which is [...] Read more.
Electron backscatter diffraction (EBSD) has been attracting enormous interest in the microstructural characterization of metals in recent years. This characterization technique has several advantages over conventional ones, since it allows obtaining a wide range of characterization possibilities in a single method, which is not possible in others. The grain size, crystallographic orientation, texture, and grain boundary character distribution can be obtained by EBSD analysis. Despite the limited resolution of this technique (20–50 nm), EBSD is powerful, even for nanostructured materials. Through this technique, the microstructure can be characterized at different scales and levels with a high number of microstructural characteristics. It is known that the mechanical properties are strongly related to several microstructural aspects such as the size, shape, and distribution of grains, the presence of texture, grain boundaries character, and also the grain boundary plane distribution. In this context, this work aims to describe and discuss the possibilities of microstructural characterization, recent advances, the challenges in sample preparation, and the application of the EBSD in the characterization of metals. Full article
(This article belongs to the Special Issue Advances in Microstructural Characterization of Metals by EBSD)
Show Figures

Figure 1

13 pages, 4183 KiB  
Article
Characterization of Ni–CNTs Nanocomposites Produced by Ball-Milling
by Íris Carneiro, Filomena Viana, Manuel F. Vieira, José Valdemar Fernandes and Sónia Simões
Metals 2020, 10(1), 2; https://doi.org/10.3390/met10010002 - 18 Dec 2019
Cited by 13 | Viewed by 4399
Abstract
This research focuses on the characterization of a metal matrix nanocomposite (MMNC) comprised of a nickel matrix reinforced by carbon nanotubes (CNTs). The aim of this study was to characterize Ni–CNTs nanocomposites produced by powder metallurgy using ball-milling. CNTs were initially untangled using [...] Read more.
This research focuses on the characterization of a metal matrix nanocomposite (MMNC) comprised of a nickel matrix reinforced by carbon nanotubes (CNTs). The aim of this study was to characterize Ni–CNTs nanocomposites produced by powder metallurgy using ball-milling. CNTs were initially untangled using ultrasonication followed by mixture/dispersion with Ni powder by ball-milling for 60, 180, or 300 min. The mixtures were cold-pressed and then pressureless sintered at 950 °C for 120 min under vacuum. Their microstructural characterization was mainly performed by optical microscopy (OM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). The mechanical properties were evaluated by Vickers microhardness. The results indicate that combining ultrasonication and ball-milling can successfully produce Ni–CNTs nanocomposites. The ball-milling time has a significant effect on both the CNT dispersion and the final nanocomposite microstructure. Full article
(This article belongs to the Special Issue Metal Matrix Composites Reinforced with Carbon Nanotubes)
Show Figures

Figure 1

12 pages, 5358 KiB  
Article
EBSD Analysis of Metal Matrix Nanocomposite Microstructure Produced by Powder Metallurgy
by Íris Carneiro, Filomena Viana, Manuel F. Vieira, José V. Fernandes and Sónia Simões
Nanomaterials 2019, 9(6), 878; https://doi.org/10.3390/nano9060878 - 12 Jun 2019
Cited by 29 | Viewed by 5296
Abstract
The development of metal nanocomposites reinforced by carbon nanotubes (CNTs) remains a focus of the scientific community due to the growing need to produce lightweight advanced materials with unique mechanical properties. However, for the successful production of these nanocomposites, there is a need [...] Read more.
The development of metal nanocomposites reinforced by carbon nanotubes (CNTs) remains a focus of the scientific community due to the growing need to produce lightweight advanced materials with unique mechanical properties. However, for the successful production of these nanocomposites, there is a need to consolidate knowledge about how reinforcement influences the matrix microstructure and which are the strengthening mechanisms promoting the best properties. In this context, this investigation focuses on the study of the reinforcement effect on the microstructure of an Ni-CNT nanocomposites produced by powder metallurgy. The microstructural evolution was analysed by electron backscattered diffraction (EBSD). The EBSD results revealed that the dispersion/mixing and pressing processes induce plastic deformation in the as-received powders. The dislocation structures produced in those initial steps are partially eliminated in the sintering process due to the activation of recovery and recrystallization mechanisms. However, the presence of CNTs in the matrix has a significant effect on the dislocation annihilation, thus reducing the recovery of the dislocation structures. Full article
Show Figures

Figure 1

Back to TopTop