The Association Between Maternal Dietary Intake and the Risk of Heavy Metals in Human Breast Milk in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Risk Assessment of HMs in Breast Milk
2.3. Dietary Intake Measurements
2.4. Instrument Analysis
2.5. Quality Control and Quality Assurance
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Mother–Infant Pairs
3.2. Concentration and Risk Assessment Levels of HMs in Breast Milk
3.3. Association Between Maternal Dietary Intake and HM Levels in Breast Milk
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HM | heavy metal |
MFDS | Ministry of Food and Drug Safety |
tAs | total arsenic |
ICP-MS | inductively coupled plasma mass spectrometry |
DRC | dynamic reaction cell |
DMA | direct mercury analyzer |
LOD | limit of detection |
TDI | tolerable daily intake |
EDI | estimated daily intake |
HQ | hazard quotient |
GM | geometric mean |
References
- Rebelo, F.M.; Caldas, E.D. Arsenic, lead, mercury and cadmium: Toxicity, levels in breast milk and the risks for breastfed infants. Environ. Res. 2016, 151, 671–688. [Google Scholar] [CrossRef] [PubMed]
- Ghane, E.T.; Khanverdiluo, S.; Mehri, F. The concentration and health risk of potentially toxic elements (PTEs) in the breast milk of mothers: A systematic review and meta-analysis. J. Trace Elem. Med. Biol. 2022, 73, 126998. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.; Amaya, E.; Gil, F.; Fernandez, M.F.; Murcia, M.; Llop, S.; Andiarena, A.; Aurrekoetxea, J.; Bustamante, M.; Guxens, M.; et al. Prenatal co-exposure to neurotoxic metals and neurodevelopment in preschool children: The Environment and Childhood (INMA) Project. Sci. Total Environ. 2018, 621, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Vollset, M.; Iszatt, N.; Enger, O.; Gjengedal, E.L.F.; Eggesbo, M. Concentration of mercury, cadmium, and lead in breast milk from Norwegian mothers: Association with dietary habits, amalgam and other factors. Sci. Total Environ. 2019, 677, 466–473. [Google Scholar] [CrossRef]
- Sarigiannis, D.A.; Papaioannou, N.; Handakas, E.; Anesti, O.; Polanska, K.; Hanke, W.; Salifoglou, A.; Gabriel, C.; Karakitsios, S. Neurodevelopmental exposome: The effect of in utero co-exposure to heavy metals and phthalates on child neurodevelopment. Environ. Res. 2021, 197, 110949. [Google Scholar] [CrossRef]
- Heng, Y.Y.; Asad, I.; Coleman, B.; Menard, L.; Benki-Nugent, S.; Hussein Were, F.; Karr, C.J.; McHenry, M.S. Heavy metals and neurodevelopment of children in low and middle-income countries: A systematic review. PLoS ONE 2022, 17, e0265536. [Google Scholar] [CrossRef]
- Garuba, O.D.; Anglin, J.C.; Good, S.; Olufemi, S.E.; Oyawoye, O.M.; Ayodotun, S. Evaluation of heavy metals in commercial baby foods. Arch. Food Nutr. Sci. 2024, 8, 12–20. [Google Scholar]
- Bair, E.C. A Narrative Review of Toxic Heavy Metal Content of Infant and Toddler Foods and Evaluation of United States Policy. Front. Nutr. 2022, 9, 919913. [Google Scholar] [CrossRef]
- Hands, J.M.; Anderson, M.L.; Cooperman, T.; Balsky, J.E.; Frame, L.A. A multi-year heavy metal analysis of 72 dark chocolate and cocoa products in the USA. Front. Nutr. 2024, 11, 1366231. [Google Scholar] [CrossRef]
- Ministry of Food and Drug Safety (MFDS). Reevaluation Report on the Standards and Specifications of Heavy Metals in Food II; Ministry of Food and Drug Safety: Cheongju, Republic of Korea, 2024. [Google Scholar]
- Karthikeyan, B.S.; Ravichandran, J.; Aparna, S.R.; Samal, A. ExHuMId: A curated resource and analysis of exposome of human milk across India. Chemosphere 2021, 271, 129583. [Google Scholar] [CrossRef]
- Yurdakök, K. Lead, mercury, and cadmium in breast milk. J. Pediatr. Neonatal Individ. Med. 2015, 4, e040223. [Google Scholar] [CrossRef]
- Rahati, S.; Hashemi, M.; Orooji, A.; Afshari, A.; Sany, S.B.T. Health risk assessments of heavy metals and trace elements exposure in the breast milk of lactating mothers in the Northeastern Iran. Environ. Sci. Pollut. Res. Int. 2024, 31, 25892–25906. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Lee, A.; Choi, K.; Kim, H.J.; Lee, J.J.; Choi, G.; Kim, S.; Kim, S.Y.; Cho, G.J.; Suh, E.; et al. Exposure to lead and mercury through breastfeeding during the first month of life: A CHECK cohort study. Sci. Total Environ. 2018, 612, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Carignan, C.C.; Cottingham, K.L.; Jackson, B.P.; Farzan, S.F.; Gandolfi, A.J.; Punshon, T.; Folt, C.L.; Karagas, M.R. Estimated exposure to arsenic in breastfed and formula-fed infants in a United States cohort. Environ. Health Perspect. 2015, 123, 500–506. [Google Scholar] [CrossRef]
- Nakhaee, S.; Shadmani, F.K.; Sharafi, K.; Kiani, A.; Azadi, N.A.; Mansouri, B.; Karamimatin, B.; Farnia, V. Evaluation of some toxic metals in breast milk samples with dietary and sociodemographic characteristics: A case study of Kermanshah, Western Iran. Environ. Sci. Pollut. Res. Int. 2023, 30, 4502–4509. [Google Scholar] [CrossRef]
- Shawahna, R.; Saleh, R.; Owiwi, L.; Abdi, A.; Bani-Odeh, D.; Maqboul, I.; Hijaz, H.; Jaber, M. Breastmilk cadmium levels and estimated infant exposure: A multicenter study of associated factors in a resource-limited country. Int. Breastfeed. J. 2023, 18, 36. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, Y.; Sun, S.; Tian, T.; Zhu, M.; Ahmad, Z.; Yang, J.; Jin, J.; Zhang, H.; Chen, J.; et al. Accumulation characteristics of metals in human breast milk and association with dietary intake in northeastern China. Sci. Total Environ. 2024, 912, 168515. [Google Scholar] [CrossRef]
- Abass, K.; Koiranen, M.; Mazej, D.; Tratnik, J.S.; Horvat, M.; Hakkola, J.; Järvelin, M.R.; Rautio, A. Arsenic, cadmium, lead and mercury levels in blood of Finnish adults and their relation to diet, lifestyle habits and sociodemographic variables. Environ. Sci. Pollut. Res. 2017, 24, 1347–1362. [Google Scholar] [CrossRef]
- Guo, J.; Knol, L.L.; Yang, X.; Kong, L. Dietary fiber intake is inversely related to serum heavy metal concentrations among US adults consuming recommended amounts of seafood: NHANES 2013–2014. Food Front. 2022, 3, 142–149. [Google Scholar] [CrossRef]
- Li, T.; Yu, L.; Yang, Z.; Shen, P.; Lin, H.; Shui, L.; Tang, M.; Jin, M.; Chen, K.; Wang, J. Associations of Diet Quality and Heavy Metals with Obesity in Adults: A Cross-Sectional Study from National Health and Nutrition Examination Survey (NHANES). Nutrients 2022, 14, 4038. [Google Scholar] [CrossRef]
- Cruz, J.C.; Cassulatti Dos Santos, L.; Devoz, P.P.; Gallimberti, M.; Cerazette, G.N.; de Assis Aguilar Duarte, N.; Eloísa de Lima, L.; Nunes, E.A.; de Medeiros Soares, J.; Laise Dos Santos Pinto, M.; et al. Blood levels of 21 metals and metalloids in riverside villagers of the Brazilian Amazon: A human biomonitoring study with associations with sociodemographic, dietary, and lifestyle factors. Environ. Res. 2024, 261, 119767. [Google Scholar] [CrossRef] [PubMed]
- Samiee, F.; Vahidinia, A.; Taravati Javad, M.; Leili, M. Exposure to heavy metals released to the environment through breastfeeding: A probabilistic risk estimation. Sci. Total Environ. 2019, 650 Pt 2, 3075–3083. [Google Scholar] [CrossRef] [PubMed]
- Nazlican, E.; Arica, E.; Goren, I.E.; Kilincli, B.; Mete, B.; Daglioglu, N. The risk estimation and assessment of heavy metal exposure by biomonitoring in the breast milk of mothers in the Cukurova Region, Turkey. Environ. Sci. Pollut. Res. Int. 2022, 29, 13963–13970. [Google Scholar] [CrossRef] [PubMed]
- Stiefel, C.; Stintzing, F. Endocrine-active and endocrine-disrupting compounds in food—Occurrence, formation, and relevance. NFS J. 2023, 31, 57–92. [Google Scholar] [CrossRef]
- Okubo, H.; Nakayama, S.F.; Japan, E.; Children’s Study, G. Periconceptional maternal diet quality influences blood heavy metal concentrations and their effect on low birth weight: The Japan Environment and Children’s Study. Environ. Int. 2023, 173, 107808. [Google Scholar] [CrossRef]
- Garcia-Esquinas, E.; Perez-Gomez, B.; Fernandez, M.A.; Perez-Meixeira, A.M.; Gil, E.; de Paz, C.; Iriso, A.; Sanz, J.C.; Astray, J.; Cisneros, M.; et al. Mercury, lead and cadmium in human milk in relation to diet, lifestyle habits and sociodemographic variables in Madrid (Spain). Chemosphere 2011, 85, 268–276. [Google Scholar] [CrossRef]
- Kim, J.H.; Moon, N.; Heo, S.J.; Jeong, Y.W.; Kang, D.R. Repeated measurements and mixture effects of urinary bisphenols, parabens, polycyclic aromatic hydrocarbons, and other chemicals on biomarkers of oxidative stress in pre- and postpartum women. Environ. Pollut. 2024, 342, 123057. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, D.; Moon, S.M.; Yang, E.J. Associations of lifestyle factors with phthalate metabolites, bisphenol A, parabens, and triclosan concentrations in breast milk of Korean mothers. Chemosphere 2020, 249, 126149. [Google Scholar] [CrossRef]
- Kim, J.H.; Moon, N.; Ji, E.; Moon, H.B. Effects of postnatal exposure to phthalate, bisphenol a, triclosan, parabens, and per-and poly-fluoroalkyl substances on maternal postpartum depression and infant neurodevelopment: A korean mother-infant pair cohort study. Environ. Sci. Pollut. Res. 2023, 30, 96384–96399. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Evaluations of the Joint FAO/WHO Expert Committee on Food (LEAD). 2011. Available online: https://apps.who.int/food-additives-contaminants-jecfa-database/Home/Chemical/3511 (accessed on 1 March 2025).
- World Health Organization (WHO). Evaluations of the Joint FAO/WHO Expert Committee on Food (MERCURY). 2011. Available online: https://apps.who.int/food-additives-contaminants-jecfa-database/Home/Chemical/1806 (accessed on 1 March 2025).
- World Health Organization (WHO). Evaluations of the Joint FAO/WHO Expert Committee on Food (ARSENIC). 2011. Available online: https://apps.who.int/food-additives-contaminants-jecfa-database/Home/Chemical/1863 (accessed on 1 March 2025).
- World Health Organization (WHO). Evaluations of the Joint FAO/WHO Expert Committee on Food (CADMIUM). 2021. Available online: https://apps.who.int/food-additives-contaminants-jecfa-database/Home/Chemical/1376 (accessed on 1 March 2025).
- Arthur, P.G.; Hartmann, P.E.; Smith, M. Measurement of the milk intake of breast-fed infants. J. Pediatr. Gastroenterol. Nutr. 1987, 6, 758–763. [Google Scholar]
- Timon, C.M.; van den Barg, R.; Blain, R.J.; Kehoe, L.; Evans, K.; Walton, J.; Flynn, A.; Gibney, E.R. A review of the design and validation of web- and computer-based 24-h dietary recall tools. Nutr. Res. Rev. 2016, 29, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; Hjelm, C.; Harari, F.; Vahter, M. ICP-MS measurement of toxic and essential elements in human breast milk: A comparison of alkali-dilution and acid-digestion sample preparation methods. Clin. Chim. Acta 2018, 53, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 45–51. [Google Scholar] [CrossRef]
- Lin, X.; Wu, X.; Li, X.; Zhang, D.; Zheng, Q.; Xu, J.; Lu, S. Infant exposure to trace elements in breast milk, infant formulas and complementary foods from southern China. Sci. Total Environ. 2022, 838 Pt 4, 156597. [Google Scholar] [CrossRef]
- Norton, G.J.; Deacon, C.M.; Mestrot, A.; Feldmann, J.; Jenkins, P.; Baskaran, C.; Meharg, A.A. Cadmium and lead in vegetable and fruit produce selected from specific regional areas of the UK. Sci. Total Environ. 2015, 533, 520–527. [Google Scholar] [CrossRef]
- Rusin, M.; Domagalska, J.; Rogala, D.; Razzaghi, M.; Szymala, I. Concentration of cadmium and lead in vegetables and fruits. Sci. Rep. 2021, 11, 11913. [Google Scholar] [CrossRef]
- Sharafi, K.; Nakhaee, S.; Azadi, N.A.; Mansouri, B.; Miri Kermanshahi, S.; Paknahad, M.; Habibi, Y. Human health risk assessment of potentially toxic elements in the breast milk consumed by infants in Western Iran. Sci. Rep. 2023, 13, 6656. [Google Scholar] [CrossRef]
- Martín-León, V.; Paz, S.; D’Eufemia, P.A.; Plasencia, J.J.; Sagratini, G.; Marcantoni, G.; Navarro-Romero, M.; Gutiérrez, Á.J.; Hardisson, A.; Rubio-Armendáriz, C. Human Exposure to Toxic Metals (Cd, Pb, Hg) and Nitrates (NO3−) from Seaweed Consumption. Appl. Sci. 2021, 11, 6934. [Google Scholar] [CrossRef]
- Huang, Y.; He, C.; Shen, C.; Guo, J.; Mubeen, S.; Yuan, J.; Yang, Z. Toxicity of cadmium and its health risks from leafy vegetable consumption. Food Funct. 2017, 8, 1373–1401. [Google Scholar] [CrossRef]
- Hussain, B.; Umer, M.J.; Li, J.; Ma, Y.; Abbas, Y.; Ashraf, M.N.; Tahir, N.; Ullah, A.; Gogoi, N.; Farooq, M. Strategies for reducing cadmium accumulation in rice grains. J. Clean. Prod. 2021, 286, 125557. [Google Scholar] [CrossRef]
- Al-Saleh, I. Health Risk Assessment of Trace Metals Through Breast Milk Consumption in Saudi Arabia. Biol. Trace Elem. Res. 2021, 199, 4535–4545. [Google Scholar] [CrossRef] [PubMed]
- Segura-Munoz, S.I.; da Silva Oliveira, A.; Nikaido, M.; Trevilato, T.M.; Bocio, A.; Takayanagui, A.M.; Domingo, J.L. Metal levels in sugar cane (Saccharum spp.) samples from an area under the influence of a municipal landfill and a medical waste treatment system in Brazil. Environ. Int. 2006, 32, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, T.; Ohgami, N.; He, T.; Tazaki, A.; Ohnuma, S.; Naito, H.; Yajima, I.; Chen, D.; Deng, Y.; Tamura, T.; et al. Elevated arsenic level in fasting serum via ingestion of fish meat increased the risk of hypertension in humans and mice. Eur. Heart J. Open 2023, 3, oead074. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.S.; Sthiannopkao, S.; Chen, Z.J.; Man, Y.B.; Du, J.; Xing, G.H.; Kim, K.W.; Mohamed Yasin, M.S.; Hashim, J.H.; Wong, M.H. Arsenic concentration in rice, fish, meat and vegetables in Cambodia: A preliminary risk assessment. Environ. Geochem. Health 2013, 35, 745–755. [Google Scholar] [CrossRef]
- Mawari, G.; Kumar, N.; Sarkar, S.; Daga, M.K.; Singh, M.M.; Joshi, T.K.; Khan, N.A. Heavy metal accumulation in fruits and vegetables and human health risk assessment: Findings from Maharashtra, India. Environ. Health Insights 2022, 16, 11786302221119151. [Google Scholar] [CrossRef]
- Einolghozati, M.; Talebi-Ghane, E.; Khazaei, M.; Mehri, F. The level of heavy metal in fresh and processed fruits: A study meta-analysis, systematic review, and health risk assessment. Biol. Trace Elem. Res. 2023, 201, 2582–2596. [Google Scholar] [CrossRef]
- Hashempour-Baltork, F.; Hosseini, H.; Houshiarrad, A.; Esmaeili, M. Contamination of foods with arsenic and mercury in Iran: A comprehensive review. Environ. Sci. Pollut. Res. Int. 2019, 26, 25399–25413. [Google Scholar] [CrossRef]
- Geng, A.; Lian, W.; Wang, Y.; Liu, M.; Zhang, Y.; Wang, X.; Chen, G. The Molecular Mechanism of the Response of Rice to Arsenic Stress and Effective Strategies to Reduce the Accumulation of Arsenic in Grain. Int. J. Mol. Sci. 2024, 25, 2861. [Google Scholar] [CrossRef]
- Chen, Y.; Han, Y.H.; Cao, Y.; Zhu, Y.G.; Rathinasabapathi, B.; Ma, L.Q. Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice. Front. Plant Sci. 2017, 8, 268. [Google Scholar] [CrossRef]
- Dong, Z.; Guo, L.; Li, X.; Li, Y.; Liu, W.; Chen, Z.; Liu, L.; Liu, Z.; Guo, Y.; Pan, X. Genome-Wide Association Study of Arsenic Accumulation in Polished Rice. Genes 2023, 14, 2186. [Google Scholar] [CrossRef]
Heavy Metals | JECFA | K-MFDS |
---|---|---|
Pb | 0.6 µg/kg/day (loss of 1 IQ point in children) a | BMDL0.1 0.5 µg/kg bw/day e (developmental toxicity in children) |
Cd | PTMI 25 µg/kg bw/month b (0.8 µg/kgbw/day) | PTMI 25 µg/kg bw/month f |
Hg | Inorganic Hg: PTWI 4.0 µg/kg bw/week (Kidney weight change) c (0.6 µg/kgbw/day) | Inorganic Hg: TWI 3.7 µg/kg bw/week g (0.5 µg/kgbw/day) |
As | BMDL0.5 3.0 µg/kg bw/day (lung cancer) d | Inorganic As: PTWI 9.0 µg/kg bw/week h (1.3 µg/kgbw/day) |
Variables | Categories | n/M | %/SD | Median | Min | Max |
---|---|---|---|---|---|---|
Maternal age (years) | 34.82 | 4.02 | 35 | 22 | 43 | |
Maternal BMI (kg/m2) | 23.23 | 3.60 | 22.60 | 15.99 | 39.21 | |
Education | <college | 11 | 5.26 | |||
≥college | 198 | 94.74 | ||||
Household income (USD/month) | ||||||
≤5000 | 89 | 42.58 | ||||
>5000 | 120 | 57.42 | ||||
Employment status | Yes | 105 | 50.24 | |||
No | 104 | 49.76 | ||||
Residence area | Seoul-Gyeonggi | 111 | 53.11 | |||
Gangwon | 44 | 21.05 | ||||
Chungcheong | 15 | 7.18 | ||||
Honam-Jeju | 11 | 5.26 | ||||
Yeongnam | 28 | 13.40 | ||||
Parity | Primipara | 126 | 60.29 | |||
Multipara | 83 | 39.71 | ||||
Infant age (months) | 2.47 | 1.55 | 2.27 | 0.10 | 5.67 | |
Infant sex | Boys | 101 | 48.33 | |||
Girls | 108 | 51.67 | ||||
Weight (kg) | 5.71 | 1.56 | 5.60 | 2.99 | 9.40 | |
Height (cm) | 58.81 | 6.35 | 58.00 | 49.00 | 84.00 | |
Weeks at birth | 38.71 | 1.27 | 38.6 | 34.4 | 41.2 | |
Birth height (cm) | 50.46 | 2.64 | 51 | 36.5 | 57.3 | |
Birth weight (kg) | 3.19 | 0.38 | 3.17 | 2.18 | 4.38 | |
Absolute breast milk feeding (n = 40, mL/day) | 883.54 | 226.01 | 900 | 420 | 1260 |
Analytes | LOD (µg/L) | DF (%) | GM | Min | P5 | P25 | P50 | P75 | P95 | Max |
---|---|---|---|---|---|---|---|---|---|---|
Pb | 0.017 | 165 (79) | 0.11 | 0.02 | 0.03 | 0.07 | 0.10 | 0.17 | 0.57 | 1.49 |
Cd | 0.030 | 207 (99) | 0.13 | 0.04 | 0.05 | 0.08 | 0.13 | 0.20 | 0.45 | 1.51 |
Hg | 0.047 | 204 (97) | 0.18 | 0.05 | 0.06 | 0.11 | 0.19 | 0.27 | 0.56 | 1.28 |
As | 0.054 | 187 (89) | 1.16 | 0.08 | 0.32 | 0.76 | 1.11 | 1.72 | 4.62 | 9.48 |
Variables | Pb | Cd | Hg | As | ||||
---|---|---|---|---|---|---|---|---|
95%CI | 95%CI | 95%CI | 95%CI | |||||
Grains | −0.018 | −0.065–0.055 | −0.029 | −0.041–0.031 | −0.126 | −0.089–0.027 | 0.026 | −0.175–0.220 |
Potato starches | 0.143 | −0.005–0.022 | −0.089 | −0.012–0.005 | −0.169 | −0.022–0.004 | −0.135 | −0.070–0.018 |
Sugars | 0.014 | −0.025–0.028 | −0.152 | −0.027–0.006 | 0.351 | 0.008–0.059 | 0.108 | −0.052–0.125 |
Legumes | 0.281 | 0.002–0.029 | −0.147 | −0.013–0.003 | −0.015 | −0.014–0.012 | −0.023 | −0.048–0.039 |
Nuts and seeds | −0.054 | −0.030–0.019 | −0.147 | −0.025–0.004 | −0.189 | −0.042–0.005 | 0.023 | −0.072–0.088 |
Vegetables | 0.107 | −0.018–0.148 | 0.218 | 0.004–0.036 | 0.058 | −0.025–0.040 | 0.015 | −0.103–0.117 |
Mushrooms | 0.092 | −0.012–0.030 | 0.043 | −0.010–0.016 | −0.070 | −0.027–0.014 | −0.054 | −0.086–0.051 |
Fruits | 0.079 | −0.007–0.014 | 0.014 | −0.006–0.007 | −0.085 | −0.014–0.006 | 0.121 | −0.015–0.052 |
Meat | −0.192 | −0.036–0.004 | 0.072 | −0.008–0.016 | 0.028 | −0.017–0.022 | 0.191 | 0.002–0.100 |
Eggs | −0.145 | −0.024–0.006 | −0.012 | −0.009–0.008 | −0.148 | −0.023–0.006 | 0.006 | −0.047–0.050 |
Fish and shellfish | 0.041 | −0.012–0.017 | 0.072 | −0.006–0.012 | −0.070 | −0.018–0.010 | 0.074 | −0.034–0.063 |
Seaweed | 0.286 | 0.001–0.049 | 0.191 | 0.001–0.021 | 0.018 | −0.022–0.025 | −0.005 | −0.080–0.077 |
Dairy products | 0.070 | −0.007–0.014 | −0.031 | −0.007–0.005 | 0.007 | −0.010–0.010 | −0.067 | −0.044–0.024 |
Oils and fats | −0.152 | −0.075–0.026 | 0.142 | −0.016–0.045 | −0.111 | −0.065–0.032 | 0.047 | −0.142–0.190 |
Beverages | −0.046 | −0.014–0.009 | −0.076 | −0.010–0.005 | −0.150 | −0.019–0.004 | 0.073 | −0.027–0.052 |
Seasonings | −0.157 | −0.063–0.016 | −0.023 | −0.026–0.022 | 0.017 | −0.036–0.040 | 0.076 | −0.093–0.165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, N.; Heo, S.J.; Park, S.; Im, H.; Kim, J.H. The Association Between Maternal Dietary Intake and the Risk of Heavy Metals in Human Breast Milk in Korea. Toxics 2025, 13, 381. https://doi.org/10.3390/toxics13050381
Moon N, Heo SJ, Park S, Im H, Kim JH. The Association Between Maternal Dietary Intake and the Risk of Heavy Metals in Human Breast Milk in Korea. Toxics. 2025; 13(5):381. https://doi.org/10.3390/toxics13050381
Chicago/Turabian StyleMoon, Nalae, Su Ji Heo, Seungyoung Park, Hosub Im, and Ju Hee Kim. 2025. "The Association Between Maternal Dietary Intake and the Risk of Heavy Metals in Human Breast Milk in Korea" Toxics 13, no. 5: 381. https://doi.org/10.3390/toxics13050381
APA StyleMoon, N., Heo, S. J., Park, S., Im, H., & Kim, J. H. (2025). The Association Between Maternal Dietary Intake and the Risk of Heavy Metals in Human Breast Milk in Korea. Toxics, 13(5), 381. https://doi.org/10.3390/toxics13050381