Risk Assessment of Impairment of Fertility Due to Exposure to Tobacco Constituents Classified as Reprotoxicants
Abstract
1. Introduction
2. Materials and Methods
2.1. Cigarette Composition
2.2. Classification and Labelling of Substances in Tobacco Cigarettes
2.3. Reproductive Toxicity Studies
2.4. Risk Assessment
2.4.1. Hazard Identification
2.4.2. Hazard Assessment
2.4.3. Exposure Assessment
2.4.4. Risk Characterisation
3. Results
3.1. Hazard Identification of the Substances Contained in Reference Cigarette 1R6F
3.2. Hazard Assessment and Systemic DNEL Estimation for the Substances Classified as Toxic to Fertility and Sexual Function in Reference Cigarette 1R6F
3.2.1. Acrylamide
3.2.2. Benzo[a]pyrene
3.2.3. Cadmium
3.2.4. Ethylene Oxide
3.2.5. Lead
3.3. Exposure Assessment
3.4. Risk Characterisation
4. Discussion
4.1. Mechanism of Toxicity
4.1.1. Acrylamide
4.1.2. Benzo[a]pyrene
4.1.3. Cadmium
4.1.4. Ethylene Oxide
4.1.5. Lead
4.1.6. Overall Mechanism of Toxicity
4.2. Risk Assessment for Threshold Mechanisms of Toxicity
4.2.1. Exposure to Individual Substances
4.2.2. Exposure to Mixtures
4.2.3. Synergistic Effects
4.3. Route-to-Route Extrapolation
4.4. Risk Assessment for Non-Threshold Mechanisms of Toxicity
4.5. Comparison with Findings from Other Published Studies
4.5.1. Animal Studies
4.5.2. Epidemiological Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- World Health Organization. Infertility Prevalence Estimates. 1990–2021. Available online: https://www.who.int/publications/i/item/978920068315 (accessed on 27 February 2025).
- EUROSTATS. Smoking of Tobacco Products by Sex, Age and Educational Attainment Level. Available online: https://ec.europa.eu/eurostat/databrowser/view/hlth_ehis_sk1e/default/table?lang=en (accessed on 27 February 2025).
- Sogorb, M.A.; Pamies, D.; de Lapuente, J.; Estevan, C.; Estévez, J.; Vilanova, E. An integrated approach for detecting embryotoxicity and developmental toxicity of environmental contaminants using in vitro alternative methods. Toxicol. Lett. 2014, 230, 356–367. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Tobacco. Available online: https://www.who.int/news-room/fact-sheets/detail/tobacco (accessed on 27 February 2025).
- Jaccard, G.; Djoko, D.T.; Korneliou, A.; Stabbert, R.; Belushkin, M.; Esposito, M. Mainstream smoke constituents and in vitro toxicity comparative analysis of 3R4F and 1R6F reference cigarettes. Toxicol. Rep. 2019, 6, 222–231. [Google Scholar] [CrossRef] [PubMed]
- ISO 20778; Cigarettes-Routine Analytical Cigarette Smoking Machine-Definitions and Standard Conditions with an Intense Smoking Regime. International Standard Organization: Geneva, Switzerland. Available online: https://www.iso.org/obp/ui/#iso:std:iso:tr:19478:-2:ed-1:v1:en (accessed on 27 February 2025).
- European Commission. Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on Classification, Labelling and Packaging of Substances and Mixtures, Amending and Repealing Directives 67/548/EEC and 1999/45/EC, and Amending Regulation (EC) No 1907/2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R1272 (accessed on 27 February 2025).
- European Chemical Agency. Classification & Labelling Inventory. Available online: https://echa.europa.eu/es/information-on-chemicals/cl-inventory-database (accessed on 27 February 2025).
- European Chemicals Agency. Characterization of Dose [Concentration]-Response for Human Health. In Guidance on Information Requirements and Chemical Safety Assessment; European Chemicals Agency: Helsinki, Finland, 2012; Available online: https://echa.europa.eu/documents/10162/13632/information_requirements_r8_en.pdf/e153243a-03f0-44c5-8808-88af66223258 (accessed on 27 February 2025).
- National Toxicology Program Center for the Evaluation of Risks to Human Reproduction. NTP-CERHR Monograph on the Potential Human Reproductive and Developmental Effects of Acrylamide. Available online: https://ntp.niehs.nih.gov/ntp/ohat/acrylamide/acrylamide_monograph.pdf (accessed on 27 February 2025).
- Sweeney, L.M.; Kirman, C.R.; Gargas, M.L.; Carson, M.L.; Tardiff, R.G. Development of a physiologically-based toxicokinetic model of acrylamide and glycidamide in rats and humans. Food Chem Toxicol. 2010, 48, 668–685. [Google Scholar] [CrossRef]
- REACH register: Acrylamide (CAS 79-06-1). Available online: https://echa.europa.eu/es/registration-dossier/-/registered-dossier/15534 (accessed on 27 February 2025).
- United States Environmental Protection Agency (USEPA). Toxicological Review of Benzo[a]pyrene. Available online: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0136tr.pdf (accessed on 27 February 2025).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Polycyclic Aromatic Hydrocarbons. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp69.pdf (accessed on 27 February 2025).
- Campbell, J.; Franzen, A.; Van Landingham, C.; Lumpkin, M.; Crowell, S.; Meredith, C.; Loccisano, A.; Gentry, R.; Clewell, H. Predicting lung dosimetry of inhaled particleborne benzo[a]pyrene using physiologically based pharmacokinetic modeling. Inhal. Toxicol. 2016, 28, 520–535. [Google Scholar] [CrossRef]
- REACH register: Cadmium (CAS: 7440-43-9). Available online: https://echa.europa.eu/es/registration-dossier/-/registered-dossier/15342 (accessed on 27 February 2025).
- World Health Organization. Cadmium. Environmental Health Criteria 134. Available online: https://inchem.org/documents/ehc/ehc/ehc134.htm (accessed on 27 February 2025).
- Das, A.; Habib, G.; Perumal, V.; Kumar, A. Estimating seasonal variations of realistic exposure doses and risks to organs due to ambient particulate matter -bound metals of Delhi. Chemosphere 2020, 260, 127451. [Google Scholar] [CrossRef]
- REACH Register: Ethylene Oxide (CAS: 75-21-8). Available online: https://echa.europa.eu/es/registration-dossier/-/registered-dossier/15813 (accessed on 27 February 2025).
- World Health Organization. Ethylene Oxide. Environmental Health Criteria 55. Available online: https://inchem.org/documents/ehc/ehc/ehc55.htm (accessed on 27 February 2025).
- Filser, J.G.; Denk, B.; Törnqvist, M.; Kessler, W.; Ehrenberg, L. Pharmacokinetics of ethylene in man: Body burden with ethylene oxide and hydroxyethylation of hemoglobin due to endogenous and environmental ethylene. Arch. Toxicol. 1992, 66, 157–163. [Google Scholar] [CrossRef]
- Krishnan, K.; Fennell, T.R.; Gargas, M.L.; Andersen, M.E. A physiologically-based description of ethylene oxide dosimetry in the rat. Toxicol. Ind. Health 1992, 8, 121–140. [Google Scholar] [CrossRef]
- REACH Register: Lead (CAS 7439-92-1). Available online: https://echa.europa.eu/es/registration-dossier/-/registered-dossier/16063 (accessed on 27 February 2025).
- EFSA Scientific Committee. Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data. EFSA J. 2012, 10, 2579. [Google Scholar]
- Rădulescu, A.; Lundgren, S. A pharmacokinetic model of lead absorption and calcium competitive dynamics. Sci. Rep. 2019, 9, 14225. [Google Scholar]
- Oldereid, N.B.; Thomassen, Y.; Attramadal, A.; Olaisen, B.; Purvis, K. Concentrations of lead, cadmium and zinc in the tissues of reproductive organs of men. J. Reprod. Fertil. 1993, 99, 421–425. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Lead. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp13.pdf (accessed on 27 February 2025).
- Exon, J.H. A Review of the Toxicology of Acrylamide. J. Toxicol. Environ. Health Sci. Part B 2006, 9, 397–412. [Google Scholar] [CrossRef]
- ALKarim, S.; ElAssouli, S.; Ali, S.; Ayuob, N.; ElAssouli, Z. Effects of low dose acrylamide on the rat reproductive organs structure, fertility and gene integrity. Asian Pac. J. Reprod. 2015, 4, 179–187. [Google Scholar] [CrossRef]
- Gaspari, L.; Chang, S.S.; Santella, R.M.; Garte, S.; Pedotti, P.; Taioli, E. Polycyclic aromatic hydrocarbon-DNA adducts in human sperm as a marker of DNA damage and infertility. Mutat. Res. 2003, 535, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Rubes, J.; Rybar, R.; Prinosilova, P.; Veznik, Z.; Chvatalova, I.; Solansky, I.; Sram, R.J. Genetic polymorphisms influence the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat. Res. 2010, 683, 9–15. [Google Scholar] [CrossRef]
- Archibong, A.E.; Ramesh, A.; Niaz, M.S.; Brooks, C.M.; Roberson, S.I.; Lunstra, D.D. Effects of benzo(a)pyrene on intra-testicular function in F-344 rats. Int. J. Environ. Res. Public Health 2008, 5, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; An, H.; Ao, L.; Sun, L.; Liu, W.; Zhou, Z.; Wang, Y.; Cao, J. The combined toxicity of dibutyl phthalate and benzo(a)pyrene on the reproductive system of male Sprague Dawley rats in vivo. J. Hazard. Mater. 2011, 186, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, A.; Inyang, F.; Lunstra, D.D.; Niaz, M.S.; Kopsombut, P.; Jones, K.M.; Hood, D.B.; Hills, E.R.; Archibong, A.E. Alteration of fertility endpoints in adult male F-344 rats by subchronic exposure to inhaled benzo(a)pyrene. Exp. Toxicol. Pathol. 2008, 60, 269–280. [Google Scholar] [CrossRef]
- Xu, C.; Chen, J.; Qiu, Z.; Zhao, Q.; Luo, J.; Yang, L.; Zeng, H.; Huang, Y.; Zhang, L.; Cao, J.; et al. Ovotoxicity and PPAR-mediated aromatase downregulation in female Sprague-Dawley rats following combined oral exposure to benzo[a]pyrene and di-(2-ethylhexyl) phthalate. Toxicol. Lett. 2010, 199, 323–332. [Google Scholar] [CrossRef]
- Sadeu, J.C.; Foster, W.G. Cigarette smoke condensate exposure delays follicular development and function in a stage-dependent manner. Fertil. Steril. 2011, 95, 2410–2417. [Google Scholar] [CrossRef]
- Kummer, V.; Mašková, J.; Zralý, Z.; Faldyna, M. Ovarian disorders in immature rats after postnatal exposure to environmental polycyclic aromatic hydrocarbons. J. Appl. Toxicol. 2013, 33, 90–99. [Google Scholar] [CrossRef]
- Midgette, A.S.; Baron, J.A. Cigarette smoking and the risk of natural menopause. Epidemiology 1990, 1, 474–480. [Google Scholar] [CrossRef]
- De Angelis, C.; Galdiero, M.; Pivonello, C.; Salzano, C.; Gianfrilli, D.; Piscitelli, P.; Lenzi, A.; Colao, A.; Pivonello, R. The environment and male reproduction: The effect of cadmium exposure on reproductive function and its implication in fertility. Reprod. Toxicol. 2017, 73, 105–127. [Google Scholar]
- European Chemicals Agency; Risk Assessment Committee. Opinion Proposing Harmonised Classification and Labelling at EU Level of Ethylene Oxide. Available online: https://echa.europa.eu/documents/10162/d82894c8-9cf1-2c16-d3e6-40cad6ae534f (accessed on 27 February 2025).
- Ribeiro, L.R.; Salvadori, D.M.; Pereira, C.A.; Beçak, W. Activity of ethylene oxide in the mouse sperm morphology test. Arch. Toxicol. 1987, 60, 331–333. [Google Scholar] [PubMed]
- Pant, N.; Kumar, G.; Upadhyay, A.D.; Patel, D.K.; Gupta, Y.K.; Chaturvedi, P.K. Reproductive toxicity of lead, cadmium, and phthalate exposure in men. Environ. Sci. Pollut. Res. Int. 2014, 21, 11066–11074. [Google Scholar]
- Apostoli, P.; Kiss, P.; Porru, S.; Bonde, J.P.; Vanhoorne, M. Male reproductive toxicity of lead in animals and humans. ASCLEPIOS Study Group. Occup. Environ. Med. 1998, 55, 364–374. [Google Scholar] [PubMed]
- Stedman, R.L. The chemical composition of tobacco and tobacco smoke. Chem. Rev. 1968, 68, 153–207. [Google Scholar] [PubMed]
- EUROSTATS. Daily Smokers of Cigarettes by Sex, Age and Income Quintile. Available online: https://ec.europa.eu/eurostat/databrowser/view/HLTH_EHIS_SK3I/default/table?lang=en (accessed on 27 February 2025).
- Yilmaz, B.O.; Yildizbayrak, N.; Aydin, Y.; Erkan, M. Evidence of acrylamide-and glycidamide-induced oxidative stress and apoptosis in Leydig and Sertoli cells. Hum. Exp. Toxicol. 2017, 36, 1225–1235. [Google Scholar]
- Aras, D.; Cakar, Z.; Ozkavukcu, S.; Can, A.; Cinar, O. In Vivo acrylamide exposure may cause severe toxicity to mouse oocytes through its metabolite glycidamide. PLoS ONE 2017, 12, e0172026. [Google Scholar]
- Hakkola, J.; Hukkanen, J.; Turpeinen, M.; Pelkonen, O. Inhibition and induction of CYP enzymes in humans: An update. Arch. Toxicol. 2020, 94, 3671–3722. [Google Scholar]
- IARC. Some Industrial Chemicals. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; WHO: Geneva, Switzerland, 1994; Volume 60, ISBN 978-92-832-1260-7. Available online: https://publications.iarc.fr/78 (accessed on 27 February 2025).
- Interdepartmental Group on Health Risks from Chemicals (IGHRC). Guidelines on Route-to-Route Extrapolation of Toxicity Data when Assessing Health Risks of Chemicals. 2006. ISBN 1-899110-41-0/978-1-899110-41-4. Available online: http://www.iehconsulting.co.uk/IEH_Consulting/IEHCPubs/IGHRC/cr12.pdf (accessed on 27 February 2025).
- Committee for Risk Assessment. Opinion Proposing Harmonised Classification and Labelling at EU Level of Cadmium Carbonate. Available online: https://echa.europa.eu/documents/10162/f1c4ff22-7c66-b55d-8e04-5c656ecbc749 (accessed on 27 February 2025).
- Committee for Risk Assessment. Opinion Proposing Harmonised Classification and Labelling at EU level of Cadmium Hydroxide. Available online: https://echa.europa.eu/documents/10162/df66dab3-4460-1032-2d70-00964b94f5d3 (accessed on 27 February 2025).
- Committee for Risk Assessment. Opinion Proposing Harmonised Classification and Labelling at EU Level of Cadmium Nitrate. Available online: https://echa.europa.eu/documents/10162/df8c9021-df0b-c9cf-30e4-14708ee89fef (accessed on 27 February 2025).
- Sharma, R. Cigarette Smoking and Semen Quality: A New Meta-Analysis Examining the Effect of the 2010 World Health Organization Laboratory Methods for the Examination of Human Semen. Eur. Urol. 2016, 70, 635–645. [Google Scholar]
- Harlev, A.; Agarwal, A.; Gunes, S.O.; Shetty, A.; du Plessis, S.S. Smoking and Male Infertility: An Evidence-Based Review. World J. Mens. Health 2015, 33, 143–160. [Google Scholar] [PubMed]
- Rodprasert, W.; Toppari, J.; Virtanen, H.E. Environmental toxicants and male fertility. Best Pract. Res. Clin. Obstet. Gynaecol. 2023, 86, 102298. [Google Scholar] [PubMed]
- Practice Committee of the American Society for Reproductive Medicine. Smoking and infertility: A committee opinion. Fertil. Steril. 2012, 98, 1400–1406. [Google Scholar]
- Lyngsø, J.; Kesmodel, U.S.; Bay, B.; Ingerslev, H.J.; Pisinger, C.H.; Ramlau-Hansen, C.H. Female cigarette smoking and successful fertility treatment: A Danish cohort study. Acta Obstet. Gynecol. Scand. 2021, 100, 58–66. [Google Scholar] [CrossRef]
- Budani, M.C.; Fensore, S.; Di Marzio, M.; Tiboni, G.M. Cigarette smoking impairs clinical outcomes of assisted repro-ductive technologies: A meta-analysis of the literature. Reprod. Toxicol. 2018, 80, 49–59. [Google Scholar] [CrossRef]
Physiological Parameter | Human | Rat | Mice |
---|---|---|---|
Weight | 70 kg | 0.25 kg | 0.03 kg |
Respiratory rate | 5 m3 air/6 h 0.2 L air/min/kg | 0.8 L air/min/kg - | 2.5 L air/h 1.4 L air/min/kg |
Uncertainty Factor | Value |
---|---|
Interspecies differences: | |
Allometric rat * | 4 |
Allometric mouse * | 7 |
Other differences | 2.5 |
Intraspecies differences: | |
General population (the most sensitive individuals) | 10 |
Extrapolation by duration: | |
A sub-chronic DNEL from a subacute starting value ** | 3 |
Extrapolation when a critical value is a LOAEL | 3 |
Substance | CAS Number | µg/Cigarette | Hazard Class and Category |
---|---|---|---|
1,3-butadiene | 106-99-0 | 114 | Muta. 1B Carc. 1A |
1-naphthylamine | 134-32-7 | 0.0267 | Acute Tox. 4 |
2-naphthylamine | 91-59-8 | 0.0162 | Acute Tox. 4 Carc. 1A |
3-aminobiphenyl | 2243-47-2 | 0.00449 | Acute Tox. 4 Skin Irrit. 2 Eye Irrit. 2 STOT SE 3 |
4-aminobiphenyl | 92-67-1 | 0.003313 | Acute Tox. 4 Carc. 1A |
Acetaldehyde | 75-07-0 | 1859 | Eye Irrit. 2 STOT SE 3 Muta. 2 Carc. 1B |
Acetamide | 60-35-5 | 14 | Carc. 2 |
Acetone | 67-64-1 | 635 | Eye Irrit. 2 STOT SE 3 |
Acrolein | 107-02-8 | 173 | Acute Tox. 2 Acute Tox. 3 Skin Corr. 1B Acute Tox. 1 |
Acrylamide | 79-06-1 | 4.49 | Acute Tox. 3 Acute Tox. 4 Skin Irrit. 2 Eye Irrit. 2 Skin Sens. 1 Acute Tox. 4 Muta. 1B Carc. 1B STOT RE 1 Repr. 2 |
Acrylonitrile | 107-13-1 | 19.2 | Acute Tox. 3 Acute Tox. 3 Acute Tox. 3 Skin Irrit. 2 Eye Dam. 1 Skin Sens. 1 Acute Tox. 3 STOT SE 3 Carc. 1B |
Ammonia | 7664-41-7 | 35.9 | Skin Corr. 1B Acute Tox. 3 |
Benzene | 71-43-2 | 82.3 | Skin Irrit. 2 Eye Irrit. 2 Asp. Tox. 1 Muta. 1B Carc. 1A STOT RE 1 |
Benzo[a]anthracene | 56-55-3 | 0.027 | Carc. 1B |
Dibenz[a,h]anthracene | 53-70-3 | 0.000892 | Carc. 1B |
Benzo[a]pyrene | 50-32-8 | 0.0138 | Skin Sens. 1 Muta. 1B Carc. 1B Repr. 1B |
Resorcinol | 108-46-3 | 0.0018 | Acute Tox. 4* Skin Irrit. 2 Eye Irrit. 2 |
Chromium | 7440-47-3 | Below LOQ | Skin Sens. 1 Resp. Sens. 1 Eye Irrit. 2 STOT SE 2 Carc. 2 |
Nickel | 7440-02-0 | Below LOQ | Skin Sens. 1 Carc. 2 STOT RE 1 |
Selenium | 7782-49-2 | Below LOQ | Acute Tox. 3 Acute Tox. 3 STOT RE 2 |
Arsenic | 7440-38-2 | 0.00757 | Acute Tox. 3 Acute Tox. 3 |
Lead | 7439-92-1 | 0.00281 | Lact. Repr. 1A |
Cadmium | 7440-43-9 | 0.0888 | Carc. 1B STOT RE 1 Muta. 2 Repr. 2 Acute Tox. 2 |
Pyrocatechol | 120-80-9 | 91.9 | Acute Tox. 3 Acute Tox. 3 Skin Irrit. 2 Eye Irrit. 2 Muta. 2 Carc. 1B |
Carbon monoxide | 630-08-0 | 29400 | Acute Tox. 3 STOT RE 1 Repr. 1A |
Crotonaldehyde | 4170-30-3 | 55 | Acute Tox. 3 Acute Tox. 3 Skin Irrit. 2 Eye Dam. 1 Acute Tox. 2 STOT SE 3 Muta. 2 STOT RE 2 |
Ethylene oxide | 75-21-8 | 17.3 | Acute Tox. 3 Skin Corr. 1 Eye Dam. 1 Acute Tox. 3 STOT SE 3 STOT SE 3 Muta. 1B Carc. 1B STOT RE 1 Repr. 1B |
Formaldehyde | 50-00-0 | 104 | Acute Tox. 3 Acute Tox. 3 Skin Corr. 1B Skin Sens. 1 Acute Tox. 3 Muta. 2 Carc. 1B |
Hydrogen cyanide | 74-90-8 | 352 | Acute Tox. 2 Acute Tox. 1 Acute Tox. 2 |
Hydroquinone | 123-31-9 | 88.7 | Acute Tox. 4 Eye Dam. 1 Skin Sens. 1 Muta. 2 Carc. 2 |
Isoprene | 78-79-5 | 859 | Muta. 2 Carc. 1B |
m-Cresol | 108-39-4 | 2.98 | Acute Tox. 3 Acute Tox. 3 Skin Corr. 1B |
Mercury | 7439-97-6 | 0.00468 | Acute Tox. 2 STOT RE 1 Repr. 1B |
Methyl ethyl ketone | 78-93-3 | 164 | Eye Irrit. 2 STOT SE 3 |
N-nitrosoanabasine | 37620-20-5 | 0.0244 | Acute Tox. 3 |
N-nitrosoanatabine | 887407-16-1 | 0.259 | Acute Tox. 3 |
Nicotine | 54-11-5 | 2000 | Acute Tox. 2 Acute Tox. 2 Acute Tox. 2 |
1-Butanone, 4-(methylnitrosoamino)-1-(3-pyridinyl)- | 64091-91-4 | 0.208 | Acute Tox. 3 Skin Sens. 1 Carc. 2 |
N-nitrosonornicotine | 80508-23-2 | 0.23 | Acute Tox. 3 Carc. 2 |
Nitrogen monoxide | 10102-43-9 | 329 | Skin Corr. 1B Eye Dam. 1 Acute Tox. 1 |
NOx | - | 405 | Skin Corr. 1B Acute Tox. 2 |
o-Cresol | 95-48-7 | 3.12 | Acute Tox. 3 Acute Tox. 3 Skin Corr. 1B |
o-Toluidine | 95-53-4 | 0.109 | Acute Tox. 3 Eye Irrit. 2 Acute Tox. 3 Carc. 1B |
p-Cresol | 106-44-5 | 7.77 | Acute Tox. 3 Acute Tox. 3 Skin Corr. 1B |
Phenol | 108-95-2 | 12.5 | Acute Tox. 3 Acute Tox. 3 Skin Corr. 1B Acute Tox. 3 Muta. 2 STOT RE 2 |
Propionaldehyde | 123-38-6 | 119 | Skin Irrit. 2 Eye Irrit. 2 STOT SE 3 |
Propylene oxide | 75-56-9 | 1710 | Acute Tox. 4 Acute Tox. 3 Eye Irrit. 2 Acute Tox. 3 STOT SE 3 Muta. 1B Carc. 1B |
Pyrene | 129-00-0 | 88 | |
Pyridine | 110-86-1 | 36.4 | Acute Tox. 4 Acute Tox. 4 Acute Tox. 4 |
Quinoline | 91-22-5 | 0.427 | Acute Tox. 4 Acute Tox. 4 Skin Irrit. 2 Eye Irrit. 2 Muta. 2 Carc. 1B |
Styrene | 100-42-5 | 20.4 | Skin Irrit. 2 Eye Irrit. 2 Acute Tox. 4 STOT RE 1 (hearing organs) Repr. 2 |
Toluene | 108-88-3 | 132 | Skin Irrit. 2 Asp. Tox. 1 STOT SE 3 STOT RE 2 Repr. 2 |
Vinyl Chloride | 75-01-4 | 0.109 | Carc. 1A |
Animals | Exposure | Critical Effect | Effect Level | Study 1,2 |
---|---|---|---|---|
Male ddY mice | Drinking water: 21.3, 42.6, 64.0, 85.2 ppm; 4 weeks | Reduced litter size | NOAEL = 42.6 ppm (~9 mg/kg bw/day) LOAEL = 64.0 ppm (~14 mg/kg bw/day) | [1] |
Male Long-Evans rats | Drinking water: 0, 50, 100, 200 ppm; 10 weeks | Impaired ejaculation, lower vaginal and uterine sperm and pregnancy rates | NOAEL = 50 ppm (about 4 mg/kg bw/day) LOAEL = 100 ppm (about 8 mg/kg bw/day) | [2] |
Male Long-Evans rats | Gavage: 0, 15, 45 mg/kg bw/day; 5 days | Decreased oocyte fertilization | LOAEL = 15 mg/kg bw/day | [3] |
Male Long-Evans rats | Gavage: 0, 5, 15, 30, 45, 60 mg/kg bw/day; 5 days | Decreased mating; fewer produced litters | NOAEL = 30 mg/kg bw/day LOAEL = 45 mg/kg bw/day | [4] |
Male and female Swiss mice | Drinking water: 0, 3, 10, 30 ppm; 74 days | Reduced live litter size in two generations | NOAEL = 10 ppm (2.5 mg/kg bw/day) LOAEL = 30 ppm (8 mg/kg bw/day) | [5] |
Male and female Fischer 344 rats | Drinking water: 0, 0.5, 2.0, 5.0 mg/kg bw/day; 2-generation reproduction toxicity assay | Reduced live litter size | NOAEL = 2 mg/kg bw/day LOAEL = 5 mg/kg bw/day | [6] |
[Study 1] 1 | [Study 2] 1 | [Study 3] 1 | [Study 4] 1 | [Study 5] 1 | [Study 6] 1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | L | N | L | L | N | L | N | L | N | L | ||
Critical value (mg/kg bw/day) | 9 | 14 | 4 | 8 | 15 | 30 | 45 | 2.5 | 8 | 2 | 5 | |
Oral absorption | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 | |
Transformation mg into µg | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | |
Uncertainty factors: | ||||||||||||
Interspecies allometric | 7 | 7 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 4 | 4 | |
Interspecies remaining | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | |
Intraspecies | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
LOAEL to NOAEL | 1 | 3 | 1 | 3 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | |
Duration adjustment | 3 | 3 | 1 | 1 | 3 | 3 | 3 | 1 | 1 | 1 | 1 | |
Systemic DNEL (µg/kg bw/day) | 9.1 | 4.7 | 21 | 14 | 8.8 | 53 | 27 | 7.6 | 8.1 | 11 | 8.8 |
Animals | Exposure | Critical Effect | Effect Level | Study 1,2 |
---|---|---|---|---|
Male C57BL/6 mice | 0, 1, 10 mg/kg bw/day, 42 days | Testicular changes Sperm alterations | LOAEL = 1 mg/kg bw/day | [7] |
Male Hsd:ICR (CD1) mice | 0, 1, 10, 50, 100 mg/kg bw/day; 60 days | Testicular changes Sperm alterations | NOAEL = 50 mg/kg bw/day LOAEL = 100 mg/kg bw/day | [8] |
Male Sprague Dawley rats | 0, 5 mg/kg bw/day; 84 days | Sperm alterations | LOAEL = 5 mg/kg bw/day | [9] |
Male F344 rats | 0, 75 µg/m3; 60 days; 4 h/day | Sperm motility | LOAEL = 75 µg/m3 | [10] |
Male F344 rats | 0, 75 µg/m3; 60 days; 4 h/day | Testicular changes; testosterone and luteinizing hormone alterations | LOAEL = 75 µg/m3 | [11] |
Male Sprague Dawley rats | 0, 5 mg/kg bw/day; 28 days | Testosterone level alterations | LOAEL = 5 mg/kg bw/day | [12] |
Male Sprague Dawley rats | 0, 1, 5 mg/kg bw/day; 90 days | Testosterone level alterations | NOAEL = 1 mg/kg bw/day LOAEL = 5 mg/kg bw/day | [13] |
Female CD-1 mice | 0, 10, 40 and 160 mg/kg bw/day; 10 days | Fewer females with viable litters | NOAEL = 40 mg/kg bw/day LOAEL = 160 mg/kg bw/day | [14] |
Female Fisher 344 | 0, 50, 75, 100 µg/m3; 14 days; 4h/day | Reductions in pups born/litter and lower ovulation rate | NOAEL = 75 µg/m3 LOAEL = 160 µg/m3 | [15] |
Female Sprague Dawley rats | 0, 2.5, 5 mg/kg bw/day; 60 days | Reduction ovary weight; ovarian granulosa cells apoptosis | NOAEL = 2.5 mg/kg bw/day LOAEL = 5 mg/kg bw/day | [16] |
Female F344 rats | 0, 25, 75, 100 µg/m3; 4 h/day; 10 days | Reductions in estradiol, prolactin and progesterone | NOAEL = 25 µg/m3 LOAEL = 75 µg/m3 | [17] |
[Study 7] 1 | [Study 8] 1 | [Study 9] 1 | [Study 12] 1 | [Study 13] 1 | [Study 14] 1 | [Study 16] 1 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
L | N | L | L | L | N | L | N | L | N | L | |
Critical value (mg/kg bw/day) | 1 | 50 | 100 | 5 | 5 | 1 | 5 | 40 | 160 | 2.5 | 5 |
Oral absorption rate | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 |
Transformation mg into µg | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 |
Uncertainty factors: | |||||||||||
Interspecies allometric | 7 | 7 | 7 | 4 | 4 | 4 | 4 | 7 | 7 | 4 | 4 |
Interspecies remaining | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Intraspecies | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
LOAEL to NOAEL | 3 | 1 | 3 | 3 | 3 | 1 | 3 | 1 | 3 | 1 | 3 |
Duration adjustment | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 3 | 3 | 1 | 1 |
Systemic DNEL (µg/kg bw/day) | 0.72 | 109 | 72 | 6.3 | 2.1 | 3.8 | 6.3 | 29 | 39 | 9.5 | 6.3 |
[Study 10] 1 | [Study 11] 1 | [Study 15] 1 | [Study 17] 1 | |||
---|---|---|---|---|---|---|
L | L | N | L | N | L | |
Critical value (µg/m3) | 75 | 75 | 75 | 160 | 25 | 75 |
Inhalation absorption rate | 0.56 | 0.56 | 0.56 | 0.56 | 0.56 | 0.56 |
Transformation m3 into L | 103 | 103 | 103 | 103 | 103 | 103 |
Transformation µg into ng | 103 | 103 | 103 | 103 | 103 | 103 |
Exposure time (min/d) | 240 | 240 | 240 | 240 | 240 | 240 |
Respiration rate (L/min/kg) (Table 1) | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
Uncertainty factors: | ||||||
Interspecies allometric | 1 | 1 | 1 | 1 | 1 | 1 |
Interspecies remaining | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Intraspecies | 10 | 10 | 10 | 10 | 10 | 10 |
LOAEL to NOAEL | 3 | 3 | 1 | 3 | 1 | 3 |
Duration adjustment | 1 | 1 | 3 | 3 | 3 | 3 |
Systemic DNEL (ng/kg bw/day) | 108 | 108 | 108 | 76 | 36 | 36 |
Animals | Exposure | Critical Effect | Effect Level | Study 1,2 |
---|---|---|---|---|
Male and female Fischer 344 rats | 0, 25, 50, 100, 250 and 1000 µg/m3; 6 h/day, 5 days/week; 13 weeks | Increase in number of spermatids/testis Reduction in length of estrous cycle | NOAEL = 250 µg/m3 LOAEL = 1000 µg/m3 | [18] |
Female Wistar rats | 0, 20, 160 and 1000 µg/m3; 5 h/day, 5 days/week; 20 weeks | ↑ percentage of females with estrus cycles lasting over 6 d | NOAEL = 20 µg/m3 LOAEL = 160 µg/m3 | [19] |
Female Wistar rats | 0, 0.04, 0.4, 4, 40 mg/kg bw/day; gavage; 14 weeks; 5 days/week | Length of estrous cycle was twice that of the control rats. | NOAEL = 4 mg/kg bw/day LOAEL = 40 mg/kg bw/day | [20] |
Male and female Sprague Dawley | 0, 0.1, 1, 10 mg/kg/day; 6 days/week; 3 weeks | ↓ number of copulations, pregnancies, implants and live fetuses | NOAEL = 1 mg/kg bw/day LOAEL = 10 mg/kg bw/day | [21] |
[Study 20] 1 | [Study 21] 1 | |||
---|---|---|---|---|
NOAEL | LOAEL | NOAEL | LOAEL | |
Critical value (mg/kg bw/day) | 4 | 40 | 1 | 10 |
Oral absorption rate | 0.05 | 0.05 | 0.05 | 0.05 |
Transformation mg into µg | 103 | 103 | 103 | 103 |
Adjustment to 7 day/week | 5/7 | 5/7 | 7/7 | 7/7 |
Uncertainty factors: | ||||
Interspecies allometric | 4 | 4 | 4 | 4 |
Interspecies remaining | 2.5 | 2.5 | 2.5 | 2.5 |
Intraspecies | 10 | 10 | 10 | 10 |
LOAEL to NOAEL | 1 | 3 | 1 | 3 |
Duration adjustment | 1 | 1 | 3 | 3 |
Systemic DNEL (µg/kg bw/day) | 1.4 | 4.8 | 0.17 | 0.56 |
[Study 18] 1 | [Study 19] 1 | |||
---|---|---|---|---|
NOAEL | LOAEL | NOAEL | LOAEL | |
Critical value (µg/m3) | 250 | 1000 | 20 | 160 |
Inhalation absorption rate | 0.1 | 0.1 | 0.1 | 0.1 |
Transformation m3 into L | 103 | 103 | 103 | 103 |
Transformation µg into ng | 103 | 103 | 103 | 103 |
Exposure time (min/day) | 360 | 360 | 300 | 300 |
Respiration rate (L/min/kg) (Table 1) | 0.8 | 0.8 | 0.8 | 0.8 |
Adjustment to 7 day/week | 5/7 | 5/7 | 5/7 | 5/7 |
Uncertainty factors: | ||||
Interspecies allometric | 1 | 1 | 1 | 1 |
Interspecies remaining | 2.5 | 2.5 | 2.5 | 2.5 |
Intraspecies | 10 | 10 | 10 | 10 |
LOAEL to NOAEL | 1 | 3 | 1 | 3 |
Duration adjustment | 1 | 1 | 1 | 1 |
Systemic DNEL (ng/kg bw/day) | 206 | 274 | 14 | 37 |
Animals | Exposure | Critical Effect | Effect Level | Study 1,2 |
---|---|---|---|---|
Male and female Fischer 344 rats | 0, 90, 180, 270, 810 mg/m3; 6 h/day; 5 days/week; 8 weeks Subchronic inhalation toxicity study | testicular degeneration with abnormal spermatocytes and atrophy of seminiferous tubules, hypospermia, aspermia | NOAEL = 270 mg/m3 LOAEL = 810 mg/m3 | [22] |
Male and female B6C3F1 mice | 18, 90, 180, 450 mg/m3; 6 h/day; 5 days/week; 10 weeks Subchronic inhalation toxicity study | Depressed absolute testicular weight | NOAEL = 180 mg/m3 LOAEL = 450 mg/m3 | [23] |
Male and female Fischer 344 | 18, 54, 180 mg/m3; 5 h/day; 5 days/week; 14 weeks One-generation reproductive toxicity | Reduction in number pups/litter | NOAEL = 54 mg/m3 LOAEL = 180 mg/m3 | [24] |
[Study 22] 1 | [Study 23] 1 | [Study 24] 1 | ||||
---|---|---|---|---|---|---|
N | L | N | L | N | L | |
Critical value (mg/m3) | 270 | 810 | 180 | 450 | 54 | 180 |
Inhalation absorption rate | 1 | 1 | 1 | 1 | 1 | 1 |
Adjustment to 7 day/week | 5/7 | 5/7 | 5/7 | 5/7 | 5/7 | 5/7 |
Transformation m3 into L | 103 | 103 | 103 | 103 | 103 | 103 |
Exposure time (min/day) | 480 | 480 | 480 | 480 | 300 | 300 |
Respiration rate (L/min/kg) (Table 2) | 0.8 | 0.8 | 1.4 | 1.4 | 0.8 | 0.8 |
Uncertainty factors: | ||||||
Interspecies allometric | 1 | 1 | 1 | 1 | 1 | 1 |
Interspecies remaining | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Intraspecies | 10 | 10 | 10 | 10 | 10 | 10 |
LOAEL to NOAEL | 1 | 3 | 1 | 3 | 1 | 3 |
Duration adjustment | 1 | 1 | 1 | 1 | 1 | 1 |
Systemic DNEL (mg/kg bw/day) | 2.9 | 2.9 | 3.5 | 2.8 | 0.37 | 0.41 |
Animals | Exposure | Critical Effect | Effect Level | Study 1 |
---|---|---|---|---|
Male Albino rats | 0, 0.25, 0.5, and 1 g/L in drinking water, 60 days | Decreases in seminiferous tubule diameter and spermatid count. Lumen of the seminiferous tubules filled with cellular debris | NOAEL = 0.25 g/L (22.5 mg/kg bw/day) * LOAEL = 0.5 g/L (45 mg/kg bw/day) * | [25] |
Male and female NMRI mice | 5 g/L (0.5%) in drinking water from day 1 of intrauterine life until 60 days after birth | Litter size and number of implants were significantly reduced. | LOAEL = 5 g/L (450 mg/kg bw/day) ** | [26] |
Male Sprague Dawley rats | 3 g/L (0.3%) in drinking water for 14, 30, or 60 days | Decreased epididymal sperm concentrations. Sperm harvested from animals penetrated fewer eggs | LOAEL = 3 g/L (270 mg/kg bw/day) * | [27] |
[Study 25] 1 | [Study 26] 1 | [Study 27] 1 | ||
---|---|---|---|---|
N | L | L | L | |
Critical value (mg/kg bw/day) | 22.5 | 45 | 450 | 270 |
Oral absorption rate | 0.23 | 0.23 | 0.23 | 0.23 |
Transformation mg into µg | 103 | 103 | 103 | 103 |
Uncertainty factors: | ||||
Interspecies allometric | 4 | 4 | 7 | 4 |
Interspecies remaining | 2.5 | 2.5 | 2.5 | 2.5 |
Intraspecies | 10 | 10 | 10 | 10 |
LOAEL to NOAEL | 1 | 3 | 3 | 3 |
Duration adjustment | 1 | 1 | 1 | 1 |
Additional factor for extrapolation oral-inhalation | 3 | 3 | 3 | 3 |
Systemic DNEL (µg/kg bw/day) | 17.3 | 11.5 | 6.57 | 69 |
Acrylamide | Benzo[a]pyrene | Cadmium | Ethylene Oxide | Lead | |
---|---|---|---|---|---|
Amount/cigarette | 4.49 µg | 13.8 ng | 88.8 ng | 17.3 µg | 2.81 ng |
Cigarettes/day | 20 | 20 | 20 | 20 | 20 |
Pulmonary absorption (%) | 87 | 56 | 10 | 100 | 25 |
Weight (kg) | 70 | 70 | 70 | 70 | 70 |
Systemic exposure | 1.1 µg/kg bw/day | 2.2 ng/kg bw/day | 2.5 ng/kg bw/day | 4.9 µg/kg bw/day | 0.2 ng/kg bw/day |
Systemic Exposure | Systemic DNEL | Risk Ratio | |
Acrylamide | 1.1 µg/kg bw/day | 4.7 µg/kg bw/day | 0.23 |
Benzo[a]pyrene | 2.2 ng/kg bw/day | 36 ng/kg bw/day | 0.06 |
Cadmium | 2.5 ng/kg bw/day | 14 ng/kg bw/day | 0.18 |
Ethylene oxide | 4.9 µg/kg bw/day | 370 µg/kg bw/day | 0.01 |
Lead | 0.2 ng/kg bw/day | 11.5 µg/kg bw/day | 0.00002 |
Mixture | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estevan, C.; Báez-Barroso, G.A.; Vilanova, E.; Sogorb, M.A. Risk Assessment of Impairment of Fertility Due to Exposure to Tobacco Constituents Classified as Reprotoxicants. Toxics 2025, 13, 234. https://doi.org/10.3390/toxics13040234
Estevan C, Báez-Barroso GA, Vilanova E, Sogorb MA. Risk Assessment of Impairment of Fertility Due to Exposure to Tobacco Constituents Classified as Reprotoxicants. Toxics. 2025; 13(4):234. https://doi.org/10.3390/toxics13040234
Chicago/Turabian StyleEstevan, Carmen, Gabriela A. Báez-Barroso, Eugenio Vilanova, and Miguel A. Sogorb. 2025. "Risk Assessment of Impairment of Fertility Due to Exposure to Tobacco Constituents Classified as Reprotoxicants" Toxics 13, no. 4: 234. https://doi.org/10.3390/toxics13040234
APA StyleEstevan, C., Báez-Barroso, G. A., Vilanova, E., & Sogorb, M. A. (2025). Risk Assessment of Impairment of Fertility Due to Exposure to Tobacco Constituents Classified as Reprotoxicants. Toxics, 13(4), 234. https://doi.org/10.3390/toxics13040234