Exploring Novel Fungal–Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collecting Area
2.2. Evaluation of PAHs and BTEX Levels at Sampling Sites
2.3. Enrichment and Isolation of Hydrocarbon-Degrading Strains
2.4. Identification of Hydrocarbon-Degrading Fungi and Bacteria
2.5. Phylogenetic Analysis
2.6. Screening for Biosurfactants
2.7. Screening for Laccases
2.8. Growth Conditions for Quantitative Evaluation of Laccases
2.9. Measurement of Extracellular Laccase Activity
2.10. Selection and Assembly of Microbial Consortia
2.11. Biodegradation of Diesel Oil by Individual Strains and Microbial Consortia
2.12. Statistical Analyses
3. Results
3.1. Evaluation of PAHs and BTEX Levels at Sampling Sites
3.2. Enrichment and Isolation of Hydrocarbon-Degrading Microbial Strains
3.3. Identification of Hydrocarbon-Degrading Fungi and Bacteria
3.4. Screening for Biosurfactants
3.5. Screening for Laccases
3.6. Selection and Assembly of Microbial Consortia
3.7. Biodegradation of Diesel Oil by Individual Strains and Microbial Consortia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ladle, R.J.; Malhado, A.C.M.; Campos-Silva, J.V.; Pinheiro, B.R. Brazil’s mystery oil spill: An ongoing social disaster. Nature 2020, 578, 37. [Google Scholar] [CrossRef]
- Zhang, B.; Matchinski, E.J.; Chen, B.; Ye, X.; Jing, L.; Lee, K. Marine oil spills-oil pollution, sources and effects. In World Seas: An Environmental Evaluation Volume III: Ecological Issues and Environmental Impacts; Academic Press: Cambridge, MA, USA, 2018; pp. 391–406. ISBN 9780128050521. [Google Scholar]
- Carmo, E.H.; Teixeira, M.G. Technological disasters and public health emergencies: The case of oil spill on the Brazilian coast. Cad. Saude Publica 2020, 36, e00234419. [Google Scholar] [CrossRef]
- Schobert, H. Composition, classification, and properties of petroleum. In Chemistry of Fossil Fuels and Biofuels; Cambridge University Press: Cambridge, UK, 2013; pp. 174–191. [Google Scholar]
- Barathi, S.; Gitanjali, J.; Rathinasamy, G.; Sabapathi, N.; Aruljothi, K.N.; Lee, J.; Kandasamy, S. Recent trends in polycyclic aromatic hydrocarbons pollution distribution and counteracting bio-remediation strategies. Chemosphere 2023, 337, 139396. [Google Scholar] [CrossRef]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 2020, 11, 562813. [Google Scholar] [CrossRef]
- Delgado-Saborit, J.M.; Stark, C.; Harrison, R.M. Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. Environ. Int. 2011, 37, 383–392. [Google Scholar] [CrossRef]
- Mastrangelo, G.; Fadda, E.; Marzia, V. Polycyclic aromatic hydrocarbons and cancer in man. Environ. Health Perspect. 1996, 104, 1166–1170. [Google Scholar] [CrossRef]
- Mulla, S.I.; Bagewadi, Z.K.; Faniband, B.; Bilal, M.; Chae, J.C.; Bankole, P.O.; Saratale, G.D.; Bhargava, R.N.; Gurumurthy, D.M. Various strategies applied for the removal of emerging micropollutant sulfamethazine: A systematic review. Environ. Sci. Pollut. Res. 2023, 30, 71599–71613. [Google Scholar] [CrossRef]
- Dzionek, A.; Wojcieszyńska, D.; Guzik, U. Natural carriers in bioremediation: A review. Electron. J. Biotechnol. 2016, 23, 28–36. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Shetti, N.P.; Reddy, K.R.; Aminabhavi, T.M. Biofuels, biodiesel and biohydrogen production using bioprocesses. A review. Environ. Chem. Lett. 2020, 18, 1049–1072. [Google Scholar] [CrossRef]
- Chauhan, S.K.; Gangopadhyay, S.; Singh, N. Environmental aspects of biofuels in road transportation. Environ. Chem. Lett. 2009, 7, 289–299. [Google Scholar] [CrossRef]
- Council Anticipates Higher Biodiesel Percentage in Diesel and Encourages Energy Transition, 2024. Available online: https://www.gov.br/mdic/pt-br/assuntos/noticias/2023/dezembro/cnpe-aprova-antecipacao-do-b14-para-marco-de-2024-e-b15-para-marco-de-2025-incentivando-a-producao-de-biocombustiveis-e-a-transicao-energetica (accessed on 1 January 2021).
- Kohlhepp, G. Análise da situação da produção de etanol e biodiesel no Brasil. Estud. Avançados 2010, 24, 223–253. [Google Scholar] [CrossRef]
- Khan, N.; Warith, M.A.; Luk, G. A Comparison of acute toxicity of biodiesel, biodiesel blends, and diesel on aquatic organisms. J. Air Waste Manag. Assoc. 2007, 57, 286–296. [Google Scholar] [CrossRef]
- Demirbaş, A. Biodegradability of biodiesel and petrodiesel fuels. Energy Sources Part A Recover. Util. Environ. Eff. 2009, 31, 169–174. [Google Scholar] [CrossRef]
- Zungum, I.U.; Imam, T.S. Ecotoxicity and Associated Threat of Polycyclic Aromatic Hydrocarbons (PAHs) to Biodiversity: A Review. Preprints 2021. [Google Scholar] [CrossRef]
- Mishra, P.; Kiran, N.S.; Romanholo Ferreira, L.F.; Yadav, K.K.; Mulla, S.I. New insights into the bioremediation of petroleum contaminants: A systematic review. Chemosphere 2023, 326, 138391. [Google Scholar] [CrossRef]
- Thacharodi, A.; Hassan, S.; Singh, T.; Mandal, R.; Chinnadurai, J.; Khan, H.A.; Hussain, M.A.; Brindhadevi, K.; Pugazhendhi, A. Bioremediation of polycyclic aromatic hydrocarbons: An updated microbiological review. Chemosphere 2023, 328, 138498. [Google Scholar] [CrossRef]
- Fulekar, M.H. Microbial degradation of petrochemical waste-polycyclic aromatic hydrocarbons. Bioresour. Bioprocess 2017, 4, 28. [Google Scholar] [CrossRef] [PubMed]
- Gan, J.S.; Bilal, M.; Li, X.B.; Hussain Shah, S.Z.; Mohamed, B.A.; Hadibarata, T.; Cheng, H. Peroxidases-based enticing biotechnological platforms for biodegradation and biotransformation of emerging contaminants. Chemosphere 2022, 307, 136035. [Google Scholar] [CrossRef]
- Fritsche, W.; Hofrichter, M. Aerobic Degradation by Microorganisms. In Biotechnology: Second, Completely Revised Edition; John Wiley & Sons, Ltd.: Hoboken, NY, USA, 2008; Volumes 11–12, pp. 144–167. ISBN 9783527620999. [Google Scholar]
- Wu, M.; Li, W.; Dick, W.A.; Ye, X.; Chen, K.; Kost, D.; Chen, L. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere 2017, 169, 124–130. [Google Scholar] [CrossRef]
- Suja, F.; Rahim, F.; Taha, M.R.; Hambali, N.; Rizal Razali, M.; Khalid, A.; Hamzah, A. Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. Int. Biodeterior. Biodegrad. 2014, 90, 115–122. [Google Scholar] [CrossRef]
- Bovio, E.; Gnavi, G.; Prigione, V.; Spina, F.; Denaro, R.; Yakimov, M.; Calogero, R.; Crisafi, F.; Varese, G.C. The culturable mycobiota of a Mediterranean marine site after an oil spill: Isolation, identification and potential application in bioremediation. Sci. Total Environ. 2017, 576, 310–318. [Google Scholar] [CrossRef]
- Benguenab, A.; Chibani, A. Biodegradation of petroleum hydrocarbons by filamentous fungi (Aspergillus ustus and Purpureocillium lilacinum) isolated from used engine oil contaminated soil. Acta Ecol. Sin. 2020, 41, 416–423. [Google Scholar] [CrossRef]
- Medaura, M.C.; Guivernau, M.; Moreno-Ventas, X.; Prenafeta-Boldú, F.X.; Viñas, M. Bioaugmentation of Native Fungi, an Efficient Strategy for the Bioremediation of an Aged Industrially Polluted Soil with Heavy Hydrocarbons. Front. Microbiol. 2021, 12, 626436. [Google Scholar] [CrossRef]
- Barnes, N.M.; Khodse, V.B.; Lotlikar, N.P.; Meena, R.M.; Damare, S.R. Bioremediation potential of hydrocarbon-utilizing fungi from select marine niches of India. 3 Biotech 2018, 8, 21. [Google Scholar] [CrossRef]
- Yuniati, M.D. Bioremediation of petroleum-contaminated soil: A Review. In IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bristol, UK, 2018; Volume 118. [Google Scholar]
- Akhtar, N.; Mannan, M.A. ul Mycoremediation: Expunging environmental pollutants. Biotechnol. Rep. 2020, 26, e00452. [Google Scholar] [CrossRef]
- Siles, J.A.; Margesin, R. Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site. Appl. Microbiol. Biotechnol. 2018, 102, 4409–4421. [Google Scholar] [CrossRef]
- Kadri, T.; Rouissi, T.; Kaur Brar, S.; Cledon, M.; Sarma, S.; Verma, M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J. Environ. Sci. 2017, 51, 52–74. [Google Scholar] [CrossRef]
- Giardina, P.; Faraco, V.; Pezzella, C.; Piscitelli, A.; Vanhulle, S.; Sannia, G. Laccases: A never-ending story. Cell. Mol. Life Sci. 2010, 67, 369–385. [Google Scholar] [CrossRef]
- Aranda, E.; Godoy, P.; Reina, R.; Badia-Fabregat, M.; Rosell, M.; Marco-Urrea, E.; García-Romera, I. Isolation of Ascomycota fungi with capability to transform PAHs: Insights into the biodegradation mechanisms of Penicillium oxalicum. Int. Biodeterior. Biodegradation 2017, 122, 141–150. [Google Scholar] [CrossRef]
- Pozdnyakova, N.; Dubrovskaya, E.; Chernyshova, M.; Makarov, O.; Golubev, S.; Balandina, S.; Turkovskaya, O. The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus. Fungal Biol. 2018, 122, 363–372. [Google Scholar] [CrossRef]
- Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front. Microbiol. 2016, 7, 208111. [Google Scholar] [CrossRef]
- Parthipan, P.; Elumalai, P.; Sathishkumar, K.; Sabarinathan, D.; Murugan, K.; Benelli, G.; Rajasekar, A. Biosurfactant and enzyme mediated crude oil degradation by Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3. 3 Biotech 2017, 7, 278. [Google Scholar] [CrossRef]
- Hickey, W.J.; Chen, S.; Zhao, J. The phn island: A new genomic island encoding catabolism of polynuclear aromatic hydrocarbons. Front. Microbiol. 2012, 3, 125. [Google Scholar] [CrossRef]
- Imam, A.; Kumar Suman, S.; Kanaujia, P.K.; Ray, A. Biological machinery for polycyclic aromatic hydrocarbons degradation: A review. Bioresour. Technol. 2022, 343, 126121. [Google Scholar] [CrossRef]
- da Silva, A.F.; Banat, I.M.; Giachini, A.J.; Robl, D. Fungal biosurfactants, from nature to biotechnological product: Bioprospection, production and potential applications. Bioprocess Biosyst. Eng. 2021, 44, 2003–2034. [Google Scholar] [CrossRef]
- Ławniczak, Ł.; Woźniak-Karczewska, M.; Loibner, A.P.; Heipieper, H.J.; Chrzanowski, Ł. Microbial degradation of hydrocarbons—Basic principles for bioremediation: A review. Molecules 2020, 25, 856. [Google Scholar] [CrossRef]
- Zhou, M.F.; Yuan, X.Z.; Zhong, H.; Liu, Z.F.; Li, H.; Jiang, L.L.; Zeng, G.M. Effect of biosurfactants on laccase production and phenol biodegradation in solid-state fermentation. Appl. Biochem. Biotechnol. 2011, 164, 103–114. [Google Scholar] [CrossRef]
- Mnif, I.; Ellouze-Chaabouni, S.; Ayedi, Y.; Ghribi, D. Treatment of Diesel- and Kerosene-Contaminated Water by B. subtilis SPB1 Biosurfactant-Producing Strain. Water Environ. Res. 2014, 86, 707–716. [Google Scholar] [CrossRef]
- Patowary, K.; Patowary, R.; Kalita, M.C.; Deka, S. Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites. Front. Microbiol. 2016, 7, 206942. [Google Scholar] [CrossRef]
- Kamyabi, A.; Nouri, H.; Moghimi, H. Synergistic Effect of Sarocladium sp. and Cryptococcus sp. Co-Culture on Crude Oil Biodegradation and Biosurfactant Production. Appl. Biochem. Biotechnol. 2017, 182, 324–334. [Google Scholar] [CrossRef]
- Ghorbannezhad, H.; Moghimi, H.; Dastgheib, S.M.M. Evaluation of heavy petroleum degradation using bacterial-fungal mixed cultures. Ecotoxicol. Environ. Saf. 2018, 164, 434–439. [Google Scholar] [CrossRef]
- Ghorbannezhad, H.; Moghimi, H.; Dastgheib, S.M.M. Evaluation of pyrene and tetracosane degradation by mixed-cultures of fungi and bacteria. J. Hazard. Mater. 2021, 416, 126202. [Google Scholar] [CrossRef]
- El Hanafy, A.A.E.M.; Anwar, Y.; Mohamed, S.A.; Al-Garni, S.M.S.; Sabir, J.S.M.; Abuzinadah, O.A.; Al Mehdar, H.; Alfaidi, A.W.; Ahmed, M.M.M. Isolation and identification of bacterial consortia responsible for degrading oil spills from the coastal area of Yanbu, Saudi Arabia. Biotechnol. Biotechnol. Equip. 2016, 30, 69–74. [Google Scholar] [CrossRef]
- Atakpa, E.O.; Zhou, H.; Jiang, L.; Ma, Y.; Liang, Y.; Li, Y.; Zhang, D.; Zhang, C. Improved degradation of petroleum hydrocarbons by co-culture of fungi and biosurfactant-producing bacteria. Chemosphere 2022, 290, 133337. [Google Scholar] [CrossRef]
- Ameen, F.; Moslem, M.; Hadi, S.; Al-Sabri, A.E. Biodegradation of diesel fuel hydrocarbons by mangrove fungi from Red Sea Coast of Saudi Arabia. Saudi J. Biol. Sci. 2016, 23, 211–218. [Google Scholar] [CrossRef]
- Müller, J.B.; Ramos, D.T.; Larose, C.; Fernandes, M.; Lazzarin, H.S.C.; Vogel, T.M.; Corseuil, H.X. Combined iron and sulfate reduction biostimulation as a novel approach to enhance BTEX and PAH source-zone biodegradation in biodiesel blend-contaminated groundwater. J. Hazard. Mater. 2017, 326, 229–236. [Google Scholar] [CrossRef]
- USEPA, U.S.E.P.A. SW-846 Test Method 3550C: Ultrasonic Extraction, SW-846 Compendium. 2007; pp. 1–17. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-3550c-ultrasonic-extraction (accessed on 28 January 2021).
- USEPA. Volatile Organic Compounds in Various Sample Matrices Using Equilibrium Headspace Analysis; U.S. Environmental Protection Agency: Washinton, DC, USA, 2003. [Google Scholar]
- USEPA SW-846 Test Method 8000D: Determinative Chromatographic Separations|Hazardous Waste Test Methods/SW-846|US EPA. U.S. Environmental Protection Agency. 1996. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-8000d-determinative-chromatographic-separations (accessed on 28 January 2021).
- Corseuil, H.X.; Monier, A.L.; Fernandes, M.; Schneider, M.R.; Nunes, C.C.; Do Rosario, M.; Alvarez, P.J.J. BTEX plume dynamics following an ethanol blend release: Geochemical footprint and thermodynamic constraints on natural attenuation. Environ. Sci. Technol. 2011, 45, 3422–3429. [Google Scholar] [CrossRef]
- Ramos, D.T.; da Silva, M.L.B.; Nossa, C.W.; Alvarez, P.J.J.; Corseuil, H.X. Assessment of microbial communities associated with fermentative-methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20). Biodegradation 2014, 25, 681–691. [Google Scholar] [CrossRef]
- Poddar, K.; Sarkar, D.; Sarkar, A. Construction of potential bacterial consortia for efficient hydrocarbon degradation. Int. Biodeterior. Biodegrad. 2019, 144, 104770. [Google Scholar] [CrossRef]
- Bushnell, L.D.; Haas, H.F. The Utilization of Certain Hydrocarbons by Microorganisms. J. Bacteriol. 1941, 41, 653–673. [Google Scholar] [CrossRef]
- Adams, E. Studies in gram staining. Biotech. Histochem. 1975, 50, 227–231. [Google Scholar] [CrossRef]
- García de Lomas, J.; Marín, F.; Altuna, A.; Cuadrado, E. Méthode simple et rapide de réalisation de microculture en identification mycologique. Mycopathologia 1981, 76, 119–124. [Google Scholar] [CrossRef]
- Pitt, J.I. The Genus Penicillium and its Teleomorphic States Eupenicillium and Talaromyces. 634 S., 132 Abb. London-New York-Toronto-Sydney-San Francisco 1979. Academic Press. $92.00. J. Basic Microbiol. 1979, 21, 629. [Google Scholar] [CrossRef]
- Frisvad, J.C. Physiological criteria and mycotoxin production as aids in identification of common asymmetric penicillia. Appl. Environ. Microbiol. 1981, 41, 568–579. [Google Scholar] [CrossRef]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef]
- Hong, S.B.; Cho, H.S.; Shin, H.D.; Frisvad, J.C.; Samson, R.A. Novel Neosartorya species isolated from soil in Korea. Int. J. Syst. Evol. Microbiol. 2006, 56, 477–486. [Google Scholar] [CrossRef]
- Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Hong, S.B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 2014, 78, 343–371. [Google Scholar] [CrossRef]
- Lane, D.J. 16S/23S rRNA Sequencing. Nucleic acid Tech. Bact. Syst. 1991, 115–175. Available online: https://cir.nii.ac.jp/crid/1570009750603612672 (accessed on 16 August 2022).
- Turner, S.; Pryer, K.M.; Miao, V.P.W.; Palmer, J.D. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 1999, 46, 327–338. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0. molecular biology and evolution. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 1981, 17, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Versalovic, J. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell. Biol. 1994, 5, 25–40. [Google Scholar]
- Sokal, R.R. A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 1958, 38, 1409–1438. [Google Scholar]
- Rohlf, F.J. NTSYpc Numerical Taxonomy and Multivariate Analysis System Version 2.1 User Guide; Applied Biostatistics Inc.: Port Jefferson, NY, USA, 2000; ISBN 0925031305. [Google Scholar]
- Ray, M.; Kumar, V.; Banerjee, C.; Gupta, P.; Singh, S.; Singh, A. Investigation of biosurfactants produced by three indigenous bacterial strains, their growth kinetics and their anthracene and fluorene tolerance. Ecotoxicol. Environ. Saf. 2021, 208, 111621. [Google Scholar] [CrossRef]
- Othman, A.R.; Ismail, N.S.; Abdullah, S.R.S.; Hasan, H.A.; Kurniawan, S.B.; Sharuddin, S.S.N.; Ismail, N. Potential of indigenous biosurfactant-producing fungi from real crude oil sludge in total petroleum hydrocarbon degradation and its future research prospects. J. Environ. Chem. Eng. 2022, 10, 107621. [Google Scholar] [CrossRef]
- Lecomte Du Noüy, P. An interfacial tensiometer for universal use. J. Gen. Physiol. 1925, 7, 625–632. [Google Scholar] [CrossRef]
- Ebnesajjad, S. Surface Tension and Its Measurement. In Handbook of Adhesives and Surface Preparation: Technology, Applications and Manufacturing; William Andrew Publishing: Norwich, NY, USA, 2010; pp. 21–30. ISBN 9781437744613. [Google Scholar]
- Chandankere, R.; Yao, J.; Cai, M.; Masakorala, K.; Jain, A.K.; Choi, M.M.F. Properties and characterization of biosurfactant in crude oil biodegradation by bacterium Bacillus methylotrophicus USTBa. Fuel 2014, 122, 140–148. [Google Scholar] [CrossRef]
- Karp, S.G.; Faraco, V.; Amore, A.; Birolo, L.; Giangrande, C.; Soccol, V.T.; Pandey, A.; Soccol, C.R. Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse. Bioresour. Technol. 2012, 114, 735–739. [Google Scholar] [CrossRef]
- Rajeswari, M.; Vennila, K.; Bhuvaneswari, V. Optimization of laccase production media by Bacilllus cereus TSS1 using Box-Behnken design. Int. J. Chem. Pharm. Sci. 2015, 6. [Google Scholar]
- Hou, H.; Zhou, J.; Wang, J.; Du, C.; Yan, B. Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochem. 2004, 39, 1415–1419. [Google Scholar] [CrossRef]
- Johannes, C.; Majcherczyk, A. Laccase activity tests and laccase inhibitors. J. Biotechnol. 2000, 78, 193–199. [Google Scholar] [CrossRef]
- Leonowicz, A.; Grzywnowicz, K. Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme Microb. Technol. 1981, 3, 55–58. [Google Scholar] [CrossRef]
- Wunder, T.; Kremer, S.; Sterner, O.; Anke, H. Metabolism of the polycyclic aromatic hydrocarbon pyrene by Aspergillus niger SK 9317. Appl. Microbiol. Biotechnol. 1994, 42, 636–641. [Google Scholar] [CrossRef]
- Zafra, G.; Absalón, Á.E.; Anducho-Reyes, M.Á.; Fernandez, F.J.; Cortés-Espinosa, D.V. Construction of PAH-degrading mixed microbial consortia by induced selection in soil. Chemosphere 2017, 172, 120–126. [Google Scholar] [CrossRef]
- Ganesh, A.; Lin, J. Diesel degradation and biosurfactant production by Gram-positive isolates. African J. Biotechnol. 2009, 8, 5847–5854. [Google Scholar] [CrossRef]
- Ebadi, A.; Ghavidel, A.; Khoshkholgh Sima, N.A.; Heydari, G.; Ghaffari, M.R. New strategy to increase oil biodegradation efficiency by selecting isolates with diverse functionality and no antagonistic interactions for bacterial consortia. J. Environ. Chem. Eng. 2021, 9, 106315. [Google Scholar] [CrossRef]
- Eicheelberger, J.W.; Behymer, T.D.; Budde, W.L. METHOD 525.2 Deterimination of Organic Compounds in Drinking Water by Liquid-Solid Extraction and Capillary Column Gas Chromatography/Mass Spectomery; National Eeposure Research Laboratory Office of Research and Development USEPA: Cincinnati, OH, USA, 1995. [Google Scholar]
- Jelihovschi, E.; Faria, J.C.; Allaman, I.B. ScottKnott: A Package for Performing the Scott-Knott Clustering Algorithm in R. Trends Comput. Appl. Math. 2014, 15, 3–17. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 14 January 2023).
- Samuels, G.J.; Dodd, S.; Lu, B.S.; Petrini, O.; Schroers, H.J.; Druzhinina, I.S. The Trichoderma koningii aggregate species. Stud. Mycol. 2006, 56, 67. [Google Scholar] [CrossRef]
- Ramos, D.T.; Lazzarin, H.S.C.; Alvarez, P.J.J.; Vogel, T.M.; Fernandes, M.; do Rosário, M.; Corseuil, H.X. Biodiesel presence in the source zone hinders aromatic hydrocarbons attenuation in a B20-contaminated groundwater. J. Contam. Hydrol. 2016, 193, 48–53. [Google Scholar] [CrossRef]
- Pandey, P.; Pathak, H.; Dave, S. Microbial ecology of hydrocarbon degradation in the soil: A review. Res. J. Environ. Toxicol. 2016, 10, 1–15. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Varjani, S.; Taherzadeh, M.J. A Critical Review on the Ubiquitous Role of Filamentous Fungi in Pollution Mitigation. Curr. Pollut. Reports 2020, 6, 295–309. [Google Scholar] [CrossRef]
- Horel, A.; Schiewer, S. Microbial degradation of different hydrocarbon fuels with mycoremediation of volatiles. Microorganisms 2020, 8, 163. [Google Scholar] [CrossRef]
- Narayanan, M.; Ali, S.S.; El-Sheekh, M. A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: Mechanisms, challenges, and future prospects. J. Environ. Manag. 2023, 334, 117532. [Google Scholar] [CrossRef]
- da Silva, A.F.; Banat, I.M.; Robl, D.; Giachini, A.J. Fungal bioproducts for petroleum hydrocarbons and toxic metals remediation: Recent advances and emerging technologies. Bioprocess Biosyst. Eng. 2023, 46, 393–428. [Google Scholar] [CrossRef]
- Covino, S.; D’Annibale, A.; Stazi, S.R.; Cajthaml, T.; Čvančarová, M.; Stella, T.; Petruccioli, M. Assessment of degradation potential of aliphatic hydrocarbons by autochthonous filamentous fungi from a historically polluted clay soil. Sci. Total Environ. 2015, 505, 545–554. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Oszust, K. Functional diversity of fungal communities in soil contaminated with diesel oil. Front. Microbiol. 2017, 8, 293811. [Google Scholar] [CrossRef]
- Tandon, A.; Fatima, T.; Anshu; Shukla, D.; Tripathi, P.; Srivastava, S.; Singh, P.C. Phosphate solubilization by Trichoderma koningiopsis (NBRI-PR5) under abiotic stress conditions. J. King Saud Univ. Sci. 2020, 32, 791–798. [Google Scholar] [CrossRef]
- Yu, C.; Luo, X. Trichoderma koningiopsis controls Fusarium oxysporum causing damping-off in Pinus massoniana seedlings by regulating active oxygen metabolism, osmotic potential, and the rhizosphere microbiome. Biol. Control 2020, 150, 104352. [Google Scholar] [CrossRef]
- Ulrich, A.; Lerin, L.A.; Camargo, A.F.; Scapini, T.; Diering, N.L.; Bonafin, F.; Gasparetto, I.G.; Confortin, T.C.; Sansonovicz, P.F.; Fabian, R.L.; et al. Alternative bioherbicide based on Trichoderma koningiopsis: Enzymatic characterization and its effect on cucumber plants and soil organism. Biocatal. Agric. Biotechnol. 2021, 36, 102127. [Google Scholar] [CrossRef]
- Aydin, S.; Karaçay, H.A.; Shahi, A.; Gökçe, S.; Ince, B.; Ince, O. Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biol. Rev. 2017, 31, 61–72. [Google Scholar] [CrossRef]
- Al-Turki, A.I. Microbial polycyclic aromatic hydrocarbons degradation in soil. Res. J. Environ. Toxicol. 2009, 3, 1–8. [Google Scholar] [CrossRef]
- Somtrakoon, K.; Suanjit, S.; Pokethitiyook, P.; Kruatrachue, M.; Lee, H.; Upatham, S. Phenanthrene stimulates the degradation of pyrene and fluoranthene by Burkholderia sp. VUN10013. World J. Microbiol. Biotechnol. 2008, 24, 523–531. [Google Scholar] [CrossRef]
- Sierra-Garcia, I.N.; Oliveira, V.M.; Sierra-Garcia, I.N.; de Oliveira, V.M. Microbial Hydrocarbon Degradation: Efforts to Understand Biodegradation in Petroleum Reservoirs. In Biodegradation–Engineering and Technology; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Imron, M.F.; Kurniawan, S.B.; Ismail, N.I.; Abdullah, S.R.S. Future challenges in diesel biodegradation by bacteria isolates: A review. J. Clean. Prod. 2020, 251, 119716. [Google Scholar] [CrossRef]
- Walter, V.; Syldatk, C.; Hausmann, R. Screening concepts for the isolation of biosurfactant producing microorganisms. Adv. Exp. Med. Biol. 2010, 672, 1–13. [Google Scholar] [CrossRef]
- Piegza, M.; Pietrzykowska, J.; Trojan-Piegza, J.; Łaba, W. Biosurfactants from trichoderma filamentous fungi—A preliminary study. Biomolecules 2021, 11, 519. [Google Scholar] [CrossRef]
- Martinho, V.; dos Santos Lima, L.M.; Barros, C.A.; Ferrari, V.B.; Passarini, M.R.Z.; Santos, L.A.; de Souza Sebastianes, F.L.; Lacava, P.T.; de Vasconcellos, S.P. Enzymatic potential and biosurfactant production by endophytic fungi from mangrove forest in Southeastern Brazil. AMB Express 2019, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Pitocchi, R.; Cicatiello, P.; Birolo, L.; Piscitelli, A.; Bovio, E.; Cristina Varese, G.; Giardina, P. Cerato-Platanins from Marine Fungi as Effective Protein Biosurfactants and Bioemulsifiers. Int. J. Mol. Sci. 2020, 21, 2913. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, H.; Vishal, V.; Lal, S. Studies on the morphology, phylogeny, and bioremediation potential of Penicillium citrinum and Paecilomyces variotii (Eurotiales) from oil-contaminated areas. Arch. Microbiol. 2023, 205, 50. [Google Scholar] [CrossRef]
- Al-Hawash, A.B.; Zhang, X.; Ma, F. Removal and biodegradation of different petroleum hydrocarbons using the filamentous fungus Aspergillus sp. RFC-1. Microbiologyopen 2019, 8, e00619. [Google Scholar] [CrossRef]
- Kulkarni, S.S.; Nene, S.N.; Joshi, K.S. Exploring malted barley waste for fungi producing surface active proteins like hydrophobins. SN Appl. Sci. 2020, 2, 1884. [Google Scholar] [CrossRef]
- Rani, M.H.S.; Nandana, R.K.; Khatun, A.; Brindha, V.; Midhun, D.; Gowtham, P.; Mani, S.S.D.; Kumar, S.R.; Aswini, A.; Muthukumar, S. Three strategy rules of filamentous fungi in hydrocarbon remediation: An overview. Biodegradation 2024, 35, 833–861. [Google Scholar] [CrossRef] [PubMed]
- Bezza, F.A.; Chirwa, E.M.N. Pyrene biodegradation enhancement potential of lipopeptide biosurfactant produced by Paenibacillus dendritiformis CN5 strain. J. Hazard. Mater. 2017, 321, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.; Puri, S.; Thakur, I.S.; Kaur, J. Enhanced pyrene degradation by a biosurfactant producing Acinetobacter baumannii BJ5: Growth kinetics, toxicity and substrate inhibition studies. Environ. Technol. Innov. 2020, 19, 100804. [Google Scholar] [CrossRef]
- Rehman, R.; Ali, M.I.; Ali, N.; Badshah, M.; Iqbal, M.; Jamal, A.; Huang, Z. Crude oil biodegradation potential of biosurfactant-producing Pseudomonas aeruginosa and Meyerozyma sp. J. Hazard. Mater. 2021, 418, 126276. [Google Scholar] [CrossRef]
- Zhang, K.; Tao, W.; Lin, J.; Wang, W.; Li, S. Production of the biosurfactant serrawettin W1 by Serratia marcescens S-1 improves hydrocarbon degradation. Bioprocess Biosyst. Eng. 2021, 44, 2541–2552. [Google Scholar] [CrossRef]
- Tripathi, V.; Gaur, V.K.; Dhiman, N.; Gautam, K.; Manickam, N. Characterization and properties of the biosurfactant produced by PAH-degrading bacteria isolated from contaminated oily sludge environment. Environ. Sci. Pollut. Res. Int. 2020, 27, 27268–27278. [Google Scholar] [CrossRef]
- Bertrand, B.; Martínez-Morales, F.; Trejo-Hernández, M.R. Upgrading Laccase Production and Biochemical Properties: Strategies and Challenges. Biotechnol. Prog. 2017, 33, 1015–1034. [Google Scholar] [CrossRef]
- Agarwal, N.; Solanki, V.S.; Gacem, A.; Hasan, M.A.; Pare, B.; Srivastava, A.; Singh, A.; Yadav, V.K.; Yadav, K.K.; Lee, C.; et al. Bacterial Laccases as Biocatalysts for the Remediation of Environmental Toxic Pollutants: A Green and Eco-Friendly Approach—A Review. Water 2022, 14, 4068. [Google Scholar] [CrossRef]
- Zerva, A.; Simić, S.; Topakas, E.; Nikodinovic-Runic, J. Applications of microbial laccases: Patent review of the past decade (2009–2019). Catalysts 2019, 9, 1023. [Google Scholar] [CrossRef]
- Wang, L.; Tan, Y.; Sun, S.; Zhou, L.; Wu, G.; Shao, Y.; Wang, M.; Xin, Z. Improving Degradation of Polycyclic Aromatic Hydrocarbons by Bacillus atrophaeus Laccase Fused with Vitreoscilla Hemoglobin and a Novel Strong Promoter Replacement. Biology 2022, 11, 1129. [Google Scholar] [CrossRef]
- Dai, X.; Lv, J.; Wei, W.; Guo, S. Effects of adding laccase to bacterial consortia degrading heavy oil. Processes 2021, 9, 2025. [Google Scholar] [CrossRef]
- Neifar, M.; Chouchane, H.; Mahjoubi, M.; Jaouani, A.; Cherif, A. Pseudomonas extremorientalis BU118: A new salt-tolerant laccase-secreting bacterium with biotechnological potential in textile azo dye decolourization. 3 Biotech 2016, 6, 107. [Google Scholar] [CrossRef]
- Muthukumarasamy, N.P.; Jackson, B.; Joseph Raj, A.; Sevanan, M. Production of Extracellular Laccase from Bacillus subtilis MTCC 2414 Using Agroresidues as a Potential Substrate. Biochem. Res. Int. 2015, 2015, 765190. [Google Scholar] [CrossRef]
- Galai, S.; Limam, F.; Marzouki, M.N. A new Stenotrophomonas maltophilia strain producing laccase. Use in decolorization of synthetics dyes. Appl. Biochem. Biotechnol. 2009, 158, 416–431. [Google Scholar] [CrossRef]
- Ali, N.S.; Huang, F.; Qin, W.; Yang, T.C. Identification and Characterization of a New Serratia proteamaculans Strain That Naturally Produces Significant Amount of Extracellular Laccase. Front. Microbiol. 2022, 13, 878360. [Google Scholar] [CrossRef]
- Hölker, U.; Dohse, J.; Höfer, M. Extracellular laccases in ascomycetes Trichoderma atroviride and Trichoderma harzianum. Folia Microbiol. 2002, 47, 423–427. [Google Scholar] [CrossRef]
- Balaji, V.; Arulazhagan, P.; Ebenezer, P. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. J. Environ. Biol. 2014, 35, 521–529. [Google Scholar]
- Zafra, G.; Cortés-Espinosa, D.V. Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: A mini review. Environ. Sci. Pollut. Res. 2015, 22, 19426–19433. [Google Scholar] [CrossRef]
- Zehra, A.; Dubey, M.K.; Meena, M.; Aamir, M.; Patel, C.B.; Upadhyay, R.S. Role of Penicillium Species in Bioremediation Processes; Elsevier: Amsterdam, The Netherlands, 2018; pp. 247–260. [Google Scholar] [CrossRef]
- Kapoore, R.V.; Padmaperuma, G.; Maneein, S.; Vaidyanathan, S. Co-culturing microbial consortia: Approaches for applications in biomanufacturing and bioprocessing. Crit. Rev. Biotechnol. 2022, 42, 46–72. [Google Scholar] [CrossRef]
- Qian, X.; Chen, L.; Sui, Y.; Chen, C.; Zhang, W.; Zhou, J.; Dong, W.; Jiang, M.; Xin, F.; Ochsenreither, K. Biotechnological potential and applications of microbial consortia. Biotechnol. Adv. 2020, 40, 107500. [Google Scholar] [CrossRef]
- Tripathi, V.; Gaur, V.K.; Thakur, R.S.; Patel, D.K.; Manickam, N. Assessing the half-life and degradation kinetics of aliphatic and aromatic hydrocarbons by bacteria isolated from crude oil contaminated soil. Chemosphere 2023, 337, 139264. [Google Scholar] [CrossRef]
- Nnabuife, O.O.; Ogbonna, J.C.; Anyanwu, C.; Ike, A.C.; Eze, C.N.; Enemuor, S.C. Mixed bacterial consortium can hamper the efficient degradation of crude oil hydrocarbons. Arch. Microbiol. 2022, 204, 306. [Google Scholar] [CrossRef]
- Khan, S.R.; Nirmal Kumar, J.I.; Nirmal Kumar, R. Enzymatic Evaluation During Biodegradation of Kerosene and Diesel by Locally Isolated Fungi from Petroleum-Contaminated Soils of Western India. Soil Sediment Contam. 2015, 24, 514–525. [Google Scholar] [CrossRef]
- Vipotnik, Z.; Michelin, M.; Tavares, T. Ligninolytic enzymes production during polycyclic aromatic hydrocarbons degradation: Effect of soil pH, soil amendments and fungal co-cultivation. Biodegradation 2021, 32, 193–215. [Google Scholar] [CrossRef]
- Boonchan, S.; Britz, M.L.; Stanley, G.A. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl. Environ. Microbiol. 2000, 66, 1007–1019. [Google Scholar] [CrossRef]
- Zafra, G.; Absalón, Á.E.; Cuevas, M.D.C.; Cortés-Espinosa, D.V. Isolation and selection of a highly tolerant microbial consortium with potential for PAH biodegradation from heavy crude oil-contaminated soils. Water. Air. Soil Pollut. 2014, 225, 1826. [Google Scholar] [CrossRef]
Hydrocarbons (mg/g) * | Area [P05] | Area [P10] | Limit (CONAMA) ** |
---|---|---|---|
Benzene | 8.35 × 10−5 | 0 | 3.00 × 10−5 |
Toluene | 5.17 × 10−4 | 1.92 × 10−6 | 1.40 × 10−4 |
Ethylbenzene | 2.77 × 10−6 | 4.40 × 10−4 | 6.20 × 10−6 |
p-xylene | 5.50 × 10−6 | 1.70 × 10−6 | 1.30 × 10−4 |
o-xylene | 2.94 × 10−6 | 5.20 × 10−4 | 1.30 × 10−4 |
Naphthalene | 7.49 × 10−4 | 6.02 × 10−4 | 1.20 × 10−4 |
Methyl-naphthalene | 5.38 × 10−6 | 1.56 × 10−2 | Ni |
Acenaphthylene | 3.85 × 10−4 | 5.59 × 10−4 | Ni |
Acenaphthene | 8.21 × 10−6 | 7.75 × 10−6 | Ni |
Fluorene | 2.97 × 10−5 | 2.78 × 10−4 | Ni |
Phenanthrene | 5.67 × 10−6 | 1.44 × 10−4 | 3.30 × 10−6 |
Anthracene | 1.91 × 10−5 | 3.90 × 10−4 | 3.90 × 10−5 |
Fluoranthene | 6.64 × 10−5 | 3.98 × 10−4 | Ni |
Pyrene | 6.96 × 10−4 | 7.66 × 10−4 | Ni |
Benzo(a)anthracene | 6.89 × 10−4 | 3.28 × 10−5 | 2.50 × 10−5 |
Chrysene | 5.59 × 10−5 | 2.95 × 10−4 | 8.10 × 10−6 |
Benzo(b)fluoranthene | 0 | 1.07 × 10−4 | Ni |
Benzo(a)pyrene | 2.31 × 10−6 | 3.92 × 10−5 | 8.70 × 10−4 |
Dibenzo(a,h)anthracene | 1.37 × 10−6 | 1.79 × 10−5 | 8.0 × 10−5 |
Benzo(g,h,i)perylene | 5.62 × 10−6 | 6.99 × 10−6 | 5.70 × 10−4 |
Indeno(1,2,3-CD)pyrene | 1.21 × 10−5 | 3.34 × 10−6 | 3.10 × 10−5 |
Strain | Closest Match at NCBI (%) | Access number (GenBank) | ||
---|---|---|---|---|
BenA | CaM | BenA | CaM | |
P05R1 | Penicillium janthinellum (99.80%) | Penicillium janthinellum (100%) | PP942382 | PP942390 |
P05R2 | Trichoderma koningiopsis (99.12%) | Trichoderma koningiopsis (95.88%) | PP942383 | PP988131 |
P05R3 | Penicillium janthinellum (98.07%) | Penicillium janthinellum (97.18%) | PP942384 | PP942391 |
P10R4 | Penicillium pulvillorum (99.19%) | Penicillium pulvillorum (98.72%) | PP942385 | PP942392 |
P10R5 | Penicillium simplicissimum (97.28%) | Penicillium sp. (96.82%) | PP942386 | PP942393 |
P10R6 | Penicillium pulvillorum (98.98%) | Penicillium pulvillorum (99.09%) | PP942387 | PP942394 |
P10R7 | Penicillium pulvillorum (99%) | Penicillium pulvillorum (98.57%) | PP942388 | PP942395 |
Strain | Closest Match at NCBI (%) | Access Number (GenBank) |
---|---|---|
16S rRNA | 16S rRNA | |
P05R8 | Bacillus cereus (97.19%) | PP952416 |
P05R9 | Burkholderia cepacia (98.51%) | PP952605 |
P05R10 | Bacillus sp. (99.33%) | PP952417 |
P05R11 | Stenotrophomonas maltophilia (100%) | PP952606 |
P05R12 | Burkholderia sp. (99.08%) | PP952607 |
P10R13 | Dyella japonica (99.71%) | PP952608 |
P10R14 | Paraburkholderia sp. (100%) | PP952609 |
P10R15 | Burkholderia cepacia (100%) | PP952610 |
P10R16 | Burkholderia sp. (100%) | PP952611 |
P10R17 | Burkholderia cepacia (98.98%) | PP952612 |
P10R18 | Bacillus cereus (99.22%) | PP952613 |
P10R19 | Serratia marcescens (98.95%) | PP952418 |
Bacteria vs. Fungus | Bacteria vs. Bacteria | Fungus vs. Fungus | |||
---|---|---|---|---|---|
Strains | Inhibition | Strains | Inhibition | Strains | Inhibition |
P05R1–P05R8 | (−) | P05R9–P05R8 | (−) | P05R1–P05R2 | (−) |
P05R1–P05R9 | (+) | P05R9–P05R11 | (+) | P05R1–P05R3 | (+) |
P05R1–P05R11 | (+) | P05R9–P05R12 | (+) | P05R1–P10R5 | (+ +) |
P05R1–P05R12 | (−) | P05R9–P10R13 | (−) | P05R1–P10R7 | (+ +) |
P05R1–P10R13 | (−) | P05R8–P05R11 | (+) | P05R2–P05R3 | (−) |
P05R1–P10R19 | (−) | P05R8–P10R13 | (−) | P05R2–P10R5 | (+) |
P05R2–P05R8 | (−) | P05R11–P10R13 | (−) | P05R2–P10R7 | (+) |
P05R2–P05R9 | (−) | P05R12–P05R8 | (+) | P05R3–P10R5 | (−) |
P05R2–P05R11 | (+) | P05R12–P05R11 | (−) | P05R3–P10R7 | (−) |
P05R2–P05R12 | (+ +) | P05R12–P10R13 | (−) | P10R5–P10R7 | (−) |
P05R2–P10R13 | (−) | P10R19–P05R9 | (−) | ||
P05R2–P10R19 | (−) | P10R19–P05R12 | (−) | ||
P05R3–P05R8 | (+) | P10R19–P05R8 | (−) | ||
P05R3–P05R9 | (+) | P10R19–P05R11 | (−) | ||
P05R3–P05R11 | (+) | P10R19–P10R13 | (−) | ||
P05R3–P05R12 | (+) | ||||
P05R3–P10R13 | (−) | ||||
P05R3–P10R19 | (−) | ||||
P10R5–P05R8 | (+) | ||||
P10R5–P05R9 | (+ +) | ||||
P10R5–P05R11 | (−) | ||||
P10R5–P05R12 | (+ +) | ||||
P10R5–P10R13 | (−) | ||||
P10R5–P10R19 | (−) | ||||
P10R7–P05R8 | (−) | ||||
P10R7–P05R9 | (+ +) | ||||
P10R7–P05R11 | (−) | ||||
P10R7–P05R12 | (+) | ||||
P10R7–P10R13 | (+) | ||||
P10R7–P05R16 | (−) | ||||
P10R7–P10R19 | (−) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva Monteiro, J.P.; da Silva, A.F.; Delgado Duarte, R.T.; José Giachini, A. Exploring Novel Fungal–Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation. Toxics 2024, 12, 913. https://doi.org/10.3390/toxics12120913
Silva Monteiro JP, da Silva AF, Delgado Duarte RT, José Giachini A. Exploring Novel Fungal–Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation. Toxics. 2024; 12(12):913. https://doi.org/10.3390/toxics12120913
Chicago/Turabian StyleSilva Monteiro, João Paulo, André Felipe da Silva, Rubens Tadeu Delgado Duarte, and Admir José Giachini. 2024. "Exploring Novel Fungal–Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation" Toxics 12, no. 12: 913. https://doi.org/10.3390/toxics12120913
APA StyleSilva Monteiro, J. P., da Silva, A. F., Delgado Duarte, R. T., & José Giachini, A. (2024). Exploring Novel Fungal–Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation. Toxics, 12(12), 913. https://doi.org/10.3390/toxics12120913