Neurotransmitter Metabolic Disturbance in Methamphetamine Abusers: Focus on Tryptophan and Tyrosine Metabolic Pathways
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population and Serum Sample Collection
2.2. Neurotransmitter Extraction
2.3. UHPLC-MS/MS Analysis
2.4. Neurotransmitter Analysis
2.5. Multivariate Analysis
3. Results
3.1. Analysis of Blood Biochemical Indexes and Multivariate Statistical Analysis of NTs and Metabolites in Serum
3.2. Analysis of Differential NTs and Neuroactive Metabolites in the TRP Pathway
3.3. Analysis of Differential NTs and Neuroactive Metabolites in the TYR–Dopamine Pathway and Other Amino Acid Neurotransmitters
3.4. The Predictive Potential of the Neurotransmitters in Distinguishing METH Abusers
3.5. Gender-Specific Changes in Serum NTs and Neuroactive Metabolites Between METH Abusers and Controls
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, B.; Compton, W.M.; Jones, C.M.; Einstein, E.B.; Volkow, N.D. Methamphetamine Use, Methamphetamine Use Disorder, and Associated Overdose Deaths Among US Adults. JAMA Psychiatry 2021, 78, 1329–1342. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-C.; Chang, H.-M.; Huang, M.-C.; Pan, C.-H.; Su, S.-S.; Tsai, S.-Y.; Chen, C.-C.; Kuo, C.-J. All-Cause and Suicide Mortality among People with Methamphetamine Use Disorder: A Nation-Wide Cohort Study in Taiwan. Addiction 2021, 116, 3127–3138. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, M.; Chen, J.; Lou, X.; Zhang, H.; Li, M.; Cheng, J.; Ma, T.; Xiong, J.; Gao, R.; et al. Key Roles of Autophagosome/Endosome Maturation Mediated by Syntaxin17 in Methamphetamine-Induced Neuronal Damage in Mice. Mol. Med. 2024, 30, 4. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, L.; Yang, J.; Liu, J.; Li, J.; Liu, Y.; Li, X.; Chen, L.; Hsu, C.; Zeng, J.; et al. Gut Microbiota-Derived Short-Chain Fatty Acids Ameliorate Methamphetamine-Induced Depression- and Anxiety-like Behaviors in a Sigmar-1 Receptor-Dependent Manner. Acta Pharm. Sin. B 2023, 13, 4801–4822. [Google Scholar] [CrossRef] [PubMed]
- Prakash, M.D.; Tangalakis, K.; Antonipillai, J.; Stojanovska, L.; Nurgali, K.; Apostolopoulos, V. Methamphetamine: Effects on the Brain, Gut and Immune System. Pharmacol. Res. 2017, 120, 60–67. [Google Scholar] [CrossRef]
- Jayanthi, S.; Daiwile, A.P.; Cadet, J.L. Neurotoxicity of Methamphetamine: Main Effects and Mechanisms. Exp. Neurol. 2021, 344, 113795. [Google Scholar] [CrossRef] [PubMed]
- Miura, H.; Ozaki, N.; Sawada, M.; Isobe, K.; Ohta, T.; Nagatsu, T. A Link between Stress and Depression: Shifts in the Balance between the Kynurenine and Serotonin Pathways of Tryptophan Metabolism and the Etiology and Pathophysiology of Depression. Stress 2008, 11, 198–209. [Google Scholar] [CrossRef]
- Kurian, M.A.; Gissen, P.; Smith, M.; Heales, S.J.; Clayton, P.T. The Monoamine Neurotransmitter Disorders: An Expanding Range of Neurological Syndromes. Lancet Neurol. 2011, 10, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Morales, M. The Brain on Drugs: From Reward to Addiction. Cell 2015, 162, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.A.; Fairburn, C.G.; Cowen, P.J. Relapse of Depression after Rapid Depletion of Tryptophan. Lancet 1997, 349, 915–919. [Google Scholar] [CrossRef]
- Leyton, M.; Young, S.N.; Blier, P.; Ellenbogen, M.A.; Palmour, R.M.; Ghadirian, A.-M.; Benkelfat, C. The Effect of Tryptophan Depletion on Mood in Medication-Free, Former Patients with Major Affective Disorder. Neuropsychopharmacology 1997, 16, 294–297. [Google Scholar] [CrossRef]
- Xue, C.; Li, G.; Zheng, Q.; Gu, X.; Shi, Q.; Su, Y.; Chu, Q.; Yuan, X.; Bao, Z.; Lu, J.; et al. Tryptophan Metabolism in Health and Disease. Cell Metab. 2023, 35, 1304–1326. [Google Scholar] [CrossRef]
- Cheng, Z.; Peng, Y.; Wen, J.; Chen, W.; Pan, W.; Xu, X.; Lu, X.; Cai, Q.; Ge, F.; Fan, Y.; et al. Sex-Specific Metabolic Signatures in Methamphetamine Addicts. Addict. Biol. 2023, 28, e13255. [Google Scholar] [CrossRef]
- Wang, T.; Xu, C.; Xu, S.; Gao, L.; Blaženović, I.; Ji, J.; Wang, J.; Sun, X. Untargeted Metabolomics Analysis by Gas Chromatography/Time-of-flight Mass Spectrometry of Human Serum from Methamphetamine Abusers. Addict. Biol. 2021, 26, e13062. [Google Scholar] [CrossRef] [PubMed]
- Michal, M.; Schulz, A.; Wild, P.S.; Koeck, T.; Münzel, T.; Schuster, A.K.; Strauch, K.; Lackner, K.; Süssmuth, S.D.; Niessen, H.G.; et al. Tryptophan Catabolites and Depression in the General Population: Results from the Gutenberg Health Study. BMC Psychiatry 2023, 23, 27. [Google Scholar] [CrossRef]
- Davidson, M.; Rashidi, N.; Nurgali, K.; Apostolopoulos, V. The Role of Tryptophan Metabolites in Neuropsychiatric Disorders. Int. J. Mol. Sci. 2022, 23, 9968. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wu, J.; Zhu, P.; Xie, H.; Lu, L.; Bai, W.; Pan, W.; Shi, R.; Ye, J.; Xia, B.; et al. Tryptophan-Rich Diet Ameliorates Chronic Unpredictable Mild Stress Induced Depression- and Anxiety-like Behavior in Mice: The Potential Involvement of Gut-Brain Axis. Food Res. Int. 2022, 157, 111289. [Google Scholar] [CrossRef]
- Siopi, E.; Chevalier, G.; Katsimpardi, L.; Saha, S.; Bigot, M.; Moigneu, C.; Eberl, G.; Lledo, P.-M. Changes in Gut Microbiota by Chronic Stress Impair the Efficacy of Fluoxetine. Cell Rep. 2020, 30, 3682–3690.e6. [Google Scholar] [CrossRef] [PubMed]
- Meneses, A. 5-HT System and Cognition. Neurosci. Biobehav. Rev. 1999, 23, 1111–1125. [Google Scholar] [CrossRef]
- Ma, J.; Wang, R.; Chen, Y.; Wang, Z.; Dong, Y. 5-HT Attenuates Chronic Stress-Induced Cognitive Impairment in Mice through Intestinal Flora Disruption. J. NeuroInflamm. 2023, 20, 23. [Google Scholar] [CrossRef] [PubMed]
- Ostapiuk, A.; Urbanska, E.M. Kynurenic Acid in Neurodegenerative Disorders-Unique Neuroprotection or Double-Edged Sword? CNS Neurosci. Ther. 2022, 28, 19–35. [Google Scholar] [CrossRef]
- Zwilling, D.; Huang, S.-Y.; Sathyasaikumar, K.V.; Notarangelo, F.M.; Guidetti, P.; Wu, H.-Q.; Lee, J.; Truong, J.; Andrews-Zwilling, Y.; Hsieh, E.W.; et al. Kynurenine 3-Monooxygenase Inhibition in Blood Ameliorates Neurodegeneration. Cell 2011, 145, 863–874. [Google Scholar] [CrossRef]
- Hartai, Z.; Juhász, A.; Rimanóczy, A.; Janáky, T.; Donkó, T.; Dux, L.; Penke, B.; Tóth, G.K.; Janka, Z.; Kálmán, J. Decreased Serum and Red Blood Cell Kynurenic Acid Levels in Alzheimer’s Disease. Neurochem. Int. 2007, 50, 308–313. [Google Scholar] [CrossRef]
- Chen, L.-J.; Zhi, X.; Zhang, K.-K.; Wang, L.-B.; Li, J.-H.; Liu, J.-L.; Xu, L.-L.; Yoshida, J.S.; Xie, X.-L.; Wang, Q. Escalating Dose-Multiple Binge Methamphetamine Treatment Elicits Neurotoxicity, Altering Gut Microbiota and Fecal Metabolites in Mice. Food Chem. Toxicol. 2021, 148, 111946. [Google Scholar] [CrossRef] [PubMed]
- Ning, T.; Gong, X.; Xie, L.; Ma, B. Gut Microbiota Analysis in Rats with Methamphetamine-Induced Conditioned Place Preference. Front. Microbiol. 2017, 8, 1620. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Fu, X.; Hao, W.; Xiang, X.; Liu, T.; Yang, B.-Z.; Zhang, X. Gut Dysbiosis Associated with the Rats’ Responses in Methamphetamine-Induced Conditioned Place Preference. Addict. Biol. 2021, 26, e12975. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, Y.; Kong, Y.; Ye, T.; Yu, Q.; Kumaran Satyanarayanan, S.; Su, K.-P.; Liu, J. Microbiota-Derived Metabolite Indoles Induced Aryl Hydrocarbon Receptor Activation and Inhibited Neuroinflammation in APP/PS1 Mice. Brain Behav. Immun. 2022, 106, 76–88. [Google Scholar] [CrossRef]
- Kim, C.-S.; Jung, S.; Hwang, G.-S.; Shin, D.-M. Gut Microbiota Indole-3-Propionic Acid Mediates Neuroprotective Effect of Probiotic Consumption in Healthy Elderly: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial and in Vitro Study. Clin. Nutr. 2023, 42, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Wang, J.; Wu, L.; Lu, H.; Wang, Z.; Yu, P.; Xiao, H.; Gao, R.; Yu, J. Perinatal Exposure to Bisphenol A Causes a Disturbance of Neurotransmitter Metabolic Pathways in Female Mouse Offspring: A Focus on the Tryptophan and Dopamine Pathways. Chemosphere 2020, 254, 126715. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhong, W.; Zhou, Z.; Zhang, Q. Simultaneous Determination of Tryptophan and Its 31 Catabolites in Mouse Tissues by Polarity Switching UHPLC-SRM-MS. Anal. Chim. Acta 2018, 1037, 200–210. [Google Scholar] [CrossRef]
- Deng, Y.; Zhou, M.; Wang, J.; Yao, J.; Yu, J.; Liu, W.; Wu, L.; Wang, J.; Gao, R. Involvement of the Microbiota-Gut-Brain Axis in Chronic Restraint Stress: Disturbances of the Kynurenine Metabolic Pathway in Both the Gut and Brain. Gut Microbes 2021, 13, 1–16. [Google Scholar] [CrossRef]
- Shanks, R.A.; Ross, J.M.; Doyle, H.H.; Helton, A.K.; Picou, B.N.; Schulz, J.; Tavares, C.; Bryant, S.; Dawson, B.L.; Lloyd, S.A. Adolescent Exposure to Cocaine, Amphetamine, and Methylphenidate Cross-Sensitizes Adults to Methamphetamine with Drug- and Sex-Specific Effects. Behav. Brain Res. 2015, 281, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Mayo, L.M.; Paul, E.; DeArcangelis, J.; Van Hedger, K.; de Wit, H. Gender Differences in the Behavioral and Subjective Effects of Methamphetamine in Healthy Humans. Psychopharmacology 2019, 236, 2413–2423. [Google Scholar] [CrossRef]
- Savitz, J.; Drevets, W.C.; Wurfel, B.E.; Ford, B.N.; Bellgowan, P.S.F.; Victor, T.A.; Bodurka, J.; Teague, T.K.; Dantzer, R. Reduction of Kynurenic Acid to Quinolinic Acid Ratio in Both the Depressed and Remitted Phases of Major Depressive Disorder. Brain Behav. Immun. 2015, 46, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Grigoriadis, S.; Erlick Robinson, G. Gender Issues in Depression. Ann. Clin. Psychiatry 2007, 19, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Bogan, K.L.; Brenner, C. Nicotinic Acid, Nicotinamide, and Nicotinamide Riboside: A Molecular Evaluation of NAD+ Precursor Vitamins in Human Nutrition. Annu. Rev. Nutr. 2008, 28, 115–130. [Google Scholar] [CrossRef]
- Song, S.B.; Park, J.S.; Chung, G.J.; Lee, I.H.; Hwang, E.S. Diverse Therapeutic Efficacies and More Diverse Mechanisms of Nicotinamide. Metabolomics 2019, 15, 137. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.J.; Bernier, M.; Aon, M.A.; Cortassa, S.; Kim, E.Y.; Fang, E.F.; Palacios, H.H.; Ali, A.; Navas-Enamorado, I.; Di Francesco, A. Nicotinamide Improves Aspects of Healthspan, but Not Lifespan, in Mice. Cell Metab. 2018, 27, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.S.; Song, S.B. Possible Adverse Effects of High-Dose Nicotinamide: Mechanisms and Safety Assessment. Biomolecules 2020, 10, 687. [Google Scholar] [CrossRef]
- Katsumi, S.; Hisako, S.; Hiroshi, T. Fate of Nicotinamide Differs Due to an Intake of Nicotinamide. Biosci. Biotech. Biochem. 1996, 60, 1204–1206. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Chu, J.; Gu, Y.; Shi, H.; Zhang, R.; Wang, L.; Chen, J.; Shen, L.; Yu, P.; Chen, X.; et al. Serum N1-Methylnicotinamide Is Associated With Coronary Artery Disease in Chinese Patients. J. Am. Heart Assoc. 2017, 6, e004328. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Fan, Y.; Peng, Y.; Pan, W.; Du, D.; Xu, X.; Li, N.; He, T.; Nie, J.; Shi, P.; et al. Gegen-Qinlian Decoction Alleviates Anxiety-like Behaviors in Methamphetamine-Withdrawn Mice by Regulating Akkermansia and Metabolism. Colon. Chin. Med. 2023, 18, 85. [Google Scholar] [CrossRef]
- Benrahla, D.E.; Mohan, S.; Trickovic, M.; Castelli, F.A.; Alloul, G.; Sobngwi, A.; Abdiche, R.; Kieser, S.; Demontant, V.; Trawinski, E.; et al. An Orally Active Carbon Monoxide-Releasing Molecule Enhances Beneficial Gut Microbial Species to Combat Obesity in Mice. Redox Biol. 2024, 72, 103153. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, J.; Illiano, P.; Sotnikova, T.D.; Gainetdinov, R.R.; Beaulieu, J.M.; Hébert, M. The Electroretinogram as a Biomarker of Central Dopamine and Serotonin: Potential Relevance to Psychiatric Disorders. Biol. Psychiatry 2014, 75, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Matsuzawa, D.; Ishii, D.; Tomizawa, H.; Sajiki, J.; Shimizu, E. Perinatal Exposure to Bisphenol A Enhances Contextual Fear Memory and Affects the Serotoninergic System in Juvenile Female Mice. Horm. Behav. 2013, 63, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Saika, S.; Amano, K.; Shimizu, E.; Sajiki, J. Changes in Brain Monoamine Levels in Neonatal Rats Exposed to Bisphenol A at Low Doses. Chemosphere 2010, 78, 894–906. [Google Scholar] [CrossRef]
- Petroff, O.A.C. Book Review: GABA and Glutamate in the Human Brain. Neuroscientist 2002, 8, 562–573. [Google Scholar] [CrossRef]
- Qi, J.; Han, W.Y.; Yang, J.Y.; Wang, L.H.; Dong, Y.X.; Wang, F.; Song, M.; Wu, C.F. Oxytocin Regulates Changes of Extracellular Glutamate and GABA Levels Induced by Methamphetamine in the Mouse Brain. Addict. Biol. 2012, 17, 758–769. [Google Scholar] [CrossRef]
Controls (n = 79) | METH Abusers (n = 78) | p Value | |
---|---|---|---|
Age (years) | 38.10 ± 8.68 | 38.09 ± 8.79 | 0.9632 |
Gender (n) | |||
Male | 61 | 59 | — |
Female | 18 | 19 | — |
Biochemical indexes | |||
RBC (×1012/L) | 4.95 ± 0.39 | 4.81 ± 0.48 | 0.0697 |
Hb (g/L) | 148.9 ± 13.87 | 140.4 ± 19.48 | 0.0032 |
WBC (×1012/L) | 6.86 ± 1.51 | 8.51 ± 2.31 | <0.0001 |
PLT (×109/L) | 209.8 ± 64.33 | 260.87 ± 66.88 | <0.0001 |
NEUT (%) | 55.9 ± 6.34 | 68.39 ± 8.41 | <0.0001 |
LYMPH (%) | 36.01 ± 6.1 | 24.96 ± 7.25 | <0.0001 |
EO (%) | 2.31 ± 1.85 | 2.02 ± 1.26 | 0.2922 |
BA (%) | 0.38 ± 0.24 | 0.33 ± 0.14 | 0.1827 |
ALT (U/L) | 29.94 ± 23.25 | 19.81 ± 14.03 | 0.0014 |
AST (U/L) | 22.38 ± 7.610 | 18.16 ± 8.91 | 0.0018 |
BUN (mmol/L) | 5.4 ± 1.08 | 4.24 ± 1.52 | <0.0001 |
FBS (mmol/L) | 5.27 ± 0.75 | 6.51 ± 2.30 | <0.0001 |
Tbil (μmmol/L) | 15.63 ± 5.65 | 11.66 ± 4.77 | <0.0001 |
Dbi (μmmol/L) | 4.92 ± 1.91 | 4.62 ± 1.99 | 0.3412 |
Cr (μmmol/L) | 73.05 ± 15.72 | 59.91 ± 13.71 | <0.0001 |
RBP (μg/ml) | 52.15 ± 10.25 | 34.40 ± 10.83 | <0.0001 |
TG (mmol/L) | 1.66 ± 0.83 | 1.48 ± 0.80 | 0.1957 |
CHOL (mmol/L) | 4.98 ± 0.77 | 4.17 ± 0.89 | <0.0001 |
Gender | Metabolites | FC | VIP | p Value | Changes a |
---|---|---|---|---|---|
Male | 5-HT | 14.019 | 1.555 | <0.001 | up |
GLU | 2.345 | 2.440 | <0.001 | up | |
NAM | 2.891 | 1.434 | <0.001 | up | |
ASP | 1.622 | 2.036 | <0.001 | up | |
5-HIAA | 1.502 | 1.517 | <0.001 | up | |
5-HTP | 3.800 | <0.8 | <0.001 | up | |
NAS | 0.667 < FC < 1.5 | 1.199 | <0.001 | up | |
TRP | 0.474 | 1.456 | <0.001 | down | |
TRM | 0.553 | 1.003 | <0.01 | down | |
L-DOPA | 0.123 | 2.383 | <0.001 | down | |
IPYA | 0.414 | 0.995 | <0.001 | down | |
NE | 0.426 | 1.819 | <0.001 | down | |
MLT | 0.667 < FC < 1.5 | 1.281 | <0.001 | down | |
3-HAA | 0.667 < FC < 1.5 | 1.075 | <0.001 | down | |
TYR | 0.667 < FC < 1.5 | <0.8 | <0.01 | down | |
ILA | 0.667 < FC < 1.5 | <0.8 | <0.05 | down | |
IArA | 0.667 < FC < 1.5 | <0.8 | <0.05 | down | |
MHPG | 0.667 < FC < 1.5 | 0.818 | <0.05 | down | |
IAld | 0.667 < FC < 1.5 | <0.8 | <0.05 | down | |
IS | 0.667 < FC < 1.5 | <0.8 | <0.05 | down | |
VMA | 0.667 < FC < 1.5 | <0.8 | <0.05 | down | |
Female | GLU | 2.884 | 2.273 | <0.001 | up |
5-HT | 10.101 | 1.675 | <0.01 | up | |
NAM | 2.835 | 1.416 | <0.01 | up | |
ASP | 0.667 < FC < 1.5 | 1.514 | <0.01 | up | |
L-DOPA | 0.123 | 2.233 | <0.001 | down | |
3-HAA | 0.581 | 1.528 | <0.001 | down | |
IS | 0.438 | 1.447 | <0.01 | down | |
MLT | 0.667 < FC < 1.5 | 1.606 | <0.001 | down | |
MHPG | 0.667 < FC < 1.5 | 1.663 | <0.001 | down | |
KYN | 0.667 < FC < 1.5 | 1.249 | <0.01 | down | |
TYR | 0.667 < FC < 1.5 | 0.965 | <0.05 | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wu, W.; Liu, J.; Hu, M.; Cheng, J.; Xiong, J.; Chen, X.; Gao, R.; Wang, J. Neurotransmitter Metabolic Disturbance in Methamphetamine Abusers: Focus on Tryptophan and Tyrosine Metabolic Pathways. Toxics 2024, 12, 912. https://doi.org/10.3390/toxics12120912
Wang X, Wu W, Liu J, Hu M, Cheng J, Xiong J, Chen X, Gao R, Wang J. Neurotransmitter Metabolic Disturbance in Methamphetamine Abusers: Focus on Tryptophan and Tyrosine Metabolic Pathways. Toxics. 2024; 12(12):912. https://doi.org/10.3390/toxics12120912
Chicago/Turabian StyleWang, Xi, Weilan Wu, Jing Liu, Miaoyang Hu, Jie Cheng, Jianping Xiong, Xufeng Chen, Rong Gao, and Jun Wang. 2024. "Neurotransmitter Metabolic Disturbance in Methamphetamine Abusers: Focus on Tryptophan and Tyrosine Metabolic Pathways" Toxics 12, no. 12: 912. https://doi.org/10.3390/toxics12120912
APA StyleWang, X., Wu, W., Liu, J., Hu, M., Cheng, J., Xiong, J., Chen, X., Gao, R., & Wang, J. (2024). Neurotransmitter Metabolic Disturbance in Methamphetamine Abusers: Focus on Tryptophan and Tyrosine Metabolic Pathways. Toxics, 12(12), 912. https://doi.org/10.3390/toxics12120912