Neurobehavioral Performance in Preschool Children Exposed Postnatally to Organophosphates in Agricultural Regions, Northern Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Settings and Population
2.2. Interviews
2.3. Measurement of Urinary DAP Metabolites
2.4. Neurobehavioral Tests
2.5. Data Analysis
3. Results
3.1. Socio-Demographic Characteristics and Pesticide Exposure
3.2. Urinary Levels of DAP Metabolites
3.3. Neurobehavioral Performance
3.4. Factors Associated with Urinary DAP Metabolites in Preschool Children
3.5. Association Between Urinary DAP Metabolites and Neurobehavioral Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buralli, R.J.; Marques, R.C.; Dórea, J.G. Pesticide effects on children’s growth and neurodevelopment. Curr. Opin. Environ. Sci. Health 2023, 31, 100417. [Google Scholar] [CrossRef]
- Etzel, R.A.; Landrigan, P.J. (Eds.) Children’s exquisite vulnerability to environmental exposures. In Textbook of Children’s Environmental Health, 2nd ed.; Oxford Academic: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- International Trade Administration. Thailand—Country Commercial Guide. 2024. Available online: https://www.trade.gov/country-commercial-guides/thailand-agriculture (accessed on 10 September 2024).
- Vanwambeke, S.O.; Somboon, P.; Lambin, E.F. Rural transformation and land use change in northern Thailand. J. Land Use Sci. 2007, 2, 1–29. [Google Scholar] [CrossRef]
- Laohaudomchok, W.; Nankongnab, N.; Siriruttanapruk, S.; Klaimala, P.; Lianchamroon, W.; Ousap, P.; Jatiket, M.; Kajitvichyanukul, P.; Kitana, N.; Siriwong, W.; et al. Pesticide use in Thailand: Current situation, health risks, and gaps in research and policy. Hum. Ecol. Risk Assess. 2021, 27, 1147–1169. [Google Scholar] [CrossRef]
- Suarez-Lopez, J.R.; Nazeeh, N.; Kayser, G.; Suárez-Torres, J.; Checkoway, H.; López-Paredes, D.; Jacobs, D.R., Jr.; Cruz, F. Residential proximity to greenhouse crops and pesticide exposure (via acetylcholinesterase activity) assessed from childhood through adolescence. Environ. Res. 2020, 188, 109728. [Google Scholar] [CrossRef]
- Roberts, J.R.; Karr, C.J. Council on Environmental Health. Pesticide exposure in children. Pediatrics 2012, 130, e1765–e1788. [Google Scholar] [CrossRef]
- Šulc, L.; Figueiredo, D.; Huss, A.; Kalina, J.; Gregor, P.; Janoš, T.; Šenk, P.; Dalecká, A.; Andrýsková, L.; Kodeš, V.; et al. Current-use pesticide exposure pathways in Czech adults and children from the CELSPAC-SPECIMEn cohort. Environ. Int. 2023, 181, 108297. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Alsayegh, A.A.; Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Saati, A.A.; Wahab, S.; Elbendary, E.Y.; Kambal, N.; et al. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024, 10, e29128. [Google Scholar] [CrossRef]
- Sapbamrer, R.; Hongsibsong, S.; Khacha-Ananda, S. Urinary organophosphate metabolites and oxidative stress in children living in agricultural and urban communities. Environ. Sci. Pollut. Res. Int. 2020, 27, 25715–25726. [Google Scholar] [CrossRef]
- Alkon, A.; Gunier, R.B.; Hazard, K.; Castorina, R.; Hoffman, P.D.; Scott, R.P.; Anderson, K.A.; Bradman, A. Preschool-age children’s pesticide exposures in child care centers and at home in Northern California. J. Pediatr. Health Care 2022, 36, 34–45. [Google Scholar] [CrossRef]
- Dórea, J.G. Exposure to environmental neurotoxic substances and neurodevelopment in children from Latin America and the Caribbean. Environ. Res. 2021, 192, 110199. [Google Scholar] [CrossRef]
- Sapbamrer, R.; Hongsibsong, S. Effects of prenatal and postnatal exposure to organophosphate pesticides on child neurodevelopment in different age groups: A systematic review. Environ. Sci. Pollut. Res. Int. 2019, 26, 18267–18290. [Google Scholar] [CrossRef]
- González-Alzaga, B.; Romero-Molina, D.; López-Flores, I.; Giménez-Asensio, M.J.; Hernández, A.F.; Lacasaña, M. Urinary levels of organophosphate pesticides and predictors of exposure in pre-school and school children living in agricultural and urban communities from south Spain. Environ. Res. 2020, 186, 109459. [Google Scholar] [CrossRef]
- Wager, J.L.; Thompson, J.A. Development and child health in a world of synthetic chemicals. Pediatr. Res. 2024. [Google Scholar] [CrossRef]
- Prapamontol, T.; Sutan, K.; Laoyang, S.; Hongsibsong, S.; Lee, G.; Yano, Y.; Hunter, R.E.; Ryan, P.B.; Barr, D.B.; Panuwet, P. Cross-validation of gas chromatography-flame photometric detection and gas chromatography-mass spectrometry methods for measuring dialkylphosphate metabolites of organophosphate pesticides in human urine. Int. J. Hyg. Environ. Health 2014, 217, 554–566. [Google Scholar] [CrossRef]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Rohlman, D.S.; Lasarev, M.; Anger, W.K.; Scherer, J.; Stupfel, J.; McCauley, L. Neurobehavioral performance of adult and adolescent agricultural workers. Neurotoxicology 2007, 28, 374–380. [Google Scholar] [CrossRef]
- Rohlman, D.S.; Lucchini, R.; Anger, W.K.; Bellinger, D.C.; van Thriel, C. Neurobehavioral testing in human risk assessment. Neurotoxicology 2008, 29, 556–567. [Google Scholar] [CrossRef]
- Rohitrattana, J.; Siriwong, W.; Suittiwan, P.; Robson, M.G.; Strickland, P.O.; Rohlman, D.S.; Fiedler, N. Adaptation of a neurobehavioral test battery for Thai children. Rocz. Państwowego Zakładu Hig. 2014, 65, 205–212. [Google Scholar]
- Beery, K.E.; Beery, N.A. The Beery-Buktenica Developmental Test of Visual-Motor Integration (Manual); Pearson Assessment: Bloomington, IN, USA, 2004. [Google Scholar]
- Spencer, T.D.; Kruse, L. Beery-Buktenica developmental test of visual-motor integration. In Encyclopedia of Autism Spectrum Disorders; Volkmar, F.R., Ed.; Springer: New York, NY, USA, 2013; pp. 400–404. [Google Scholar] [CrossRef]
- Thongjan, N.; Prapamontol, T.; Liwsrisakun, C.; Chairuangsri, S.; Hongsibsong, S.; Norbäck, D. Organophosphate insecticide exposure and respiratory symptoms among school children in Northern Thailand: Interaction by biomass burning, dampness, and season. Sci. Total Environ. 2024, 949, 175122. [Google Scholar] [CrossRef]
- Wongta, A.; Sawang, N.; Tongjai, P.; Jatiket, M.; Hongsibsong, S. The assessment of organophosphate pesticide exposure among school children in four regions of Thailand: Analysis of dialkyl phosphate metabolites in students’ urine and organophosphate pesticide residues in vegetables for school lunch. Toxics 2022, 10, 434. [Google Scholar] [CrossRef]
- The Office of Agricultural Regulation Department, Department of Agriculture. Statistics of Hazardous Chemicals Imported into Thailand. 2024. Available online: https://www.doa.go.th/ard/?page_id=386 (accessed on 10 July 2024).
- Holme, F.; Thompson, B.; Holte, S.; Vigoren, E.M.; Espinoza, N.; Ulrich, A.; Griffith, W.; Faustman, E.M. The role of diet in children’s exposure to organophosphate pesticides. Environ. Res. 2016, 147, 133–140. [Google Scholar] [CrossRef]
- Pududu, B.A.; Rother, H.A. Whose jurisdiction is home contamination? Para-occupational ‘take-home’ herbicide residue exposure risks among forestry workers’ families in South Africa. Int. J. Environ. Res. Public Health 2021, 18, 10341. [Google Scholar] [CrossRef]
- Kalweit, A.; Herrick, R.F.; Flynn, M.A.; Spengler, J.; Berko, J.K.; Levy, J.I.; Ceballos, D.M. Eliminating take-home exposures: Recognizing the role of occupational health and safety in broader community health. Ann. Work. Expo. Health 2020, 64, 236–249. [Google Scholar] [CrossRef]
- Khan, K.M.; Gaine, M.E.; Daniel, A.R.; Chilamkuri, P.; Rohlman, D.S. Organophosphorus pesticide exposure from house dust and parent-reported child behavior in Latino children from an orchard community. Neurotoxicology 2024, 102, 29–36. [Google Scholar] [CrossRef]
- Simaremare, S.R.S.; Hung, C.C.; Yu, T.H.; Hsieh, C.J.; Yiin, L.M. Association between pesticides in house dust and residential proximity to farmland in a rural region of Taiwan. Toxics 2021, 9, 180. [Google Scholar] [CrossRef]
- Butler-Dawson, J.; Galvin, K.; Thorne, P.S.; Rohlman, D.S. Organophosphorus pesticide exposure and neurobehavioral performance in Latino children living in an orchard community. Neurotoxicology 2016, 53, 165–172. [Google Scholar] [CrossRef]
- López-Gálvez, N.; Wagoner, R.; Quirós-Alcalá, L.; Ornelas Van Horne, Y.; Furlong, M.; Avila, E.; Beamer, P. Systematic literature review of the take-home route of pesticide exposure via biomonitoring and environmental monitoring. Int. J. Environ. Res. Public Health 2019, 16, 2177. [Google Scholar] [CrossRef]
- Carroquino, M.J.; Posada, M.; Landrigan, P.J. Environmental toxicology: Children at risk. Environ. Toxicol. 2012, 4, 239–291. [Google Scholar] [CrossRef]
- Kordas, K.; Cantoral, A.; Desai, G.; Halabicky, O.; Signes-Pastor, A.J.; Tellez-Rojo, M.M.; Peterson, K.E.; Karagas, M.R. Dietary exposure to toxic elements and the health of young children: Methodological considerations and data needs. J. Nutr. 2022, 152, 2572–2581. [Google Scholar] [CrossRef]
- Xu, W.; Dong, Y.; Liu, S.; Hu, F.; Cai, Y. Association between organophosphorus pesticides and obesity among American adults. Environ. Health 2024, 23, 65. [Google Scholar] [CrossRef]
- Siripunyo, T. Determination of organophosphate pesticides residues in fruits, vegetables and health risk assessment among consumers in Chiang Mai Province, Northern Thailand. Res. J. Environ. Toxicol. 2017, 11, 20–27. [Google Scholar] [CrossRef]
- Kähkönen, K.; Sandell, M.; Rönkä, A.; Hujo, M.; Nuutinen, O. Children’s fruit and vegetable preferences are associated with their mothers’ and fathers’ preferences. Foods 2021, 10, 261. [Google Scholar] [CrossRef]
- Guzman-Torres, H.; Sandoval-Pinto, E.; Cremades, R.; Ramírez-de-Arellano, A.; García-Gutiérrez, M.; Lozano-Kasten, F.; Sierra-Díaz, E. Frequency of urinary pesticides in children: A scoping review. Front. Public Health 2023, 11, 1227337. [Google Scholar] [CrossRef]
- Bradman, A.; Quirós-Alcalá, L.; Castorina, R.; Schall, R.A.; Camacho, J.; Holland, N.T.; Barr, D.B.; Eskenazi, B. Effect of organic diet intervention on pesticide exposures in young children living in low-income urban and agricultural communities. Environ. Health Perspect. 2015, 123, 1086–1093. [Google Scholar] [CrossRef]
- van Wendel de Joode, B.; Mora, A.M.; Lindh, C.H.; Hernández-Bonilla, D.; Córdoba, L.; Wesseling, C.; Hoppin, J.A.; Mergler, D. Pesticide exposure and neurodevelopment in children aged 6–9 years from Talamanca, Costa Rica. Cortex 2016, 85, 137–150. [Google Scholar] [CrossRef]
- Kofman, O.; Berger, A.; Massarwa, A.; Friedman, A.; Jaffar, A.A. Motor inhibition and learning impairments in school-aged children following exposure to organophosphate pesticides in infancy. Pediatr. Res. 2006, 60, 88–92. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Lein, P.J. Mechanisms of organophosphate neurotoxicity. Curr. Opin. Toxicol. 2021, 26, 49–60. [Google Scholar] [CrossRef]
- Jayasinghe, S.S.; Pathirana, K.D.; Buckley, N.A. Effects of acute organophosphorus poisoning on function of peripheral nerves: A cohort study. PLoS ONE 2012, 7, e49405. [Google Scholar] [CrossRef]
- Karami-Mohajeri, S.; Nikfar, S.; Abdollahi, M. A systematic review on the nerve–muscle electrophysiology in human organophosphorus pesticide exposure. Hum. Exp. Toxicol. 2014, 33, 92–102. [Google Scholar] [CrossRef]
- Muñoz-Quezada, M.T.; Lucero, B.A.; Barr, D.B.; Steenland, K.; Levy, K.; Ryan, P.B.; Iglesias, V.; Alvarado, S.; Concha, C.; Rojas, E.; et al. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: A systematic review. Neurotoxicology 2013, 39, 158–168. [Google Scholar] [CrossRef]
- Vester, A.; Caudle, W.M. The synapse as a central target for neurodevelopmental susceptibility to pesticides. Toxics 2016, 4, 18. [Google Scholar] [CrossRef] [PubMed]
- Farkhondeh, T.; Mehrpour, O.; Forouzanfar, F.; Roshanravan, B.; Samarghandian, S. Oxidative stress and mitochondrial dysfunction in organophosphate pesticide-induced neurotoxicity and its amelioration: A review. Environ. Sci. Pollut. Res. Int. 2020, 27, 24799–24814. [Google Scholar] [CrossRef] [PubMed]
- Naughton, S.X.; Terry, A.V., Jr. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018, 408, 101–112. [Google Scholar] [CrossRef]
Parameters | n (%) or Mean ± SD. | |
---|---|---|
Parents | ||
Gender, n (%) | Male | 55 (32.0) |
Female | 117 (68.0) | |
Age, Mean ± SD. | 50.1 ± 12.4 | |
Monthly income, n (%) | <150 USD | 114 (66.3) |
150–300 USD | 36 (20.9) | |
>300 USD | 22 (12.8) | |
Education level, n (%) | Primary school or less | 91 (52.9) |
Secondary school | 58 (33.7) | |
Bachelor’s degree or higher | 23 (13.4) | |
Relationship to the primary caregiver, n (%) | Father/mother | 66 (38.4) |
Legal guardians/family members a | 106 (61.6) | |
Occupation, n (%) | Non-farmers | 31 (18.0) |
Farmers | 141 (82.0) | |
Parental smoking, n (%) | 33 (19.2) | |
Alcohol consumption, n (%) | 76 (44.2) | |
Proximity of the household to farmland, n (%) | <0.5 km | 22 (12.8) |
500 m–2 km | 71 (41.3) | |
>2–5 km | 79 (45.9) | |
Children | ||
Children Age, Mean ± SD. | 4.4 ± 0.5 | |
Children gender, n (%) | Male | 78 (45.3) |
Female | 94 (54.7) | |
Children BMI, Mean ± SD. | 15.6 ± 2.7 | |
Playing on farmland, n (%) | 86 (50.0) | |
Consumption of vegetables, n (%) | Never | 15 (8.7) |
Rarely (1–2 servings/week) | 93 (54.1) | |
Often (3–5 servings/week) | 56 (32.6) | |
Always (6–7 servings/week) | 8 (4.7) | |
Consumption of fruits, n (%) | Rarely (1–2 servings/week) | 44 (25.6) |
Often (3–5 servings/week) | 102 (59.3) | |
Always (6–7 servings/week) | 26 (15.1) | |
Usual place for purchasing vegetables and fruits, n (%) | Local markets | 166 (96.5) |
Supermarkets | 6 (3.5) |
Metabolites | %Detection | GM | Mean ± SD. | Median (P25th, P75th) |
---|---|---|---|---|
DMP | 13.4 | 4.50 | 7.99 ± 13.30 | 7.47 (1.53, 7.47) |
DMTP | 10.5 | 1.41 | 8.43 ± 35.56 | 2.16 (0.44, 2.16) |
DMDTP | 5.8 | 0.59 | 0.82 ± 0.59 | 1.18 (0.24, 1.18) |
DEP | 38.4 | 2.45 | 12.16 ± 26.38 | 1.96 (0.40, 8.69) |
DETP | 34.9 | 5.20 | 10.46 ± 21.21 | 9.72 (1.99, 9.72) |
DEDTP | 1.2 | 0.89 | 1.18 ± 0.70 | 1.77 (0.36, 1.77) |
Total DMP | 23.3 | 7.43 | 17.24 ± 38.06 | 10.81 (2.21, 10.81) |
Total DEP | 60.5 | 10.51 | 23.81 ± 42.84 | 13.46 (2.87, 19.28) |
Total DAP | 67.4 | 20.58 | 41.07 ± 57.66 | 24.26 (6.17, 46.21) |
Neurobehavioral Tests | Mean ± SD. | Median (P25th, P75th) | Min–Max | |
---|---|---|---|---|
PEG | Dominant hand | 7.48 ± 1.62 | 8 (6, 9) | 3–11 |
Preferred hand | 6.85 ± 1.56 | 7 (6, 8) | 1–10 | |
Both hands | 5.52 ± 1.78 | 5 (4, 7) | 0–9 | |
DST | Forward digit span | 7.03 ± 1.98 | 7 (6, 9) | 2–11 |
Maximum digit span | 4.79 ± 1.17 | 5 (4, 6) | 2–6 | |
OMT | Immediate recall | 14.64 ± 1.32 | 15 (14, 15) | 11–16 |
Delay recall | 14.85 ± 1.18 | 15 (14, 15) | 12–16 | |
Recognition | 14.03 ± 1.60 | 15 (12, 15) | 12–15 | |
VMI | Raw score | 11.48 ± 3.19 | 12 (10, 13.75) | 1–19 |
Standard score | 99.79 ± 14.06 | 103 (92, 107) | 65–142 |
Factors | Ln Total DMP | Ln Total DEP | ||||
---|---|---|---|---|---|---|
Beta | 95% CI | p Value | Beta | 95% CI | p Value | |
Parental factors | ||||||
Parental age | −0.004 | −0.0.31, 0.024 | 0.792 | 0.003 | −0.026, 0.032 | 0.820 |
Parental gender | −0.041 | −0.416, 0.027 | 0.860 | 0.089 | −0.393, 0.570 | 0.717 |
Parental smoking | 0.052 | −0.510, 0.614 | 0.855 | −0.115 | −0.706, 0.477 | 0.702 |
Parental farmer status | 0.730 | 0.138, 1.322 | 0.016 * | 0.668 | 0.044, 1.291 | 0.036 * |
Parental relationship | 0.370 | −0.312, 1.052 | 0.286 | −0.119 | −0.837, 0.599 | 0.745 |
Proximity of household to farmland | −0.039 | −0.307, 0.230 | 0.777 | −0.083 | −0.366, 0.199 | 0.561 |
Children factors | ||||||
Children gender | −0.045 | −0.407, 0.317 | 0.807 | 0.117 | −0.264, 0.498 | 0.546 |
Children BMI | −0.071 | −0.139, −0.004 | 0.039 * | −0.049 | −0.120,0.022 | 0.172 |
Playing on farmland | 0.267 | −0.119, 0.653 | 0.174 | 0.265 | −0.141, 0.672 | 0.200 |
Frequency of vegetable consumption | 0.001 | −0.273, 0.276 | 0.994 | −0.264 | −0.553, 0.025 | 0.073 |
Frequency of fruit consumption | 0.242 | −0.077, 0.560 | 0.136 | 0.398 | 0.063, 0.733 * | 0.020 * |
Outcomes | Ln Total DMP Levels | Ln Total DEP Levels | |||
---|---|---|---|---|---|
Beta (95% CI) | p Value | Beta (95% CI) | p Value | ||
PEG | Dominant hand | 0.211 (−0.034, 0.457) | 0.091 | −0.428 (−0.661, −0.194) | <0.001 ** |
Preferred hand | 0.143 (−0.096, 0.381) | 0.239 | −0.376 (−0.603, −0.149) | 0.001 ** | |
Both hands | 0.104 (−0.157, 0.366) | 0.431 | −0.524 (−0.773, −0.276) | <0.001 ** | |
DST | Forward digit span | −0.105 (−0.393, 0.184) | 0.474 | −0.102 (−0.377, 0.173) | 0.464 |
Maximum digit span | −0.033 (−0.204, 0.138) | 0.707 | −0.081 (0.243, 0.082) | 0.330 | |
OMT | Immediate recall | −0.086 (−0.282, 0.110) | 0.387 | −0.053 (−0.240, 0.133) | 0.573 |
Delay recall | −0.004 (−0.187, 0.179) | 0.967 | −0.025 (−0.199, 0.149) | 0.773 | |
Recognition | 0.013 (−0.237, 0.263) | 0.917 | −0.067 (−0.305, 0.171) | 0.573 | |
VMI | Raw score | −0.285 (−0.772, 0.203) | 0.250 | −0.090 (−0.554, 0.374) | 0.703 |
Standard score | −1.113 (−3.159, 0.933) | 0.284 | −0.730 (−2.677, 1.218) | 0.461 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thammachai, A.; Suwannakul, B.; Sangkarit, N.; Hongsibsong, S.; Rohitrattana, J.; Sapbamrer, R. Neurobehavioral Performance in Preschool Children Exposed Postnatally to Organophosphates in Agricultural Regions, Northern Thailand. Toxics 2024, 12, 855. https://doi.org/10.3390/toxics12120855
Thammachai A, Suwannakul B, Sangkarit N, Hongsibsong S, Rohitrattana J, Sapbamrer R. Neurobehavioral Performance in Preschool Children Exposed Postnatally to Organophosphates in Agricultural Regions, Northern Thailand. Toxics. 2024; 12(12):855. https://doi.org/10.3390/toxics12120855
Chicago/Turabian StyleThammachai, Ajchamon, Boonsita Suwannakul, Noppharath Sangkarit, Surat Hongsibsong, Juthasiri Rohitrattana, and Ratana Sapbamrer. 2024. "Neurobehavioral Performance in Preschool Children Exposed Postnatally to Organophosphates in Agricultural Regions, Northern Thailand" Toxics 12, no. 12: 855. https://doi.org/10.3390/toxics12120855
APA StyleThammachai, A., Suwannakul, B., Sangkarit, N., Hongsibsong, S., Rohitrattana, J., & Sapbamrer, R. (2024). Neurobehavioral Performance in Preschool Children Exposed Postnatally to Organophosphates in Agricultural Regions, Northern Thailand. Toxics, 12(12), 855. https://doi.org/10.3390/toxics12120855