Are We Compensating for the Lack of Physical Activity in Our Diabetic Patients with Treatment Intensification?
Abstract
1. Introduction
2. Patients and Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37, S81–S90. [Google Scholar] [CrossRef]
- Defronzo, R.A. Banting lecture. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009, 58, 773–795. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Nichols, G.; Perry, A. The burden of treatment failure in type 2 diabetes. Diabetes Care 2004, 75, 1535–1540. [Google Scholar] [CrossRef]
- Khunti, K.; Wolden, M.L.; Thorsted, B.L.; Andersen, M.; Davies, M.J. Clinical inertia in people with type 2 diabetes: A retrospective cohort study of more than 80,000 people. Diabetes Care 2013, 36, 3411–3417. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas, 6th ed. 2013. Available online: www.idf.org/diabetesatlas (accessed on 27 May 2016).
- Cuddihy, R.M.; Philis-Tsimikas, A.; Nazeri, A. Type 2 diabetes care and insulin intensification: Is a more multidisciplinary approach needed? Results from the MODIFY survey. Diabetes Educ. 2011, 37, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C.; Kriska, A. Role of physical activity in diabetes management and prevention. J. Am. Diet Assoc. 2008, 108, S19–S23. [Google Scholar] [CrossRef] [PubMed]
- Booth, F.W.; Hawley, J.A. The erosion of physical activity in Western societies: An economic death march. Diabetologia 2015, 58, 1730–1734. [Google Scholar] [CrossRef] [PubMed]
- Tielemans, S.M.; Soedamah-Muthu, S.S.; De Neve, M.; Toeller, M.; Chaturvedi, N.; Fuller, J.H.; Stamatakis, E. Association of physical activity with all-cause mortality and incident and prevalent cardiovascular disease among patients with type 1 diabetes: The EURODIAB Prospective Complications Study. Diabetologia 2013, 56, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Ilanne-Parikka, P.; Laaksonen, D.E.; Eriksson, J.G.; Lakka, T.A.; Lindstr, J.; Peltonen, M.; Aunola, S.; Keinánen-Kiukaanniemi, S.; Uusitupa, M.; Tuomilehto, J.; et al. Finnish Diabetes Prevention Study Group. Leisure-time physical activity and the metabolic syndrome in the Finnish diabetes prevention study. Diabetes Care 2010, 33, 1610–1617. [Google Scholar] [CrossRef] [PubMed]
- The 2011 Compendium of Physical Activities. Available online: https://sites.google.com/site/compendiumofphysicalactivities/corrected-mets (accessed on 14 January 2016).
- Wadén, J.; Tikkanen, H.; Forsblom, C.; Fagerudd, J.; Pettersson-Fernholm, K.; Lakka, T.; Riska, M.; Groop, P.H.; FinnDiane Study Group. Leisure time physical activity is associated with poor glycemic control in type 1 diabetic women: The FinnDiane study. Diabetes Care 2005, 28, 777–782. [Google Scholar] [PubMed]
- Wadén, J.; Tikkanen, H.K.; Forsblom, C.; Harjutsalo, V.; Thorn, L.M.; Saraheimo, M.; Tolonen, N.; Rosengård-Bärlund, M.; Gordin, D.; Tikkanen, H.O. Leisure-time physical activity and development and progression of diabetic nephropathy in type 1 diabetes: The FinnDiane Study. Diabetologia 2015, 58, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Redmon, B.J.; Bertoni, A.G.; Connelly, S.; Feeney, P.A.; Glasser, S.P.; Glick, H.; Greenway, F.; Hesson, L.A.; Lawlor, M.S.; Montez, M.; et al. Effect of the Look AHEAD Study Intervention on Medication Use and Related Cost to Treat Cardiovascular Disease Risk Factors in Individuals with Type 2 Diabetes. Diabetes Care 2010, 33, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L.; Chang, H.Y.; Hsu, C.C.; Lu, J.F.; Fang, H.L. Joint predictability of health related quality of life and leisure time physical activity on mortality risk in people with diabetes. BMC Public Health 2013, 13, 67. [Google Scholar] [CrossRef] [PubMed]
- Huai, P.; Han, H.; Reilly, K.H.; Guo, X.; Zhang, J.; Xu, A. Leisure-time physical activity and risk of type 2 diabetes: A meta-analysis of prospective cohort studies. Endocrine 2016, 52, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Balducci, S.; Zanuso, S.; Nicolucci, A.; De Feo, P.; Cavallo, S.; Cardelli, P.; Fallucca, S.; Alessi, E.; Fallucca, F.; Pugliese, G.; et al. Effect of an intensive exercise intervention strategy on modifiable cardiovascular risk factors in subjects with type 2 diabetes mellitus: A randomized controlled trial: The Italian Diabetes and Exercise Study (IDES). Arch. Intern. Med. 2010, 170, 1794–1803. [Google Scholar] [CrossRef] [PubMed]
- Kaizu, S.; Kishimoto, H.; Iwase, M.; Fujii, H.; Ohkuma, T.; Ide, H.; Jodai, T.; Kikuchi, Y.; Idewaki, Y.; Hirakawa, Y.; et al. Impact of leisure-time physical activity on glycemic control and cardiovascular risk factors in Japanese patients with type 2 diabetes mellitus: The Fukuoka Diabetes Registry. PLoS ONE 2014, 9, e98768. [Google Scholar] [CrossRef] [PubMed]
- Iughetti, L.; Gavioli, S.; Bonetti, A.; Predieri, B. Effects of Exercise in Children and Adolescent with Type 1 Diabetes Mellitus. Health 2015, 7, 1357–1365. [Google Scholar] [CrossRef]
- Herbst, A.; Bachran, R.; Kapellen, T.; Holl, R.W. Effects of Regular Physical Activity on Glycemic Control in Children with Diabetes Mellitus Type 1. Arch. Pediatr. Adolesc. Med. 2006, 160, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Stratton, R.; Wilson, D.P.; Endres, R.K.; Goldstein, D.E. Improved Glycemic Control after Supervised 8-wk Exercise Program in Insulin-Dependent Diabetic Adolescents. Diabetes Care 1987, 10, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.; Jones, T.W.; Fournier, P.A. Exercise Training and Glycemic Control in Adolescents with Poorly Controlled Type 1 Diabetes Mellitus. J. Pediatr. Endocrinol. Metab. 2002, 15, 621–627. [Google Scholar] [CrossRef]
- Tanasecu, M.; Leitzmann, M.F.; Rimm, E.B.; Hu, F.B. Physical activity in relation to cardiovascular disease and total mortality among men withy type 2 diabetes. Circulation 2003, 107, 2435–2439. [Google Scholar] [CrossRef] [PubMed]
- Sone, H.; Tanaka, S.; Tanaka, S.; Suzuki, S.; Seino, H.; Hanyu, O.; Sato, A.; Toyonaga, T.; Okita, K.; Ishibashi, S.; et al. Leisure-time physical activity is a significant predictor of stroke and total mortality in Japanese patients with type 2 diabetes: Analysis from the Japan Diabetes Complications Study (JDCS). Diabetologia 2013, 56, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Elias, M.F.; Elias, P.K.; Sullivan, L.M.; Wolf, P.A.; D’Agostino, R.B. Obesity, diabetes and cognitive deficit: The Framingham heart study. Neurobiol. Aging 2005, 26 (Suppl. 1), 11–16. [Google Scholar] [CrossRef] [PubMed]
- Hassing, L.B.; Dahl, A.K.; Pedersen, N.L.; Johansson, B. Overweight in midlife is related to lower cognitive function 30 years later: A prospective study with longitudinal assessments. Dement. Geriatr. Cogn. Disord. 2010, 29, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.K.; Nam, H.S.; Son, M.H.; Son, E.J.; Cho, K.H. Interactive effect of obesity indexes on cognition. Dement. Geriatr. Cogn. Disord. 2005, 19, 91–96. [Google Scholar] [CrossRef] [PubMed]
Variable | DM Type 1 (n = 55) | DM Type 2 (n = 126) | p | Effect Size | ||
---|---|---|---|---|---|---|
Age (years) | 37 | (26–44) | 62 | (54–69) | <0.001 | 0.93 * |
Age at diagnosis (years) | 23 | (13–29) | 51 | (45–59) | <0.001 | 0.97 * |
Duration of diabetes (years) | 11 | (5–19) | 4 | (8–14) | 0.040 | 0.61 * |
HbA1c (%) | ||||||
at diagnosis | 9.7 | (6.9–12.1) | 8.0 | (7.2–9.9) | 0.104 | 0.60 * |
at the time of enrolment | 7.0 | (6.3–7.6) | 6.6 | (6.1–7.2) | 0.020 | 0.65 * |
Body mass index (kg/m2) | ||||||
normal (≤24.99) | 32 | (84.2%) | 16 | (15.0%) | <0.001 | 0.65 † |
overweight (25.00–29.99) | 2 | (5.3%) | 32 | (29.9%) | ||
obese (≥30.00) | 4 | (10.5%) | 59 | (55.1%) | ||
Hypoglycemia | 49 | (92.5%) | 45 | (37.2%) | <0.001 | 0.51 † |
Blood glucose level at hypoglycemia (mmol/L) | 3.2 | (2.8–3.8) | 3.2 | (3.0–3.8) | 0.757 | 0.52 * |
At the Time of Diagnosis | n = 126 | (%) | At the Time of Survey | n = 126 | (%) |
---|---|---|---|---|---|
Metformin | 96 | (76.2) | Metformin | 71 | (56.3) |
Sulphonylurea | 24 | (19.0) | SU | 33 | (26.2) |
DPP-4i | 3 | (2.4) | DPP-4i | 42 | (33.3) |
GLP-1 | 0 | (0.0) | GLP-1 RA | 11 | (8.7) |
Insulin | 5 | (4.0) | Insulin | 31 | (24.6) |
Other | 12 | (9.5) | Other | 2 | (1.6) |
Complete Therapy Structure | Complete Therapy Structure | ||||
MET | 77 | (61.1) | MET | 22 | (17.4) |
MET + SU | 13 | (10.3) | MET + SU | 7 | (5.6) |
SU | 5 | (3.9) | SU | 2 | (1.5) |
MET + TZD | 1 | (0.7) | MET + DPP-4i | 20 | (15.9) |
SU + MET + DPP-4i | 3 | (2.3) | SU + MET + DPP-4i | 14 | (11.1) |
Insulin | 3 | (2.3) | Insulin | 29 | (23.0) |
AGI | 1 | (0.7) | SU + DPP-4i | 4 | (3.1) |
MET + SU + insulin | 2 | (1.5) | DPP-4i | 3 | (2.3) |
Repaglinide | 2 | (1.5) | OAD + GLP-1 RA | 9 | (6.8) |
Not specified OAD | 3 | (2.3) | Not specified OAD | 2 | (1.5) |
SU + MET + TZD | 1 | (0.7) | GLP-1 RA + insulin | 2 | (1.5) |
Type of PA | Type 1 n = 55 (%) | Type 2 n = 126 (%) | p | Effect Size | ||
---|---|---|---|---|---|---|
Change of PA during the last 10 years | ||||||
Decrease | 20 | (37.0) | 65 | (51.6) | <0.001 | 0.30 † |
No change | 7 | (13.0) | 35 | (27.8) | ||
Increase | 27 | (50.0) | 26 | (20.6) | ||
Low intensity PA | 35 | (63.6) | 101 | (80.2) | 0.018 | 0.18 † |
At least 3 times a week ≥ 60 min of moderate-to-vigorous PA | 20 | (36.4) | 25 | (19.8) | ||
Total | 55 | (100.0) | 126 | (100.0) |
Leisure Time Physical Activity | |||||||
---|---|---|---|---|---|---|---|
Variable | At Least 3 Times a Week ≥60 min of Moderate-to-Vigorous PA | Less PA | OR | (95% CI) | p | ||
Average age (years) | 31 | (26–43) | 38 | (26–45) | 0.97 | (0.92–1.03) | 0.282 |
Age at diagnosis (years) | 21 | (13–29) | 23 | (12–29) | 1.01 | (0.96–1.06) | 0.771 |
Average duration of diabetes | 11 | (6–15) | 10 | (5–22) | 0.99 | (0.93–1.06) | 0.809 |
HbA1c (%) | |||||||
at diagnosis | 11.2 | (8.5–13.4) | 8.1 | (6.5–11.8) | 1.27 | (0.97–1.65) | 0.085 |
at the time of enrolment | 7.3 | (6.7–8.6) | 7.0 | (6.2–7.5) | 1.87 | (1.00–3.45) | 0.048 |
Average body mass index (kg/m2) | 19 | (16–21) | 21 | (18–24) | 0.95 | (0.85–1.06) | 0.359 |
Number of patients experiencing hypoglycemia | |||||||
no | 1 | (25.0) | 3 | (75.0) | 1 | ||
yes | 19 | (38.8) | 30 | (61.2) | 1.90 | (0.18–19.6) | 0.590 |
Blood glucose level at hypoglycemia (mmol/L) | 3.6 | (2.8–3.9) | 2.9 | (2.9–3.6) | 1.72 | (0.56–5.26) | 0.344 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maja Cigrovski Berkovic, M.C.; Bilic-Curcic, I.; Gradiser, M.; Herman-Mahecic, D.; Cigrovski, V.; Ivandic, M. Are We Compensating for the Lack of Physical Activity in Our Diabetic Patients with Treatment Intensification? Sports 2017, 5, 58. https://doi.org/10.3390/sports5030058
Maja Cigrovski Berkovic MC, Bilic-Curcic I, Gradiser M, Herman-Mahecic D, Cigrovski V, Ivandic M. Are We Compensating for the Lack of Physical Activity in Our Diabetic Patients with Treatment Intensification? Sports. 2017; 5(3):58. https://doi.org/10.3390/sports5030058
Chicago/Turabian StyleMaja Cigrovski Berkovic, Maja Cigrovski, Ines Bilic-Curcic, Marina Gradiser, Davorka Herman-Mahecic, Vjekoslav Cigrovski, and Marul Ivandic. 2017. "Are We Compensating for the Lack of Physical Activity in Our Diabetic Patients with Treatment Intensification?" Sports 5, no. 3: 58. https://doi.org/10.3390/sports5030058
APA StyleMaja Cigrovski Berkovic, M. C., Bilic-Curcic, I., Gradiser, M., Herman-Mahecic, D., Cigrovski, V., & Ivandic, M. (2017). Are We Compensating for the Lack of Physical Activity in Our Diabetic Patients with Treatment Intensification? Sports, 5(3), 58. https://doi.org/10.3390/sports5030058