Calibration and Performance Evaluation of Cost-Effective Capacitive Moisture Sensor in Slope Model Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Soil Properties and Calibration Process
- The dimensions of the soil box were measured, and the required amount of soil was determined. Additionally, the weight of soil for two layers was calculated. The soil box was then marked at heights of 5 cm and 10 cm for the first and second layers, respectively.
- Water equivalent to 5% of the weight of the soil was mixed to the oven-dried soil.
- Half of the soil prepared in Step 2 was placed in the soil box to create the first layer, which was compacted to match the height of the first layer.
- Six moisture sensors were placed on top of the first soil layer. The moisture sensors were positioned at an adequate distance from one another to prevent any potential interference.
- The remaining soil–water mixture prepared in Step 2 was placed and compacted to match the height of the second layer.
- The soil box was covered with a plastic sheet to minimize potential moisture evaporation and the soil sample was left to homogenized for 20 to 40 min.
- The moisture sensors recorded three measurements (5 min each). The average value of these measurements was used for the analysis of moisture sensor calibration.
- Both soil and room temperatures were recorded.
- Soil samples were collected from locations near the moisture sensors, and the actual soil moisture content was measured.
- Steps 2 through 9 were repeated, increasing the water incrementally by 5% until the soil sample indicates saturation conditions.
2.3. Slope Model Experiment
2.4. Statistical Evaluation
3. Results
3.1. Moisture Sensor Calibration
3.2. Moisture Content in Slope Models
4. Discussion
4.1. Calibration Evaluation
4.2. Sensor Performance in Slope Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Froude, M.J.; Petley, D.N. Global Fatal Landslide Occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef]
- Saito, H.; Korup, O.; Uchida, T.; Hayashi, S.; Oguchi, T. Rainfall Conditions, Typhoon Frequency, and Contemporary Landslide Erosion in Japan. Geology 2014, 42, 999–1002. [Google Scholar] [CrossRef]
- Schuster, R.L.; Fleming, R.W. Economic Losses and Fatalities Due to Landslides. Environ. Eng. Geosci. 1986, xxiii, 11–28. [Google Scholar] [CrossRef]
- Guzzetti, F.; Gariano, S.L.; Peruccacci, S.; Brunetti, M.T.; Marchesini, I.; Rossi, M.; Melillo, M. Geographical Landslide Early Warning Systems. Earth Sci. Rev. 2020, 200, 102973. [Google Scholar] [CrossRef]
- Sorensen, J.H. Hazard Warning Systems: Review of 20 Years of Progress. Nat. Hazards Rev. 2000, 1, 119–125. [Google Scholar] [CrossRef]
- Ahmadi-adli, M.; Huvaj, N.; Toker, N.K. Rainfall-Triggered Landslides in an Unsaturated Soil: A Laboratory Flume Study. Environ. Earth Sci. 2017, 76, 735. [Google Scholar] [CrossRef]
- Xu, J.; Ueda, K.; Uzuoka, R. Evaluation of Failure of Slopes with Shaking-Induced Cracks in Response to Rainfall. Landslides 2022, 19, 119–136. [Google Scholar] [CrossRef]
- Chueasamat, A.; Hori, T.; Saito, H.; Sato, T.; Kohgo, Y. Experimental Tests of Slope Failure Due to Rainfalls Using 1g Physical Slope Models. Soils Found. 2018, 58, 290–305. [Google Scholar] [CrossRef]
- Liu, Y.; Hazarika, H.; Kanaya, H.; Takiguchi, O.; Rohit, D. Landslide Prediction Based on Low-Cost and Sustainable Early Warning Systems with IoT. Bull. Eng. Geol. Environ. 2023, 82, 177. [Google Scholar] [CrossRef]
- Hidayat, M.N.; Hazarika, H.; Fujishiro, T.; Murai, M.; Manandhar, S.; Liu, Y.; Fukumoto, Y.; Kanaya, H.; Takiguchi, O. Evaluation of Landslide Triggering Mechanism During Rainfall in Slopes Containing Vertical Cracks. In Geo-Sustainnovation for Resilient Society; Hazarika, H., Haigh, S.K., Chaudhary, B., Murai, M., Manandhar, S., Eds.; Springer: Singapore, 2024; pp. 47–56. [Google Scholar]
- Cogan, J.; Gratchev, I. A Study on the Effect of Rainfall and Slope Characteristics on Landslide Initiation by Means of Flume Tests. Landslides 2019, 16, 2369–2379. [Google Scholar] [CrossRef]
- Huang, C.-C.; Yuin, S.-C. Experimental Investigation of Rainfall Criteria for Shallow Slope Failures. Geomorphology 2010, 120, 326–338. [Google Scholar] [CrossRef]
- Pajalić, S.; Peranić, J.; Maksimović, S.; Čeh, N.; Jagodnik, V.; Arbanas, Ž. Monitoring and Data Analysis in Small-Scale Landslide Physical Model. Appl. Sci. 2021, 11, 5040. [Google Scholar] [CrossRef]
- Peranić, J.; Čeh, N.; Arbanas, Ž. The Use of Soil Moisture and Pore-Water Pressure Sensors for the Interpretation of Landslide Behavior in Small-Scale Physical Models. Sensors 2022, 22, 7337. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Dai, Q.; Zhuo, L.; Zhu, S.; Shen, Q.; Han, D. Assessing the Potential of Different Satellite Soil Moisture Products in Landslide Hazard Assessment. Remote Sens. Environ. 2021, 264, 112583. [Google Scholar] [CrossRef]
- Segoni, S.; Rosi, A.; Lagomarsino, D.; Fanti, R.; Casagli, N. Brief Communication: Using Averaged Soil Moisture Estimates to Improve the Performances of a Regional-Scale Landslide Early Warning System. Nat. Hazards Earth Syst. Sci. 2018, 18, 807–812. [Google Scholar] [CrossRef]
- Ray, R.L.; Jacobs, J.M. Relationships among Remotely Sensed Soil Moisture, Precipitation and Landslide Events. Nat. Hazards 2007, 43, 211–222. [Google Scholar] [CrossRef]
- Rawat, P.S.; Barthwal, A. Landslide Monitor: A Real-Time Landslide Monitoring System. Environ. Earth Sci. 2024, 83, 226. [Google Scholar] [CrossRef]
- Oguz, E.A.; Depina, I.; Myhre, B.; Devoli, G.; Rustad, H.; Thakur, V. IoT-Based Hydrological Monitoring of Water-Induced Landslides: A Case Study in Central Norway. Bull. Eng. Geol. Environ. 2022, 81, 217. [Google Scholar] [CrossRef]
- Placidi, P.; Vergini, C.V.D.; Papini, N.; Cecconi, M.; Mezzanotte, P.; Scorzoni, A. Low-Cost and Low-Frequency Impedance Meter for Soil Water Content Measurement in the Precision Agriculture Scenario. IEEE Trans. Instrum. Meas. 2023, 72, 9511613. [Google Scholar] [CrossRef]
- López, E.; Vionnet, C.; Ferrer-Cid, P.; Barcelo-Ordinas, J.M.; Garcia-Vidal, J.; Contini, G.; Prodolliet, J.; Maiztegui, J. A Low-Power IoT Device for Measuring Water Table Levels and Soil Moisture to Ease Increased Crop Yields. Sensors 2022, 22, 6840. [Google Scholar] [CrossRef]
- Kulmány, I.M.; Bede-Fazekas, Á.; Beslin, A.; Giczi, Z.; Milics, G.; Kovács, B.; Kovács, M.; Ambrus, B.; Bede, L.; Vona, V. Calibration of an Arduino-Based Low-Cost Capacitive Soil Moisture Sensor for Smart Agriculture. J. Hydrol. Hydromech. 2022, 70, 330–340. [Google Scholar] [CrossRef]
- Borah, S.; Kumar, R.; Mukherjee, S. Low-Cost IoT Framework for Irrigation Monitoring and Control. Int. J. Intell. Unmanned Syst. 2020, 9, 63–79. [Google Scholar] [CrossRef]
- Nagahage, E.A.A.D.; Nagahage, I.S.P.; Fujino, T. Calibration and Validation of a Low-Cost Capacitive Moisture Sensor to Integrate the Automated Soil Moisture Monitoring System. Agriculture 2019, 9, 141. [Google Scholar] [CrossRef]
- Faia, P.M.; Libardi, J.; Barbosa, I.; Araújo, E.S.; de Oliveira, H.P. Preparation, Characterization, and Evaluation of Humidity-Dependent Electrical Properties of Undoped and Niobium Oxide-Doped TiO2: WO3 Mixed Powders. Adv. Mater. Sci. Eng. 2017, 2017, 2808262. [Google Scholar] [CrossRef]
- Mendes, S.; Kurapova, O.; Faia, P.; Pazheltsev, V.; Zaripov, A.; Konakov, V. Polyantimonic Acid-Based Materials Evaluated as Moisture Sensors at Ambient Temperature. J. Solid. State Electrochem. 2023, 27, 611–625. [Google Scholar] [CrossRef]
- Pereira, R.M.; Sandri, D.; Silva Júnior, J.J. da Evaluation of Low-Cost Capacitive Moisture Sensors in Three Types of Soils in the Cerrado, Brazil. Rev. Eng. Na Agric.-REVENG 2022, 30, 262–272. [Google Scholar] [CrossRef]
- DFRobot Capacitive Soil Moisture Sensor SKU:SEN0193. Available online: https://wiki.dfrobot.com/Capacitive_Soil_Moisture_Sensor_SKU_SEN0193 (accessed on 16 May 2022).
- Slyfox 3 in 1 Soil Moisture Meter for Agriculture. Available online: https://www.amazon.co.jp/-/en/dp/B0C5SWTL78/?coliid=IMXG1A10B6K1R&colid=G4CJWLMA6XDT&psc=1&ref_=list_c_wl_lv_ov_lig_dp_it (accessed on 26 January 2024).
- Tang, J.; Taro, U.; Huang, D.; Xie, J.; Tao, S. Physical Model Experiments on Water Infiltration and Failure Modes in Multi-Layered Slopes under Heavy Rainfall. Appl. Sci. 2020, 10, 3458. [Google Scholar] [CrossRef]
- Lourenço, S.D.N.; Sassa, K.; Fukuoka, H. Failure Process and Hydrologic Response of a Two Layer Physical Model: Implications for Rainfall-Induced Landslides. Geomorphology 2006, 73, 115–130. [Google Scholar] [CrossRef]
- Wang, G.; Sassa, K. Factors Affecting Rainfall-Induced Flowslides in Laboratory Flume Tests. Géotechnique 2001, 51, 587–599. [Google Scholar] [CrossRef]
- Wang, F.; Dai, Z.; Takahashi, I.; Tanida, Y. Soil Moisture Response to Water Infiltration in a 1-D Slope Soil Column Model. Eng. Geol. 2020, 267, 105482. [Google Scholar] [CrossRef]
- Placidi, P.; Gasperini, L.; Grassi, A.; Cecconi, M.; Scorzoni, A. Characterization of Low-Cost Capacitive Soil Moisture Sensors for IoT Networks. Sensors 2020, 20, 3585. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Niño, J.M.; Bogena, H.R.; Huisman, J.A.; Schilling, B.; Casadesús, J. On the Accuracy of Factory-Calibrated Low-Cost Soil Water Content Sensors. Sensors 2019, 19, 3101. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Taghvaeian, S.; Ochsner, T.; Moriasi, D.; Gowda, P.; Steiner, J. Performance Assessment of Five Different Soil Moisture Sensors under Irrigated Field Conditions in Oklahoma. Sensors 2018, 18, 3786. [Google Scholar] [CrossRef] [PubMed]
- Voltage Regulator—XC6206P302MR (65Z5). Available online: https://www.sunrom.com/p/xc6206p302mr-65z5 (accessed on 23 November 2022).
- Texas Instruments. TLC555 LinCMOSTM Timer Chip; Texas Instruments: Yogyakarta, Indonesia, 2019. [Google Scholar]
- Bircher, S.; Andreasen, M.; Vuollet, J.; Vehviläinen, J.; Rautiainen, K.; Jonard, F.; Weihermüller, L.; Zakharova, E.; Wigneron, J.-P.; Kerr, Y.H. Soil Moisture Sensor Calibration for Organic Soil Surface Layers. Geosci. Instrum. Methods Data Syst. 2016, 5, 109–125. [Google Scholar] [CrossRef]
- Radi; Murtiningrum; Ngadisih; Muzdrikah, F.S.; Nuha, M.S.; Rizqi, F.A. Calibration of Capacitive Soil Moisture Sensor (SKU:SEN0193). In Proceedings of the 2018 4th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, 7–8 August 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Dong, Y.; Miller, S.; Kelley, L. Performance Evaluation of Soil Moisture Sensors in Coarse- and Fine-Textured Michigan Agricultural Soils. Agriculture 2020, 10, 598. [Google Scholar] [CrossRef]
- Li, B.; Wang, C.; Gu, X.; Zhou, X.; Ma, M.; Li, L.; Feng, Z.; Ding, T.; Li, X.; Jiang, T.; et al. Accuracy Calibration and Evaluation of Capacitance-Based Soil Moisture Sensors for a Variety of Soil Properties. Agric. Water Manag. 2022, 273, 107913. [Google Scholar] [CrossRef]
- Schwamback, D.; Persson, M.; Berndtsson, R.; Bertotto, L.E.; Kobayashi, A.N.A.; Wendland, E.C. Automated Low-Cost Soil Moisture Sensors: Trade-Off between Cost and Accuracy. Sensors 2023, 23, 2451. [Google Scholar] [CrossRef]
- Campora, M.; Palla, A.; Gnecco, I.; Bovolenta, R.; Passalacqua, R. The Laboratory Calibration of a Soil Moisture Capacitance Probe in Sandy Soils. Soil. Water Res. 2020, 15, 75–84. [Google Scholar] [CrossRef]
- Adla, S.; Rai, N.K.; Karumanchi, S.H.; Tripathi, S.; Disse, M.; Pande, S. Laboratory Calibration and Performance Evaluation of Low-Cost Capacitive and Very Low-Cost Resistive Soil Moisture Sensors. Sensors 2020, 20, 363. [Google Scholar] [CrossRef]
- Howell, J.F.; Sun, J. Surface-Layer Fluxes in Stable Conditions. Bound. Layer. Meteorol. 1999, 90, 495–520. [Google Scholar] [CrossRef]
- Hughes, M.; Hall, A.; Fovell, R.G. Dynamical Controls on the Diurnal Cycle of Temperature in Complex Topography. Clim. Dyn. 2007, 29, 277–292. [Google Scholar] [CrossRef]
- Chandel, A.; Swami, D.; Joshi, N. Calibration Complexities: Full-Scale Error Impact and Simultaneous Variation of Salinity, Temperature, and Moisture Content on Sensor Performance in Soil. Env. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Seyfried, M.S.; Murdock, M.D. Response of a New Soil Water Sensor to Variable Soil, Water Content, and Temperature. Soil Sci. Soc. Am. J. 2001, 65, 28–34. [Google Scholar] [CrossRef]
- Ni, K.; Ramanathan, N.; Chehade, M.N.H.; Balzano, L.; Nair, S.; Zahedi, S.; Kohler, E.; Pottie, G.; Hansen, M.; Srivastava, M. Sensor Network Data Fault Types. ACM Trans. Sens. Netw. 2009, 5, 1–29. [Google Scholar] [CrossRef]
- Ren, W.; Jin, N.; Wang, T. An Interdigital Conductance Sensor for Measuring Liquid Film Thickness in Inclined Gas–Liquid Two-Phase Flow. IEEE Trans. Instrum. Meas. 2024, 73, 9505809. [Google Scholar] [CrossRef]
- Park, S.; Gil, M.-S.; Im, H.; Moon, Y.-S. Measurement Noise Recommendation for Efficient Kalman Filtering over a Large Amount of Sensor Data. Sensors 2019, 19, 1168. [Google Scholar] [CrossRef]
- Schmidt, J.Q.; Kerkez, B. Machine Learning-Assisted, Process-Based Quality Control for Detecting Compromised Environmental Sensors. Environ. Sci. Technol. 2023, 57, 18058–18066. [Google Scholar] [CrossRef]
- Pereira, M.; Glisic, B. Detection and Quantification of Temperature Sensor Drift Using Probabilistic Neural Networks. Expert. Syst. Appl. 2023, 213, 118884. [Google Scholar] [CrossRef]
- Hidayat, M.N.; Hazarika, H.; Murai, M.; Kanaya, H. Application of Early Warning System for Monitoring Landslide Vulnerability of Slope. In Proceedings of the 7th International Conference on Geotechnics, Civil Engineering and Structures, CIGOS, Ho Chi Minh City, Vietnam, 4–5 April 2024; pp. 772–780. [Google Scholar]
Item | Quantity | Unit Cost ($) | Subtotal ($) | Total ($) |
---|---|---|---|---|
M5Stack Core2 | 3 | 46.90 | 140.7 | |
SKU:SEN0193 | 6 | 5.90 | 35.4 | |
Slyfox | 2 | 39.15 | 78.3 | |
ENV III sensor | 1 | 5.95 | 5.95 | |
260.35 |
Description | Value |
---|---|
Specific Gravity, Gs | 2.62 |
Density of soil, ρt (g/cm3) | 1.51 |
Dry density of soil, ρd (g/cm3) | 1.40 |
Maximum dry density of soil, ρd max (g/cm3) | 1.60 |
Minimum dry density of soil, ρd min (g/cm3) | 1.19 |
Void ratio, e | 0.87 |
Sensor | Equation Type | Calibration Equation | R2 | RMSE |
---|---|---|---|---|
MS1 | Linear | y = −0.0487x + 102.6980 | 0.964 | 1.672 |
Logarithmic | y = −85.5833 log(x) + 656.0471 | 0.954 | 1.911 | |
Polynomial | y = −3 × 10−5x2 + 0.0621x + 5.1443 | 0.974 | 1.429 | |
MS2 | Linear | y = −0.0433x + 89.9223 | 0.973 | 1.463 |
Logarithmic | y = −75.3425 log(x) + 576.1804 | 0.980 | 1.270 | |
Polynomial | y = 3 × 10−5x2 + −0.1457x + 178.1110 | 0.983 | 1.171 | |
MS3 | Linear | y = −0.0448x + 96.4779 | 0.960 | 1.857 |
Logarithmic | y = −80.9699 log(x) + 622.2928 | 0.966 | 1.725 | |
Polynomial | y = 2 × 10−5x2 + −0.1211x + 165.0332 | 0.967 | 1.687 | |
MS4 | Linear | y = −0.0568x + 118.4671 | 0.943 | 2.186 |
Logarithmic | y = −103.2243 log(x) + 789.6224 | 0.945 | 2.143 | |
Polynomial | y = 2 × 10−5x2 + −0.1346x + 188.9894 | 0.946 | 2.128 | |
MS5 | Linear | y = −0.0449x + 93.7915 | 0.918 | 2.489 |
Logarithmic | y = −78.0259 log(x) + 597.4044 | 0.915 | 2.534 | |
Polynomial | y = 2 × 10−5x2 + −0.0534x + 101.1744 | 0.918 | 2.488 | |
MS6 | Linear | y = −0.0495x + 102.5089 | 0.980 | 1.231 |
Logarithmic | y = −86.8725 log(x) + 664.1057 | 0.979 | 1.245 | |
Polynomial | y = 1 × 10−5x2 + −0.0756x + 125.3305 | 0.980 | 1.213 |
Sensor | Rainfall Intensity of 100 mm/h | Rainfall Intensity of 70 mm/h | Rainfall Intensity of 45 mm/h | ||||||
---|---|---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | |
MS1 | 20.0 | 26.7 | −6.7 | 20.3 | 25.3 | −5.0 | 20.5 | 26.6 | −6.1 |
MS2 | 24.2 | 25.5 | −1.3 | 27.8 | 25.5 | 2.3 | 25.9 | 25.6 | 0.3 |
MS3 | 26.5 | 26.6 | −0.1 | 25.5 | 26.9 | −1.4 | 27.6 | 26.9 | 0.7 |
MS4 | 31.6 | 26.6 | 5.0 | 35.2 | 26.3 | 8.9 | 33.0 | 25.9 | 7.1 |
MS5 | 29.3 | 26.3 | 3.0 | 37.9 | 26.0 | 11.9 | 25.0 | 27.3 | −2.3 |
MS6 | 21.9 | 26.0 | −4.1 | 24.5 | 25.5 | −1.0 | 24.5 | 26.0 | −1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidayat, M.N.; Hazarika, H.; Kanaya, H. Calibration and Performance Evaluation of Cost-Effective Capacitive Moisture Sensor in Slope Model Experiments. Sensors 2024, 24, 8156. https://doi.org/10.3390/s24248156
Hidayat MN, Hazarika H, Kanaya H. Calibration and Performance Evaluation of Cost-Effective Capacitive Moisture Sensor in Slope Model Experiments. Sensors. 2024; 24(24):8156. https://doi.org/10.3390/s24248156
Chicago/Turabian StyleHidayat, Muhammad Nurjati, Hemanta Hazarika, and Haruichi Kanaya. 2024. "Calibration and Performance Evaluation of Cost-Effective Capacitive Moisture Sensor in Slope Model Experiments" Sensors 24, no. 24: 8156. https://doi.org/10.3390/s24248156
APA StyleHidayat, M. N., Hazarika, H., & Kanaya, H. (2024). Calibration and Performance Evaluation of Cost-Effective Capacitive Moisture Sensor in Slope Model Experiments. Sensors, 24(24), 8156. https://doi.org/10.3390/s24248156