Affinity Peptide-Based Circularly Permuted Fluorescent Protein Biosensors for Non-Small Cell Lung Cancer Diagnosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Phage Display
2.2. ELISA
2.3. Peptide Synthesis
2.4. BLI
2.5. Plasmid Construction
2.6. Protein Expression and Purification
2.7. Fluorescence Detection
2.8. Detection of Clinical Sample
2.9. Statistical Analysis
3. Results
3.1. Biopanning for Binding Peptides and Peptide Sequence Analysis
3.2. Affinity Analysis of Screened Peptides
3.3. Sensitivity Detection of the Biosensors
3.4. Specificity Detection of the Biosensors
3.5. Linearity Test for the Biosensors
3.6. Evaluation of Assay Performance with Patient Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leiter, A.; Veluswamy, R.R.; Wisnivesky, J.P. The global burden of lung cancer: Current status and future trends. Nat. Rev. Clin. Oncol. 2023, 20, 624–639. [Google Scholar] [CrossRef] [PubMed]
- Nooreldeen, R.; Bach, H. Current and Future Development in Lung Cancer Diagnosis. Int. J. Mol. Sci. 2021, 22, 8661. [Google Scholar] [CrossRef] [PubMed]
- China NHCotPsRo. Guidelines for the Diagnosis and Treatment of Primary Lung Cancer. Chin. J. Ration. Drug Use 2022, 9, 1–28. [Google Scholar]
- Adams, S.J.; Stone, E.; Baldwin, D.R.; Vliegenthart, R.; Lee, P.; Fintelmann, F.J. Lung cancer screening. Lancet 2023, 401, 390–408. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Long, Y.; Li, W.; Dai, W.; Xie, S.; Liu, Y.; Zhang, Y.; Liu, M.; Tian, Y.; Li, Q.; et al. Exploratory study on classification of lung cancer subtypes through a combined K-nearest neighbor classifier in breathomics. Sci. Rep. 2020, 10, 5880. [Google Scholar] [CrossRef]
- Zhang, T.; Xiang, B.; Lin, Y.P. Predictive value of combined detection tumor markers in the diagnosis of lung cancer. Chin. J. Prev. Med. 2021, 55, 786–791. [Google Scholar]
- Buma, A.I.G.; Schuurbiers, M.M.F.; van Rossum, H.H.; van den Heuvel, M.M.; Holdenrieder, S.; van Rossum, H.; van den Heuvel, M. Clinical perspectives on serum tumor marker use in predicting prognosis and treatment response in advanced non-small cell lung cancer. Tumor Biol. 2024, 46, S207–S217. [Google Scholar] [CrossRef]
- Cao, L.; Lu, S.; Guo, C.; Chen, W.; Gao, Y.; Ye, D.; Guo, Z.; Ma, W. A novel electrochemical immunosensor based on PdAgPt/MoS2 for the ultrasensitive detection of CA 242. Front. Bioeng. Biotech. 2022, 10, 986355. [Google Scholar] [CrossRef]
- Greenwald, E.C.; Mehta, S.; Zhang, J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem. Rev. 2018, 118, 11707–11794. [Google Scholar] [CrossRef]
- Kostyuk, A.I.; Demidovich, A.D.; Kotova, D.A.; Belousov, V.V.; Bilan, D.S. Circularly Permuted Fluorescent Protein-Based Indicators: History, Principles, and Classification. Int. J. Mol. Sci. 2019, 20, 4200. [Google Scholar] [CrossRef]
- Sakaguchi, R.; Endoh, T.; Yamamoto, S.; Tainaka, K.; Sugimoto, K.; Fujieda, N.; Kiyonaka, S.; Mori, Y.; Morii, T. A single circularly permuted GFP sensor for inositol-1,3,4,5-tetrakisphosphate based on a split PH domain. Bioorg. Med. Chem. 2009, 17, 7381–7386. [Google Scholar] [CrossRef] [PubMed]
- Kostyuk, A.I.; Panova, A.S.; Bilan, D.S.; Belousov, V.V. Redox biosensors in a context of multiparameter imaging. Free Radic. Biol. Med. 2018, 128, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, X.; Gao, H.; Qing, G. Phage display derived peptides for Alzheimer’s disease therapy and diagnosis. Theranostics 2022, 12, 2041–2062. [Google Scholar] [CrossRef]
- AlDeghaither, D.; Smaglo, B.G.; Weiner, L.M. Beyond peptides and mAbs—Current status and future perspectives for biotherapeutics with novel constructs. J. Clin. Pharmacol. 2015, 55 (Suppl. 3), S4–S20. [Google Scholar] [CrossRef] [PubMed]
- McGregor, D.P. Discovering and improving novel peptide therapeutics. Curr. Opin. Pharmacol. 2008, 8, 616–619. [Google Scholar] [CrossRef]
- Saw, P.E.; Xu, X.; Kim, S.; Jon, S. Biomedical Applications of a Novel Class of High-Affinity Peptides. Acc. Chem. Res. 2021, 54, 3576–3592. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, F.; Luo, J.; Pang, J.; Yan, S.; Luo, F.; Liu, J.; Wang, W.; Cui, Y.; Su, X. A new non-muscle-invasive bladder tumor-homing peptide identified by phage display in vivo. Oncol. Rep. 2016, 36, 79–89. [Google Scholar] [CrossRef]
- Zhao, Y.; Araki, S.; Wu, J.; Teramoto, T.; Chang, Y.F.; Nakano, M.; Abdelfattah, A.S.; Fujiwara, M.; Ishihara, T.; Nagai, T.; et al. An expanded palette of genetically encoded Ca2+ indicators. Science 2011, 333, 1888–1891. [Google Scholar] [CrossRef]
- Nasu, Y.; Shen, Y.; Kramer, L.; Campbell, R.E. Structure- and mechanism-guided design of single fluorescent protein-based biosensors. Nat. Chem. Biol. 2021, 17, 509–518. [Google Scholar] [CrossRef]
- Shen, Y.; Dana, H.; Abdelfattah, A.S.; Patel, R.; Shea, J.; Molina, R.S.; Rawal, B.; Rancic, V.; Chang, Y.F.; Wu, L.; et al. A genetically encoded Ca2+ indicator based on circularly permutated sea anemone red fluorescent protein eqFP578. BMC Biol. 2018, 16, 9. [Google Scholar] [CrossRef]
- Chen, Z.; Ai, H. Single Fluorescent Protein-Based Indicators for Zinc Ion (Zn2+). Anal. Chem. 2016, 88, 9029–9036. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.P.; Marvin, J.S.; Lacin, H.; Lemon, W.C.; Shea, J.; Kim, S.; Lee, R.T.; Koyama, M.; Keller, P.J.; Looger, L.L. In vivo glucose imaging in multiple model organisms with an engineered single-wavelength sensor. Cell Rep. 2021, 35, 109284. [Google Scholar] [CrossRef] [PubMed]
- Lobas, M.A.; Tao, R.; Nagai, J.; Kronschlager, M.T.; Borden, P.M.; Marvin, J.S.; Looger, L.L.; Khakh, B.S. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat. Commun. 2019, 10, 711. [Google Scholar] [CrossRef] [PubMed]
- Tewson, P.; Westenberg, M.; Zhao, Y.; Campbell, R.E.; Quinn, A.M.; Hughes, T.E. Simultaneous detection of Ca2+ and diacylglycerol signaling in living cells. PLoS ONE 2012, 7, e42791. [Google Scholar] [CrossRef]
- Bhargava, Y.; Hampden-Smith, K.; Chachlaki, K.; Wood, K.C.; Vernon, J.; Allerston, C.K.; Batchelor, A.M.; Garthwaite, J. Improved genetically-encoded, FlincG-type fluorescent biosensors for neural cGMP imaging. Front. Mol. Neurosci. 2013, 6, 26. [Google Scholar] [CrossRef]
- Marvin, J.S.; Shimoda, Y.; Magloire, V.; Leite, M.; Kawashima, T.; Jensen, T.P.; Kolb, I.; Knott, E.L.; Novak, O.; Podgorski, K.; et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat. Methods 2019, 16, 763–770. [Google Scholar] [CrossRef]
- Marvin, J.S.; Scholl, B.; Wilson, D.E.; Podgorski, K.; Kazemipour, A.; Müller, J.A.; Schoch, S.; Quiroz, F.J.U.; Rebola, N.; Bao, H.; et al. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods 2018, 16, 206. [Google Scholar] [CrossRef]
- Sun, F.; Zeng, J.; Jing, M.; Zhou, J.; Feng, J.; Owen, S.F.; Luo, Y.; Li, F.; Wang, H.; Yamaguchi, T.; et al. A Genetically Encoded Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies, Fish, and Mice. Cell 2018, 174, 481–496. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Zhang, Y.; Roth, R.H.; Zhang, J.F.; Mo, A.; Tenner, B.; Huganir, R.L.; Zhang, J. Single-fluorophore biosensors for sensitive and multiplexed detection of signalling activities. Nat. Cell Biol. 2018, 20, 1215–1225. [Google Scholar] [CrossRef]
- Villette, V.; Chavarha, M.; Dimov, I.K.; Bradley, J.; Pradhan, L.; Mathieu, B.; Evans, S.W.; Chamberland, S.; Shi, D.; Yang, R.; et al. Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice. Cell 2019, 179, 1590–1608. [Google Scholar] [CrossRef]
- Subach, O.M.; Kunitsyna, T.A.; Mineyeva, O.A.; Lazutkin, A.A.; Bezryadnov, D.V.; Barykina, N.V.; Piatkevich, K.D.; Ermakova, Y.G.; Bilan, D.S.; Belousov, V.V.; et al. Slowly Reducible Genetically Encoded Green Fluorescent Indicator for In Vivo and Ex Vivo Visualization of Hydrogen Peroxide. Int. J. Mol. Sci. 2019, 20, 3138. [Google Scholar] [CrossRef] [PubMed]
- Jahandar-Lashaki, S.; Farajnia, S.; Faraji-Barhagh, A.; Hosseini, Z.; Bakhtiyari, N.; Rahbarnia, L. Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update. Mol. Biotechnol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Gyuricza, B.; Szabó, J.; Arató, V.; Szücs, D.; Vágner, A.; Szikra, D.; Fekete, A. Synthesis of Novel, Dual-Targeting 68Ga-NODAGA-LacN-E[c(RGDfK)]2 Glycopeptide as a PET Imaging Agent for Cancer Diagnosis. Pharmaceutics 2021, 13, 796. [Google Scholar] [CrossRef] [PubMed]
- Premchanth, J.S.; Sadanandan, S.; Rajamani, R. A Critical Review on the Identification of Pathogens by Employing Peptide-Based Electrochemical Biosensors. Crit. Rev. Anal. Chem. 2024, 1–14. [Google Scholar] [CrossRef] [PubMed]
CEA | SCCAg | CYFRA 21-1 | ||||||
---|---|---|---|---|---|---|---|---|
No. | Peptide Sequence | Repetition | No. | Peptide Sequence | Repetition | No. | Peptide Sequence | Repetition |
C1 | VVGRAMAYSTIP | 7 | S1 | TLSWHQNLRLME | 3 | Y1 | CFAGTPSILMLA | 18 |
C2 | YGVSALSSYVSC | 4 | S2 | AYSRDVVLNMWR | 2 | Y2 | GVGNFAPYWHMV | 3 |
C3 | WSPSALLPSSVT | 2 | S3 | IQCFSLAPYVGC | 2 | Y3 | GMCSFVDVANCP | 3 |
C4 | HHRLTRSMQLMM | 2 | S4 | NAPQASQVWKGL | 1 | Y4 | VVGRAMAYSTIP | 3 |
C5 | FQAPYWLTLGGE | 1 | S5 | LNVTNSVYPGIR | 1 | Y5 | DFSPRGSSISPF | 2 |
C6 | DVSPSRNQDRSP | 1 | S6 | SVYNALYLAASE | 16 | Y6 | AIVPFQMWERIQ | 1 |
C7 | VNPFHKFTAGNQ | 1 | S7 | VVGRAMAYSTIP | 1 | Y7 | NTNGFHKYHLSR | 1 |
C8 | ALNGVKGPLRMD | 1 | S8 | MDREAHRMVQAT | 1 | Y8 | SPIVQQRPVTGK | 1 |
C9 | FPRLTALAGPWP | 1 | Y9 | HYTADTPHRWPL | 1 | |||
C10 | DVTWRTSYSSDS | 1 | Y10 | QSYFNACWSCNH | 1 | |||
C11 | WSLNSGMFGYQW | 1 | Y11 | AKNSDYKMWVLG | 1 | |||
C12 | DRGSGVPADELW | 1 | ||||||
C13 | SWFQSDNTLRRP | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Jiang, Q.; Li, Z.; Shang, A.; Liu, J.; Xue, C.; Shao, S.; Zhang, H.; Yuan, H.; Wu, B.; et al. Affinity Peptide-Based Circularly Permuted Fluorescent Protein Biosensors for Non-Small Cell Lung Cancer Diagnosis. Sensors 2024, 24, 7899. https://doi.org/10.3390/s24247899
Xu D, Jiang Q, Li Z, Shang A, Liu J, Xue C, Shao S, Zhang H, Yuan H, Wu B, et al. Affinity Peptide-Based Circularly Permuted Fluorescent Protein Biosensors for Non-Small Cell Lung Cancer Diagnosis. Sensors. 2024; 24(24):7899. https://doi.org/10.3390/s24247899
Chicago/Turabian StyleXu, Dengyue, Qingyun Jiang, Zhi Li, Angyang Shang, Jiaqi Liu, Chengyu Xue, Shuai Shao, Hangyu Zhang, Hong Yuan, Bin Wu, and et al. 2024. "Affinity Peptide-Based Circularly Permuted Fluorescent Protein Biosensors for Non-Small Cell Lung Cancer Diagnosis" Sensors 24, no. 24: 7899. https://doi.org/10.3390/s24247899
APA StyleXu, D., Jiang, Q., Li, Z., Shang, A., Liu, J., Xue, C., Shao, S., Zhang, H., Yuan, H., Wu, B., & Liu, B. (2024). Affinity Peptide-Based Circularly Permuted Fluorescent Protein Biosensors for Non-Small Cell Lung Cancer Diagnosis. Sensors, 24(24), 7899. https://doi.org/10.3390/s24247899