Enhanced Response of ZnO Nanorod-Based Flexible MEAs for Recording Ischemia-Induced Neural Activity in Acute Brain Slices
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of Flexible Microelectrode Arrays (fMEAs)
2.1.1. Substrate Preparation
2.1.2. Zinc Oxide Nanorod Growth
2.1.3. Photolithography and Metal Deposition
2.1.4. Device Assembly and Connectivity
2.2. Device Characterization
2.2.1. DMA Characterization
2.2.2. Thermogravimetric Analysis
2.2.3. SEM Characterization
2.2.4. EIS Characterization
2.3. System Testing
2.3.1. Biological Sample Preparation and Perfusion
2.3.2. Cell Culture Preparation for In Vitro Biocompatibility Testing
2.3.3. Recording Setup and Procedure
2.3.4. Signal Acquisition and Performance Evaluation
3. Results
3.1. Nanostructure Morphology and Characterization
3.2. Dynamic Mechanical Analysis
3.3. Thermal Characterization
3.4. Electrical Characterization
3.5. Device Design
3.6. Assessment of Nano-fMEA Biocompatibility in Neural Cells
3.7. Signal Acquisition with Nano-fMEAs in Acute Brain Slices
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MEAs | Microelectrode arrays |
fMEAs | Flexible MEAs |
nano-fMEAs | Nanostructured flexible MEAs |
ZnO NRs | Zinc oxide nanorods |
SD | Spreading depolarization |
OGD | Oxygen–glucose deprivation |
PCB | Printed circuit board |
DMA | Dynamic mechanical analysis |
TGA | Thermogravimetric analysis |
SEM | Scanning electron microscopy |
EIS | Electrochemical impedance spectroscopy |
DAPI | 4′,6-diamidino-2-phenylindole |
GFAP | Glial fibrillary acidic protein |
References
- Serra, J.; Mateus, J.C.; Cardoso, S.; Ventura, J.; Aguiar, P.; Leitao, D.C. Stress-actuated Flexible Microelectrode Arrays for Activity Recording in 3D Neuronal Cultures. bioRxiv 2024. [Google Scholar] [CrossRef]
- Tang, X.; Shen, H.; Zhao, S.; Li, N.; Liu, J. Flexible brain–computer interfaces. Nat. Electron. 2023, 6, 109–118. [Google Scholar] [CrossRef]
- Someya, T.; Bao, Z.; Malliaras, G.G. The rise of plastic bioelectronics. Nature 2016, 540, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Minev, I.R.; Musienko, P.; Hirsch, A.; Barraud, Q.; Wenger, N.; Moraud, E.M.; Gandar, J.; Capogrosso, M.; Milekovic, T.; Asboth, L.; et al. Electronic dura mater for long-term multimodal neural interfaces. Science 2015, 347, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Lacour, S.P.; Courtine, G.; Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 2016, 1, 16063. [Google Scholar] [CrossRef]
- Zhou, H.; Jin, Z.; Xu, Y.; Lu, Y.; Xia, Z.; Yang, F.; Wu, Q.; Gao, Y.; Yin, J.; Zhang, J.; et al. Enhanced laser-induced PEDOT-based hydrogels for highly conductive bioelectronics. Natl. Sci. Rev. 2025, 12, nwaf136. [Google Scholar] [CrossRef]
- Xu, K.; Ko, S.H.; Chen, J. Advances in wearable and implantable bioelectronics for precision medicine. Bio-Design Manuf. 2024, 7, 383–387. [Google Scholar] [CrossRef]
- Xu, K.; Cai, Z.; Luo, H.; Lu, Y.; Ding, C.; Yang, G.; Wang, L.; Kuang, C.; Liu, J.; Yang, H. Toward Integrated Multifunctional Laser-Induced Graphene-Based Skin-Like Flexible Sensor Systems. ACS Nano 2024, 18, 26435–26476. [Google Scholar] [CrossRef]
- Rivnay, J.; Wang, H.; Fenno, L.; Deisseroth, K.; Malliaras, G.G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 2017, 3, e1601649. [Google Scholar] [CrossRef]
- Song, X.; Gu, Y.; Wang, S.; Wang, J.; Yu, L. Nanowire-Based Flexible Sensors for Wearable Electronics, Brain–Computer Interfaces, and Artificial Skins. Electron 2025, 3, e77. [Google Scholar] [CrossRef]
- Simon, D.T.; Gabrielsson, E.O.; Tybrandt, K.; Berggren, M. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chem. Rev. 2016, 116, 13009–13041. [Google Scholar] [CrossRef] [PubMed]
- Raos, B.; Maddah, M.; Graham, E.; Plank, N.; Unsworth, C. ZnO nanowire florets promote the growth of human neurons. Materialia 2020, 9, 100577. [Google Scholar] [CrossRef]
- Maddah, M.; Unsworth, C.P.; Plank, N.O.V. Selective growth of ZnO nanowires with varied aspect ratios on an individual substrate. Mater. Res. Express 2019, 6, 015905. [Google Scholar] [CrossRef]
- Maddah, M.; Unsworth, C.P.; Gouws, G.J.; Plank, N.O.V. Synthesis of encapsulated ZnO nanowires provide low impedance alternatives for microelectrodes. PLoS ONE 2022, 17, e0270164. [Google Scholar] [CrossRef]
- Babu, K.S.; Pinheiro, P.F.; Marques, C.F.; Justino, G.C.; Andrade, S.M.; Alves, M.M. Flexible ZnO-mAb nanoplatforms for selective peripheral blood mononuclear cell immobilization. Sci. Rep. 2020, 10, 15018. [Google Scholar] [CrossRef]
- Giakoumaki, A.N.; Kenanakis, G.; Klini, A.; Androulidaki, M.; Viskadourakis, Z.; Farsari, M.; Selimis, A. 3D micro-structured arrays of ZnO nanorods. Sci. Rep. 2017, 7, 2100. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Lu, J.G. Zinc Oxide Nanostructures: Synthesis and Properties. J. Nanosci. Nanotechnol. 2005, 5, 1561–1573. [Google Scholar] [CrossRef]
- Rinaldi, A.; Pea, M.; Notargiacomo, A.; Ferrone, E.; Garroni, S.; Pilloni, L.; Araneo, R. A Simple Ball Milling and Thermal Oxidation Method for Synthesis of ZnO Nanowires Decorated with Cubic ZnO2 Nanoparticles. Nanomaterials 2021, 11, 475. [Google Scholar] [CrossRef]
- Carofiglio, M.; Barui, S.; Cauda, V.; Laurenti, M. Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine. Appl. Sci. 2020, 10, 5194. [Google Scholar] [CrossRef]
- Schmidt, V.; Wittemann, J.V.; Senz, S.; Gösele, U. Silicon Nanowires: A Review on Aspects of their Growth and their Electrical Properties. Adv. Mater. 2009, 21, 2681–2702. [Google Scholar] [CrossRef] [PubMed]
- Hessien, M. Recent progress in zinc oxide nanomaterials and nanocomposites: From synthesis to applications. Ceram. Int. 2022, 48, 22609–22628. [Google Scholar] [CrossRef]
- Maita, F.; Maiolo, L.; Lucarini, I.; Del Rio De Vicente, I.; Palmieri, E.; Fiorentini, E.; Mussi, V. Low-Cost and Label-Free Raman Sensors Based on Ag-Coated ZnO Nanorods for Monitoring Astronaut’s Health. In Proceedings of the 2023 IEEE 10th International Workshop on Metrology for Aerospace (MetroAeroSpace), Milan, Italy, 19–21 June 2023; pp. 363–367. [Google Scholar] [CrossRef]
- Sudha, D.; Kumar, E.R.; Shanjitha, S.; Munshi, A.M.; Al-Hazmi, G.A.A.; El-Metwaly, N.M.; Kirubavathy, S.J. Structural, optical, morphological and electrochemical properties of ZnO and graphene oxide blended ZnO nanocomposites. Ceram. Int. 2023, 49, 7284–7288. [Google Scholar] [CrossRef]
- Del Río De Vicente, J.I.; Lucarini, I.; Maita, F.; Salvò, D.; Marchetti, V.; Anderova, M.; Gómez, J.; Maiolo, L. Development of ZnO NRs-rGO Low-Impedance Electrodes for Astrocyte Cell Signal Recording. In Proceedings of the 2023 IEEE SENSORS, Vienna, Austria, 29 October–1 November 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, M.; Mi, G.; Shi, D.; Bassous, N.; Hickey, D.; Webster, T.J. Nanotechnology and Nanomaterials for Improving Neural Interfaces. Adv. Funct. Mater. 2018, 28, 1700905. [Google Scholar] [CrossRef]
- Rodilla, B.L.; Arché-Núñez, A.; Ruiz-Gómez, S.; Domínguez-Bajo, A.; Fernández-González, C.; Guillén-Colomer, C.; González-Mayorga, A.; Rodríguez-Díez, N.; Camarero, J.; Miranda, R.; et al. Flexible metallic core–shell nanostructured electrodes for neural interfacing. Sci. Rep. 2024, 14, 3729. [Google Scholar] [CrossRef]
- Saracino, E.; Maiolo, L.; Polese, D.; Semprini, M.; Borrachero-Conejo, A.I.; Gasparetto, J.; Murtagh, S.; Sola, M.; Tomasi, L.; Valle, F.; et al. A Glial-Silicon Nanowire Electrode Junction Enabling Differentiation and Noninvasive Recording of Slow Oscillations from Primary Astrocytes. Adv. Biosyst. 2020, 4, 1900264. [Google Scholar] [CrossRef] [PubMed]
- Kirdajova, D.B.; Kriska, J.; Tureckova, J.; Anderova, M. Ischemia-Triggered Glutamate Excitotoxicity from the Perspective of Glial Cells. Front. Cell. Neurosci. 2020, 14, 51. [Google Scholar] [CrossRef]
- Du, Y.; Wang, W.; Lutton, A.D.; Kiyoshi, C.M.; Ma, B.; Taylor, A.T.; Olesik, J.W.; McTigue, D.M.; Askwith, C.C.; Zhou, M. Dissipation of transmembrane potassium gradient is the main cause of cerebral ischemia-induced depolarization in astrocytes and neurons. Exp. Neurol. 2018, 303, 1–11. [Google Scholar] [CrossRef]
- Menyhárt, Á.; Zölei-Szénási, D.; Puskás, T.; Makra, P.; Tóth, O.M.; Szepes, B.; Tóth, R.; Ivánkovits-Kiss, O.; Obrenovitch, T.; Bari, F.; et al. Spreading depolarization remarkably exacerbates ischemia-induced tissue acidosis in the young and aged rat brain. Sci. Rep. 2017, 7, 1154. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.-Y.; Gao, Z.-K.; Han, Y.; Yuan, M.; Guo, Y.-S.; Bi, X. Activation and Role of Astrocytes in Ischemic Stroke. Front. Cell. Neurosci. 2021, 15, 755955. [Google Scholar] [CrossRef]
- Eguchi, K.; Velicky, P.; Hollergschwandtner, E.; Itakura, M.; Fukazawa, Y.; Danzl, J.G.; Shigemoto, R. Advantages of Acute Brain Slices Prepared at Physiological Temperature in the Characterization of Synaptic Functions. Front. Cell. Neurosci. 2020, 14, 63. [Google Scholar] [CrossRef] [PubMed]
- Buskila, Y.; Breen, P.P.; Tapson, J.; van Schaik, A.; Barton, M.; Morley, J.W. Extending the viability of acute brain slices. Sci. Rep. 2014, 4, 5309. [Google Scholar] [CrossRef] [PubMed]
- Maiolo, L.; Guarino, V.; Saracino, E.; Convertino, A.; Melucci, M.; Muccini, M.; Ambrosio, L.; Zamboni, R.; Benfenati, V. Glial Interfaces: Advanced Materials and Devices to Uncover the Role of Astroglial Cells in Brain Function and Dysfunction. Adv. Healthc. Mater. 2021, 10, e2001268. [Google Scholar] [CrossRef]
- Barbagiovanni, E.G.; Strano, V.; Franzò, G.; Crupi, I.; Mirabella, S. Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition. Appl. Phys. Lett. 2015, 106, 093108. [Google Scholar] [CrossRef]
- Strano, V.; Urso, R.G.; Scuderi, M.; Iwu, K.O.; Simone, F.; Ciliberto, E.; Spinella, C.; Mirabella, S. Double Role of HMTA in ZnO Nanorods Grown by Chemical Bath Deposition. J. Phys. Chem. C 2014, 118, 28189–28195. [Google Scholar] [CrossRef]
- Yi, G.-C.; Wang, C.; Park, W.I. ZnO nanorods: Synthesis, characterization and applications. Semicond. Sci. Technol. 2005, 20, S22–S34. [Google Scholar] [CrossRef]
- Pazzini, L.; Polese, D.; Weinert, J.F.; Maiolo, L.; Maita, F.; Marrani, M.; Pecora, A.; Sanchez-Vives, M.V.; Fortunato, G. An ultra-compact integrated system for brain activity recording and stimulation validated over cortical slow oscillations in vivo and in vitro. Sci. Rep. 2018, 8, 16717. [Google Scholar] [CrossRef] [PubMed]
- Nolte, C.; Matyash, M.; Pivneva, T.; Schipke, C.G.; Ohlemeyer, C.; Hanisch, U.K.; Kirchhoff, F.; Kettenmann, H. GFAP promoter-controlled EGFP-expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 2001, 33, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Kristian, T.; Hu, B. Guidelines for using mouse global cerebral ischemia models. Transl. Stroke Res. 2013, 4, 343–350. [Google Scholar] [CrossRef]
- Kriska, J.; Honsa, P.; Dzamba, D.; Butenko, O.; Kolenicova, D.; Janeckova, L.; Nahacka, Z.; Andera, L.; Kozmik, Z.; Taketo, M.M.; et al. Manipulating Wnt signaling at different subcellular levels affects the fate of neonatal neural stem/progenitor cells. Brain Res. 2016, 1651, 73–87. [Google Scholar] [CrossRef]
- Corish, P.; Tyler-Smith, C. Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng. 1999, 12, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.M.; Biesiadecki, B.J.; Ziolo, M.T.; Davis, J.P. The Need for Speed; Mice, Men, and Myocardial Kinetic Reserve. Circ. Res. 2016, 119, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Lucarini, I.; Maita, F.; Conte, G.; Saracino, E.; Formaggio, F.; Palmieri, E.; Fabbri, R.; Konstantoulaki, A.; Lazzarini, C.; Caprini, M.; et al. Silicon Nanowire Mats Enable Advanced Bioelectrical Recordings in Primary DRG Cell Cultures. Adv. Healthc. Mater. 2025, 14, e2500379. [Google Scholar] [CrossRef] [PubMed]
- Vonk, W.I.M.; Rainbolt, T.K.; Dolan, P.T.; Webb, A.E.; Brunet, A.; Frydman, J. Differentiation Drives Widespread Rewiring of the Neural Stem Cell Chaperone Network. Mol. Cell 2020, 78, 329–345.e9. [Google Scholar] [CrossRef]
- Benincasa, J.C.; Madias, M.I.; Kandell, R.M.; Delgado-Garcia, L.M.; Engler, A.J.; Kwon, E.J.; Porcionatto, M.A. Mechanobiological Modulation of In Vitro Astrocyte Reactivity Using Variable Gel Stiffness. ACS Biomater. Sci. Eng. 2024, 10, 4279–4296. [Google Scholar] [CrossRef]
- Yamashita, T.; Ninomiya, M.; Acosta, P.H.; García-Verdugo, J.M.; Sunabori, T.; Sakaguchi, M.; Adachi, K.; Kojima, T.; Hirota, Y.; Kawase, T.; et al. Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J. Neurosci. 2006, 26, 6627–6636. [Google Scholar] [CrossRef]
- Doetsch, F.; Caillé, I.; Lim, D.A.; García-Verdugo, J.M.; Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999, 97, 703–716. [Google Scholar] [CrossRef]
- Joshi, I.; Andrew, R.D. Imaging anoxic depolarization during ischemia-like conditions in the mouse hemi-brain slice. J. Neurophysiol. 2001, 85, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.P.; Weber, M.L.; Gaughan, C.L.; Lehning, E.J.; LoPachin, R.M. Oxygen/glucose deprivation in hippocampal slices: Altered intraneuronal elemental composition predicts structural and functional damage. J. Neurosci. Off. J. Soc. Neurosci. 1999, 19, 619–629. [Google Scholar] [CrossRef]
- Reappraisal of Anoxic Spreading Depolarization as a Terminal Event During Oxygen–Glucose Deprivation in Brain Slices In Vitro Scientific Reports. Available online: https://www.nature.com/articles/s41598-020-75975-w (accessed on 17 April 2025).
- Antunes, A.P.; Schiefecker, A.J.; Beer, R.; Pfausler, B.; Sohm, F.; Fischer, M.; Dietmann, A.; Lackner, P.; Hackl, W.O.; Ndayisaba, J.-P.; et al. Higher brain extracellular potassium is associated with brain metabolic distress and poor outcome after aneurysmal subarachnoid hemorrhage. Crit. Care 2014, 18, R119. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.J. The extracellular potassium concentration in brain cortex following ischemia in hypo- and hyperglycemic rats. Acta Physiol. Scand. 1978, 102, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Somjen, G.G. Extracellular potassium in the mammalian central nervous system. Annu. Rev. Physiol. 1979, 41, 159–177. [Google Scholar] [CrossRef]
- Cho, S.; Wood, A.; Bowlby, M.R. Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr. Neuropharmacol. 2007, 5, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Humpel, C. Organotypic brain slice cultures: A review. Neuroscience 2015, 305, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Blaeser, A.S.; Connors, B.W.; Nurmikko, A.V. Spontaneous dynamics of neural networks in deep layers of prefrontal cortex. J. Neurophysiol. 2017, 117, 1581–1594. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.L.; Chew, E.Y.; Bennett, D.V.; Hammad, M.A.; Fröhlich, F. Differential effects of cholinergic and noradrenergic neuromodulation on spontaneous cortical network dynamics. Neuropharmacology 2013, 72, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Ting, J.T.; Daigle, T.L.; Chen, Q.; Feng, G. Acute brain slice methods for adult and aging animals: Application of targeted patch clamp analysis and optogenetics. Methods Mol. Biol. 2014, 1183, 221–242. [Google Scholar] [CrossRef]
- Walch, E.; Murphy, T.R.; Cuvelier, N.; Aldoghmi, M.; Morozova, C.; Donohue, J.; Young, G.; Samant, A.; Garcia, S.; Alvarez, C.; et al. Astrocyte-Selective Volume Increase in Elevated Extracellular Potassium Conditions Is Mediated by the Na+/K+ ATPase and Occurs Independently of Aquaporin 4. ASN Neuro 2020, 12, 1759091420967152. [Google Scholar] [CrossRef]
- Ding, F.; Sun, Q.; Long, C.; Rasmussen, R.N.; Peng, S.; Xu, Q.; Kang, N.; Song, W.; Weikop, P.; Goldman, S.A.; et al. Dysregulation of extracellular potassium distinguishes healthy ageing from neurodegeneration. Brain J. Neurol. 2024, 147, 1726–1739. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Wang, W.; Kimelberg, H.K.; Zhou, M. Oxygen and glucose deprivation-induced changes in astrocyte membrane potential and their underlying mechanisms in acute rat hippocampal slices. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2007, 28, 456–467. [Google Scholar] [CrossRef]
- Buzsáki, G.; Anastassiou, C.A.; Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 2012, 13, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Henze, D.A.; Borhegyi, Z.; Csicsvari, J.; Mamiya, A.; Harris, K.D.; Buzsáki, G. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 2000, 84, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Mestre, A.L.G.; Inácio, P.M.C.; Elamine, Y.; Asgarifar, S.; Lourenço, A.S.; Cristiano, M.L.S.; Aguiar, P.; Medeiros, M.C.R.; Araújo, I.M.; Ventura, J.; et al. Extracellular Electrophysiological Measurements of Cooperative Signals in Astrocytes Populations. Front. Neural Circuits 2017, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-C.; Durand, D.M. Subthreshold Oscillating Waves in Neural Tissue Propagate by Volume Conduction and Generate Interference. Brain Sci. 2022, 13, 74. [Google Scholar] [CrossRef] [PubMed]
Compounds | aCSF (mM) | Isolation Solution (mM) | Hyperkalemic (mM) | OGD (mM) |
---|---|---|---|---|
NaCl | 122 | - | 115 | 122 |
NMDG | - | 110 | - | - |
KCl | 3 | 2.5 | 10 | 3 |
NaHCO3 | 28 | 24.5 | 28 | 28 |
Na2HPO4 | 1.25 | 1.25 | 1.25 | 1.25 |
Glucose | 10 | 20 | 10 | - |
CaCl2 | 1.5 | 0.5 | 1.5 | 1.5 |
MgCl2 | 1.3 | 7 | 1.3 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Río De Vicente, J.I.; Marchetti, V.; Lucarini, I.; Palmieri, E.; Polese, D.; Montaina, L.; Maita, F.; Kriska, J.; Tureckova, J.; Anderova, M.; et al. Enhanced Response of ZnO Nanorod-Based Flexible MEAs for Recording Ischemia-Induced Neural Activity in Acute Brain Slices. Nanomaterials 2025, 15, 1173. https://doi.org/10.3390/nano15151173
Del Río De Vicente JI, Marchetti V, Lucarini I, Palmieri E, Polese D, Montaina L, Maita F, Kriska J, Tureckova J, Anderova M, et al. Enhanced Response of ZnO Nanorod-Based Flexible MEAs for Recording Ischemia-Induced Neural Activity in Acute Brain Slices. Nanomaterials. 2025; 15(15):1173. https://doi.org/10.3390/nano15151173
Chicago/Turabian StyleDel Río De Vicente, José Ignacio, Valeria Marchetti, Ivano Lucarini, Elena Palmieri, Davide Polese, Luca Montaina, Francesco Maita, Jan Kriska, Jana Tureckova, Miroslava Anderova, and et al. 2025. "Enhanced Response of ZnO Nanorod-Based Flexible MEAs for Recording Ischemia-Induced Neural Activity in Acute Brain Slices" Nanomaterials 15, no. 15: 1173. https://doi.org/10.3390/nano15151173
APA StyleDel Río De Vicente, J. I., Marchetti, V., Lucarini, I., Palmieri, E., Polese, D., Montaina, L., Maita, F., Kriska, J., Tureckova, J., Anderova, M., & Maiolo, L. (2025). Enhanced Response of ZnO Nanorod-Based Flexible MEAs for Recording Ischemia-Induced Neural Activity in Acute Brain Slices. Nanomaterials, 15(15), 1173. https://doi.org/10.3390/nano15151173