Zinc Oxide Nanoparticles in Modern Science and Technology: Multifunctional Roles in Healthcare, Environmental Remediation, and Industry
Abstract
1. Introduction
1.1. Scope and Objectives of the Review
- ➢
- To provide a comprehensive overview of the recent advancements in the synthesis, characterization, and multifunctional applications of zinc oxide nanoparticles (ZnO NPs) from 2020 to 2025.
- ➢
- To explore the diverse roles of ZnO NPs in biomedical applications, including antimicrobial activity, targeted drug delivery, cancer therapy, and vaccine development.
- ➢
- To highlight the significant contributions of ZnO NPs in environmental remediation, such as water purification, pollutant degradation, and sustainable waste management.
- ➢
- To examine the use of ZnO NPs in industrial sectors like electronics, optoelectronics, packaging, and textiles, focusing on their optical, electrical, and antimicrobial properties.
- ➢
- To assess the potential of ZnO NPs in agricultural innovation, including their use as nanofertilizers, nanopesticides, and growth-promoting agents.
- ➢
- To discuss the toxicological and safety aspects associated with ZnO NPs, emphasizing their impact on human health and ecosystems.
- ➢
- To identify the challenges, limitations, and future perspectives that may guide the development of safer and more efficient ZnO-based nanotechnologies.
- ➢
- To support interdisciplinary collaboration by bridging nanoscience with healthcare, agriculture, environmental engineering, and industrial technology.
1.2. Review Methodology
2. Applications of Zinc Oxide Nanoparticles
2.1. Biomedical Applications
2.1.1. Antimicrobial Activities
Antibacterial Activity
Antifungal Activity
2.1.2. Applications of Zinc Oxide Nanoparticles in Drug Delivery
Targeted Drug Delivery
Controlled Release and Drug Loading
Overcoming Drug Resistance
2.1.3. Applications of Zinc Oxide Nanoparticles in Cancer Treatment
Photodynamic Therapy (PDT)
Chemotherapy Enhancement
Nanotheranostics
2.1.4. Applications of Zinc Oxide Nanoparticles in Vaccine Development
Adjuvant Activity of ZnO Nanoparticles
ZnO Nanoparticles as Antigen Delivery Systems
Development of New Vaccines Using ZnO Nanoparticles
2.2. Applications of Zinc Oxide Nanoparticles in Environmental Remediation
2.2.1. Water Purification
2.2.2. Air Purification
2.2.3. Soil Remediation
2.3. Industrial Applications of Zinc Oxide Nanoparticles
2.3.1. Electronics and Optoelectronics
2.3.2. Gas Sensing
- At low temperatures (<100 °C):
- At moderate temperatures (100–300 °C):
- Reducing gases (e.g., CO, NH3, H2, and ethanol):
- Oxidizing gases (e.g., NO2):
- Sensitivity: Degree of change in electrical signal per concentration of gas.
- Selectivity: Ability to distinguish a specific gas in the presence of other interfering gases.
- Response Time: Time taken to reach 90% of the total resistance change.
- Recovery Time: Time taken for the sensor to return to baseline after gas removal.
- Operating Temperature: ZnO sensors often operate at elevated temperatures (150–350 °C), though recent efforts focus on room-temperature operation.
- Morphology Control:
- 2.
- Doping with Metal Ions:
- 3.
- Formation of Heterojunctions:
- 4.
- UV Light Activation:
- Industrial safety monitoring (e.g., leak detection of combustible or toxic gases).
- Environmental pollution control (e.g., detection of NO2 and VOCs).
- Breath analysis and medical diagnostics (e.g., detection of acetone or ammonia in exhaled breath).
- Smart devices and Internet of Things (IoT) integrated sensing platforms.
2.3.3. Textiles
2.3.4. Cosmetics
2.3.5. Food Packaging
2.4. Agricultural Applications of Zinc Oxide Nanoparticles
3. Toxicity and Safety Concerns of Zinc Oxide Nanoparticles
3.1. Human Health Risks
3.2. Environmental Impact
3.3. Safety Measures and Regulations
4. Challenges and Future Perspectives
Limitations in Clinical and Field Applications
5. Conclusions
- ➢
- Multifunctionality and Versatility: ZnO NPs offer diverse solutions in various sectors, from healthcare to agriculture and environmental protection, with applications ranging from antimicrobial treatments to pollution control.
- ➢
- Advancements in Biomedical Applications: ZnO NPs are making significant strides in drug delivery, tissue engineering, and vaccine development, offering enhanced therapeutic outcomes.
- ➢
- Environmental and Agricultural Potential: ZnO NPs play a crucial role in environmental remediation and contribute to agricultural productivity, enhancing plant growth and protecting crops.
- ➢
- Challenges in Toxicity and Environmental Impact: While ZnO NPs hold promise, their potential toxicity and long-term environmental impacts warrant further investigation, particularly focusing on safe, biocompatible formulations.
- ➢
- Future Directions and Research: The future of ZnO NPs lies in developing biosafe alternatives, optimizing synthesis methods for large-scale production, and fostering interdisciplinary research to unlock their full potential.
Author Contributions
Funding
Conflicts of Interest
References
- Mishra, P.K.; Mishra, H.; Ekielski, A.; Talegaonkar, S.; Vaidya, B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov. Today 2017, 22, 1825–1834. [Google Scholar] [CrossRef] [PubMed]
- Puri, N.; Gupta, A. Water remediation using titanium and zinc oxide nanomaterials through disinfection and photo catalysis process: A review. Environ. Res. 2023, 227, 115786. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Burmistrov, D.E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B. A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys. 2021, 9, 641481. [Google Scholar] [CrossRef]
- Ikram, M.; Qumar, U.; Ali, S.; Ul-Hamid, A. Impact of metal oxide nanoparticles on adsorptive and photocatalytic schemes. In Advanced Materials for Wastewater Treatment and Desalination; CRC Press: Boca Raton, FL, USA, 2022; pp. 53–77. [Google Scholar]
- Jan, F.A.; Ullah, R.; Shah, U.; Saleem, M.; Ullah, N. Band gap tuning of zinc oxide nanoparticles by the addition of (1–4%) strontium. synthesis, characterization of the catalyst and its use for the photocatalytic degradation of acid violet-17 dye in aqueous solution. Environ. Eng. Manag. J. 2020, 19, 2039–2048. [Google Scholar] [CrossRef]
- Ye, Q.; Chen, W.; Huang, H.; Tang, Y.; Wang, W.; Meng, F.; Wang, H.; Zheng, Y. Iron and zinc ions, potent weapons against multidrug-resistant bacteria. Appl. Microbiol. Biotechnol. 2020, 104, 5213–5227. [Google Scholar] [CrossRef]
- Afzal, M.A.; Javed, M.; Aroob, S.; Javed, T.; Alnoman, M.M.; Alelwani, W.; Bibi, I.; Sharif, M.; Saleem, M.; Rizwan, M.; et al. The biogenic synthesis of bimetallic Ag/ZnO nanoparticles: A multifunctional approach for methyl violet photocatalytic degradation and the assessment of antibacterial, antioxidant, and cytotoxicity properties. Nanomaterials 2023, 13, 2079. [Google Scholar] [CrossRef] [PubMed]
- Motelica, L.; Oprea, O.-C.; Vasile, B.-S.; Ficai, A.; Ficai, D.; Andronescu, E.; Holban, A.M. Antibacterial activity of solvothermal obtained ZnO nanoparticles with different morphology and photocatalytic activity against a dye mixture: Methylene blue, rhodamine B and methyl orange. Int. J. Mol. Sci. 2023, 24, 5677. [Google Scholar] [CrossRef]
- Prakashan, D.; Roberts, A.; Gandhi, S. Recent advancement of nanotherapeutics in accelerating chronic wound healing process for surgical wounds and diabetic ulcers. Biotechnol. Genet. Eng. Rev. 2023, 39, 1059–1087. [Google Scholar] [CrossRef]
- Gao, Q.; Feng, Z.; Wang, J.; Zhao, F.; Li, C.; Ju, J. Application of nano-ZnO in the food preservation industry: Antibacterial mechanisms, influencing factors, intelligent packaging, preservation film and safety. Crit. Rev. Food Sci. Nutr. 2024, 1–27. [Google Scholar] [CrossRef]
- Xie, Y.; Pan, Y.; Cai, P. Cellulose-based antimicrobial films incroporated with ZnO nanopillars on surface as biodegradable and antimicrobial packaging. Food Chem. 2022, 368, 130784. [Google Scholar] [CrossRef]
- Vats, M.; Swami, M.; Sheokand, B.; Rawat, V.; Negi, D.S.; Kumar, A. Antimicrobial textiles based on nanoparticles and composite, antiviral and antimicrobial coatings based on functionalized nanomaterials. In Antiviral and Antimicrobial Coatings Based on Functionalized Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2023; pp. 389–420. [Google Scholar]
- Alashkar, A.A.; Mahmoud, H.A.; Husseien, N.F.; Mahmoud, A.E.-M. Nanotechnology as a modern technique to impart both natural and synthetic fabrics anti-viral, anti-bacterial and water-repellent properties. J. Text. Color. Polym. Sci. 2024, 21, 105–134. [Google Scholar] [CrossRef]
- Melnikova, N.; Balakireva, A.; Orekhov, D.; Kamorin, D.; Didenko, N.; Malygina, D.; Knyazev, A.; Novopoltsev, D.; Solovyeva, A. Zinc oxide nanoparticles protected with terpenoids as a substance in redox imbalance normalization in burns. Pharmaceuticals 2021, 14, 492. [Google Scholar] [CrossRef]
- Yusof, H.M.; Mohamad, R.; Zaidan, U.H.; Rahman, N.A.A. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. J. Anim. Sci. Biotechnol. 2019, 10, 57. [Google Scholar]
- Xu, M.-N.; Li, L.; Pan, W.; Zheng, H.-X.; Wang, M.-L.; Peng, X.-M.; Dai, S.-Q.; Tang, Y.-M.; Zeng, K.; Huang, X.-W. Zinc oxide nanoparticles prime a protective immune response in Galleria mellonella to defend against Candida albicans. Front. Microbiol. 2021, 12, 766138. [Google Scholar] [CrossRef]
- Strekalovskaya, E.I.; Perfileva, A.I.; Krutovsky, K.V. Zinc oxide nanoparticles in the “Soil–Bacterial Community–Plant” system: Impact on the stability of soil ecosystems. Agronomy 2024, 14, 1588. [Google Scholar] [CrossRef]
- Costa-Orlandi, C.B.; Martinez, L.R.; Bila, N.M.; Friedman, J.M.; Friedman, A.J.; Mendes-Giannini, M.J.S.; Nosanchuk, J.D. Nitric oxide-releasing nanoparticles are similar to efinaconazole in their capacity to eradicate Trichophyton rubrum biofilms. Front. Cell. Infect. Microbiol. 2021, 11, 684150. [Google Scholar] [CrossRef]
- Ahmad, W.; Nepal, J.; Xin, X.; He, Z. Agronomic Zn biofortification through nano ZnO application enhanced growth, photosystem efficiency, Zn and P nutrition in maize. Arch. Agron. Soil Sci. 2023, 69, 3328–3344. [Google Scholar] [CrossRef]
- Tan, E.P.; Djearamane, S.; Wong, L.S.; Rajamani, R.; Antony, A.C.T.; Subbaih, S.K.; Janakiraman, A.K.; Aminuzzaman, M.; Subramaniyan, V.; Sekar, M.; et al. An in vitro study of the antifungal efficacy of zinc oxide nanoparticles against Saccharomyces cerevisiae. Coatings 2022, 12, 1988. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, G.; Shivgotra, R.; Singh, M.; Thakur, S.; Jain, S.K. Prolonged Skin Retention of Luliconazole from SLNs Based Topical Gel Formulation Contributing to Ameliorated Antifungal Activity. AAPS PharmSciTech 2024, 25, 229. [Google Scholar] [CrossRef]
- Hernández, R.V.; Lemus, M.A.A.; García, S.D.l.R.; González, R.L.; Quintana, P.; Zaleta, D.G.; Vázquez, V.V.; Cornelio, S.G. Antifungal activity of ZnO nanoparticles synthesized from Eichhornia crassipes extract for construction applications. Nanomaterials 2024, 14, 1007. [Google Scholar] [CrossRef]
- Bahaar, H.; Kumar, B.S.; Reddy, S.G.; Guo, Z.; Pereira, A.; Liu, T.X. From Concept to Creation: Micro/Nanobot Technology from Fabrication to Biomedical Applications. Eng. Sci. 2024, 32, 1346. [Google Scholar] [CrossRef]
- Sadiq, S.; Khan, I.; Shen, Z.; Wang, M.; Xu, T.; Khan, S.; Zhou, X.; Bahadur, A.; Rafiq, M.; Sohail, S.; et al. Recent updates on multifunctional nanomaterials as antipathogens in humans and livestock: Classification, application, mode of action, and challenges. Molecules 2023, 28, 7674. [Google Scholar] [CrossRef]
- Saraswathi, K.A.; Geeta Rani, B.; Sai Bhargava Reddy, M.; Lasina, R.; Jayarambabu, N.; Venkateswara Rao, K.; Venkatappa Rao, T. Zinc Oxide-Based Antibacterial and Anti-viral Functional Materials. In Antibacterial and Antiviral Functional Materials; ACS Publications: Washington, DC, USA, 2024; Volume 2, pp. 281–307. [Google Scholar]
- Sengupta, P. Biodegradability, Toxicity, Legal and Commercial Aspects, Safety Issues and Mitigations, and Environmental and Health Impacts of Antibacterial and Antiviral Functional Materials. In Antibacterial and Antiviral Functional Materials; ACS Publications: Washington, DC, USA, 2024; Volume 2, pp. 361–401. [Google Scholar]
- Kadhum, H.H.; Ibraheem, S.; Jawad, Z.N.; Jeddoa, Z.M.A.; Rasool, K.H.; Jabir, M.S.; Najm, M.A.; Jawad, S.F.; Al-Kuraishy, H.M.; Nayef, U.M.; et al. Potential pharmaceutical applications and molecular docking study for green fabricated ZnO nanoparticles mediated Raphanus sativus: In vitro and in vivo study. Nanotechnol. Rev. 2024, 13, 20240113. [Google Scholar] [CrossRef]
- Mishra, Y.K.; Adelung, R.; Röhl, C.; Shukla, D.; Spors, F.; Tiwari, V. Virostatic potential of micro–nano filopodia-like ZnO structures against herpes simplex virus-1. Antivir. Res. 2011, 92, 305–312. [Google Scholar] [CrossRef]
- Dai, P.; Ruan, P.; Mao, Y.; Tang, Z.; Bajinka, O.; Wu, G.; Tan, Y. The antiviral efficacies of small-molecule inhibitors against respiratory syncytial virus based on the F protein. J. Antimicrob. Chemother. 2023, 78, 169–179. [Google Scholar] [CrossRef]
- Tao, X.; Zhang, L.; Du, L.; Lu, K.; Zhao, Z.; Xie, Y.; Li, X.; Huang, S.; Wang, P.-H.; Pan, J.-A.; et al. Inhibition of SARS-CoV-2 replication by zinc gluconate in combination with hinokitiol. J. Inorg. Biochem. 2022, 231, 111777. [Google Scholar] [CrossRef]
- Razavi, M.S.; Ahmadi, F.; Ebrahimnejad, P.; Akbarzadeh, A.; Farokhrou, M.; Nokhodchi, A. Harnessing Nanotechnology for Optimized Herbal Cancer Treatment: A Comprehensive Review of Nanoscale Drug Delivery Systems. Pharm. Sci. 2024, 30, 153–186. [Google Scholar] [CrossRef]
- Žigrayová, D.; Mikušová, V.; Mikuš, P. Advances in antiviral delivery systems and chitosan-based polymeric and nanoparticulate antivirals and antiviral carriers. Viruses 2023, 15, 647. [Google Scholar] [CrossRef]
- Stewart, C.M.; Bo, Y.; Fu, K.; Chan, M.; Kozak, R.; Apperley, K.Y.-P.; Laroche, G.; Daniel, R.; Beauchemin, A.M.; Kobinger, G.; et al. Sphingosine kinases promote Ebola virus infection and can be targeted to inhibit filoviruses, coronaviruses, and arenaviruses using late endocytic trafficking to enter cells. ACS Infect. Dis. 2023, 9, 1064–1077. [Google Scholar] [CrossRef]
- Gupta, J.; Irfan, M.; Ramgir, N.; Muthe, K.P.; Debnath, A.K.; Ansari, S.; Gandhi, J.; Ranjith-Kumar, C.T.; Surjit, M. Antiviral activity of zinc oxide nanoparticles and tetrapods against the Hepatitis E and Hepatitis C viruses. Front. Microbiol. 2022, 13, 881595. [Google Scholar] [CrossRef]
- Hasanin, M.; Swielam, E.M.; Atwa, N.A.; Agwa, M.M. Novel design of bandages using cotton pads, doped with chitosan, glycogen and ZnO nanoparticles, having enhanced antimicrobial and wounds healing effects. Int. J. Biol. Macromol. 2022, 197, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Viswanathan, K.; Kasi, G.; Thanakkasaranee, S.; Sadeghi, K.; Seo, J. ZnO nanostructures in active antibacterial food packaging: Preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Rev. Int. 2022, 38, 537–565. [Google Scholar] [CrossRef]
- Tripathy, J.; Mishra, A.; Pandey, M.; Thakur, R.R.; Chand, S.; Rout, P.R.; Shahid, M.K. Advances in nanoparticles and nanocomposites for water and wastewater treatment: A review. Water 2024, 16, 1481. [Google Scholar] [CrossRef]
- Kışla, D.; Gökmen, G.G.; Evrendilek, G.A.; Akan, T.; Vlčko, T.; Kulawik, P.; Jambrak, A.R.; Ozogul, F. Recent developments in antimicrobial surface coatings: Various deposition techniques with nanosized particles, their application and environmental concerns. Trends Food Sci. Technol. 2023, 135, 144–172. [Google Scholar] [CrossRef]
- Divya, M.; Chen, J.; Durán-Lara, E.F.; Kim, K.-S.; Vijayakumar, S. Revolutionizing healthcare: Harnessing nano biotechnology with zinc oxide nanoparticles to combat biofilm and bacterial infections-A short review. Microb. Pathog. 2024, 191, 106679. [Google Scholar] [CrossRef]
- Shaikh, T.N.; Patel, B.H. Nanotechnology in hospital clothing and odor control of medical textiles. In Nanotechnology Based Advanced Medical Textiles and Biotextiles for Healthcare; CRC Press: Boca Raton, FL, USA, 2024; pp. 177–194. [Google Scholar]
- El Shahawi, A.M. Incorporation of zinc oxide nanoparticles and it’s antibacterial effect on toothpaste. Bull. Natl. Res. Cent. 2023, 47, 2. [Google Scholar] [CrossRef]
- Keerthana, P.; Vijayakumar, S.; Vidhya, E.; Punitha, V.N.; Nilavukkarasi, M.; Praseetha, P.K. Biogenesis of ZnO nanoparticles for revolutionizing agriculture: A step towards anti-infection and growth promotion in plants. Ind. Crops Prod. 2021, 170, 113762. [Google Scholar]
- Gomathi, R.; Paradesi, D. Antibacterial efficacy of a topical skin cream loaded with nano zinc oxide, cetylpyridinium chloride and chlorhexidine gluconate. Mater. Today Proc. 2023, 93, 54–60. [Google Scholar] [CrossRef]
- Ma, Y.; Yi, J.; Ma, J.; Yu, H.; Luo, L.; Wu, W.; Jin, L.; Yang, Q.; Lou, T.; Sun, D.; et al. Hand sanitizer gels: Classification, challenges, and the future of multipurpose hand hygiene products. Toxics 2023, 11, 687. [Google Scholar] [CrossRef] [PubMed]
- Djearamane, S.; Xiu, L.-J.; Wong, L.-S.; Rajamani, R.; Bharathi, D.; Kayarohanam, S.; De Cruz, A.E.; Tey, L.-H.; Janakiraman, A.K.; Aminuzzaman, M.; et al. Antifungal properties of zinc oxide nanoparticles on Candida albicans. Coatings 2022, 12, 1864. [Google Scholar] [CrossRef]
- Shams, A.H.M.; Helaly, A.A.; Algeblawi, A.M.; Awad-Allah, E.F.A. Efficacy of seed-biopriming with trichoderma spp. and foliar spraying of ZnO-nanoparticles induce cherry tomato growth and resistance to Fusarium wilt disease. Plants 2023, 12, 3117. [Google Scholar] [CrossRef]
- Fouda, A.; Abdel-Rahman, M.A.; Eid, A.M.; Selim, S.; Ejaz, H.; Alruwaili, M.; Manni, E.; Almuhayawi, M.S.; Al Jaouni, S.K.; Hassan, S.E.-D. Investigating the Potential of Green-Fabricated Zinc Oxide Nanoparticles to Inhibit the Foodborne Pathogenic Bacteria Isolated from Spoiled Fruits. Catalysts 2024, 14, 427. [Google Scholar] [CrossRef]
- Chen, J.; Jing, Q.; Xu, Y.; Lin, Y.; Mai, Y.; Chen, L.; Wang, G.; Chen, Z.; Deng, L.; Chen, J.; et al. Functionalized zinc oxide microparticles for improving the antimicrobial effects of skin-care products and wound-care medicines. Biomater. Adv. 2022, 135, 212728. [Google Scholar] [CrossRef]
- Aburto-Medina, A.; Le, P.H.; MacLaughlin, S.; Ivanova, E. Diversity of experimental designs for the fabrication of antifungal surfaces for the built environment. Appl. Microbiol. Biotechnol. 2021, 105, 2663–2674. [Google Scholar] [CrossRef]
- Giedraitienė, A.; Ružauskas, M.; Šiugždinienė, R.; Tučkutė, S.; Grigonis, K.; Milčius, D. ZnO Nanoparticles Enhance the Antimicrobial Properties of Two-Sided-Coated Cotton Textile. Nanomaterials 2024, 14, 1264. [Google Scholar] [CrossRef] [PubMed]
- Almusallam, A.H.; Ismail, A.M.; El-Gawad, M.A. Green Synthesized Zinc Oxide Nanoparticles: Antifungal Activity against Powdery Mildew Disease of Pepper (Capsicum annuum L.) and Genotoxicity Potentials. Biopestic. Int. 2024, 20, 193–206. [Google Scholar] [CrossRef]
- Gu, L.; Lin, J.; Wang, Q.; Meng, F.; Niu, G.; Lin, H.; Chi, M.; Feng, Z.; Zheng, H.; Li, D.; et al. Mesoporous zinc oxide-based drug delivery system offers an antifungal and immunoregulatory strategy for treating keratitis. J. Control. Release 2024, 368, 483–497. [Google Scholar] [CrossRef]
- Khan, S.A.; Shahid, S.; Mahmood, T.; Lee, C.-S. Contact lenses coated with hybrid multifunctional ternary nanocoatings (Phytomolecule-coated ZnO nanoparticles: Gallic Acid: Tobramycin) for the treatment of bacterial and fungal keratitis. Acta Biomater. 2021, 128, 262–276. [Google Scholar] [CrossRef]
- Yassin, M.T.; Elgorban, A.M.; Al-Askar, A.A.; Sholkamy, E.N.; Ameen, F.; Maniah, K. Synergistic anticandidal activities of greenly synthesized ZnO nanomaterials with commercial antifungal agents against candidal infections. Micromachines 2023, 14, 209. [Google Scholar] [CrossRef]
- Baglietto, C. Antiviral Nanomaterials; Politecnico di Torino: Turin, Italy, 2021. [Google Scholar]
- Goharshadi, E.K.; Goharshadi, K.; Moghayedi, M. The use of nanotechnology in the fight against viruses: A critical review. Coord. Chem. Rev. 2022, 464, 214559. [Google Scholar] [CrossRef]
- Melk, M.M.; El-Hawary, S.S.; Melek, F.R.; Saleh, D.O.; Ali, O.M.; A El Raey, M.; Selim, N.M. Antiviral activity of zinc oxide nanoparticles mediated by Plumbago indica L. extract against herpes simplex virus type 1 (HSV-1). Int. J. Nanomed. 2021, 16, 8221–8233. [Google Scholar] [CrossRef] [PubMed]
- Wolfgruber, S.; Rieger, J.; Cardozo, O.; Punz, B.; Himly, M.; Stingl, A.; Farias, P.M.A.; Abuja, P.M.; Zatloukal, K. Antiviral activity of zinc oxide nanoparticles against SARS-CoV-2. Int. J. Mol. Sci. 2023, 24, 8425. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Dwivedi, J.; Dwivedi, M.; Nag, H.; Kumari, S.; Apurva. Nanotherapeutics for skin and soft tissue infections. In Applications of Nanotherapeutics and Nanotheranostics in Managing Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2025; pp. 135–156. [Google Scholar]
- Kachoei, M.; Divband, B.; Rahbar, M.; Esmaeilzadeh, M.; Ghanizadeh, M.; Alam, M. A novel developed bioactive composite resin containing silver/zinc oxide (Ag/ZnO) nanoparticles as an antimicrobial material against Streptococcus mutans, Lactobacillus, and Candida albicans. Evid.-Based Complement. Altern. Med. 2021, 2021, 4743411. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.K.; Sharma, A.; Awasthi, L.; Singh, H.; Kumar, P.; Rajput, P.; Sinha, A.; Chaubey, K.K.; Kumar, A.; Rai, N.; et al. Recent development and importance of nanoparticles in disinfection and pathogen control. In Nanomaterials for Environmental and Agricultural Sectors; Springer: Berlin/Heidelberg, Germany, 2023; pp. 83–106. [Google Scholar]
- Kumar, S.; Ansari, S.; Narayanan, S.; Ranjith-Kumar, C.T.; Surjit, M. Antiviral activity of zinc against hepatitis viruses: Current status and future prospects. Front. Microbiol. 2023, 14, 1218654. [Google Scholar] [CrossRef]
- Onen, H.; Luzala, M.M.; Kigozi, S.; Sikumbili, R.M.; Muanga, C.-J.K.; Zola, E.N.; Wendji, S.N.; Buya, A.B.; Balciunaitiene, A.; Viškelis, J.; et al. Mosquito-borne diseases and their control strategies: An overview focused on green synthesized plant-based metallic nanoparticles. Insects 2023, 14, 221. [Google Scholar] [CrossRef]
- Liu, J.; Ma, X.; Jin, S.; Xue, X.; Zhang, C.; Wei, T.; Guo, W.; Liang, X.-J. Zinc oxide nanoparticles as adjuvant to facilitate doxorubicin intracellular accumulation and visualize pH-responsive release for overcoming drug resistance. Mol. Pharm. 2016, 13, 1723–1730. [Google Scholar] [CrossRef]
- Sharma, N.; Bhandari, A.S. Nano magic bullets: An ecofriendly approach to managing plant diseases. In Bio-Management of Postharvest Diseases and Mycotoxigenic Fungi; CRC Press: Boca Raton, FL, USA, 2020; pp. 235–264. [Google Scholar]
- Khepar, V.; Sidhu, A.; Sharma, A.B. Topologically Zn2+ hybridized ZnS nanospheres (Zn2+/nZnS) efficiently restrained the infection of Fusarium verticillioides in rice seeds by hyphal disorganization and nutritional modulation. Environ. Sci. Nano 2023, 10, 1138–1151. [Google Scholar] [CrossRef]
- Aderibigbe, B. Zinc oxide nanoparticles in biomedical applications: Advances in synthesis, antimicrobial properties, and toxicity considerations. In Nanoparticles in Modern Antimicrobial and Antiviral Applications; Springer: Berlin/Heidelberg, Germany, 2024; pp. 119–149. [Google Scholar]
- Cai, X.; Luo, Y.; Zhang, W.; Du, D.; Lin, Y. pH-Sensitive ZnO quantum dots–doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl. Mater. Interfaces 2016, 8, 22442–22450. [Google Scholar] [CrossRef]
- McCall, J.; Smith, J.J.; Marquardt, K.N.; Knight, K.R.; Bane, H.; Barber, A.; DeLong, R.K. ZnO nanoparticles protect RNA from degradation better than DNA. Nanomaterials 2017, 7, 378. [Google Scholar] [CrossRef]
- Gronwald, B.; Kozłowska, L.; Kijak, K.; Lietz-Kijak, D.; Skomro, P.; Gronwald, K.; Gronwald, H. Nanoparticles in dentistry—Current literature review. Coatings 2023, 13, 102. [Google Scholar] [CrossRef]
- Sun, H.; Li, X.; Liu, Q.; Sheng, H.; Zhu, L. pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery. J. Drug Target. 2024, 32, 672–706. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zheng, X.; Xu, Z.; Yi, C. ZnO-based nanocarriers for drug delivery application: From passive to smart strategies. Int. J. Pharm. 2017, 534, 190–194. [Google Scholar] [CrossRef]
- Singh, R.P.; Narang, R.K.; Singh, A. Recent progression in nanocarrier based techniques to address fungal infections and patent status in drug development process. Recent Pat. Nanotechnol. 2025, 19, 183–204. [Google Scholar] [CrossRef] [PubMed]
- Prakash, J.; Krishna, S.B.N.; Kumar, P.; Kumar, V.; Ghosh, K.S.; Swart, H.C.; Bellucci, S.; Cho, J. Recent advances on metal oxide based nano-photocatalysts as potential antibacterial and antiviral agents. Catalysts 2022, 12, 1047. [Google Scholar] [CrossRef]
- Achagar, R.; Ait-Touchente, Z.; El Ati, R.; Boujdi, K.; Thoume, A.; Abdou, A.; Touzani, R. A comprehensive review of essential oil–nanotechnology synergy for advanced Dermocosmetic delivery. Cosmetics 2024, 11, 48. [Google Scholar] [CrossRef]
- Cagliani, R.; Fayed, B.; Jagal, J.; Shakartalla, S.B.; Soliman, S.S.; Haider, M. Peptide-functionalized zinc oxide nanoparticles for the selective targeting of breast cancer expressing placenta-specific protein 1. Colloids Surf. B Biointerfaces 2023, 227, 113357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Saravanakumar, K.; Sathiyaseelan, A.; Park, S.; Wang, M.-H. Synthesis, characterization, and comparative analysis of antibiotics (ampicillin and erythromycin) loaded ZrO2 nanoparticles for enhanced antibacterial activity. J. Drug Deliv. Sci. Technol. 2023, 82, 104293. [Google Scholar] [CrossRef]
- Anjum, S.; Hashim, M.; Malik, S.A.; Khan, M.; Lorenzo, J.M.; Abbasi, B.H.; Hano, C. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers 2021, 13, 4570. [Google Scholar] [CrossRef]
- Swidan, M.M.; Marzook, F.; Sakr, T.M. pH-Sensitive doxorubicin delivery using zinc oxide nanoparticles as a rectified theranostic platform: In vitro anti-proliferative, apoptotic, cell cycle arrest and in vivo radio-distribution studies. J. Mater. Chem. B 2024, 12, 6257–6274. [Google Scholar] [CrossRef]
- Paydayesh, A.; Soltani, S.; Dadkhah, A.S. Preparation and evaluation of polyvinyl alcohol hydrogels with zinc oxide nanoparticles as a drug controlled release agent for a hydrophilic drug. J. Polym. Eng. 2023, 43, 584–593. [Google Scholar] [CrossRef]
- Wanas, W.; El-Kaream, S.A.A.; Ebrahim, S.; Soliman, M.; Karim, M. Cancer bioimaging using dual mode luminescence of graphene/FA-ZnO nanocomposite based on novel green technique. Sci. Rep. 2023, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- Dey, N.; Kamatchi, C.; Vickram, A.; Anbarasu, K.; Thanigaivel, S.; Palanivelu, J.; Pugazhendhi, A.; Ponnusamy, V.K. Role of nanomaterials in deactivating multiple drug resistance efflux pumps—A review. Environ. Res. 2022, 204, 111968. [Google Scholar] [CrossRef]
- El-Telbany, M.; Mohamed, A.A.; Yahya, G.; Abdelghafar, A.; Abdel-Halim, M.S.; Saber, S.; Alfaleh, M.A.; Mohamed, A.H.; Abdelrahman, F.; Fathey, H.A.; et al. Combination of meropenem and zinc oxide nanoparticles; antimicrobial synergism, exaggerated antibiofilm activity, and efficient therapeutic strategy against bacterial keratitis. Antibiotics 2022, 11, 1374. [Google Scholar] [CrossRef] [PubMed]
- Jurczyk, M.; Kasperczyk, J.; Wrześniok, D.; Beberok, A.; Jelonek, K. Nanoparticles loaded with docetaxel and resveratrol as an advanced tool for cancer therapy. Biomedicines 2022, 10, 1187. [Google Scholar] [CrossRef]
- Zhang, H.; Shan, Y.; Dong, L. A comparison of TiO2 and ZnO nanoparticles as photosensitizers in photodynamic therapy for cancer. J. Biomed. Nanotechnol. 2014, 10, 1450–1457. [Google Scholar] [CrossRef]
- Ghaemi, B.; Shaabani, E.; Najafi-Taher, R.; Nodooshan, S.J.; Sadeghpour, A.; Kharrazi, S.; Amani, A. Intracellular ROS induction by Ag@ ZnO core–shell nanoparticles: Frontiers of permanent optically active holes in breast cancer theranostic. ACS Appl. Mater. Interfaces 2018, 10, 24370–24381. [Google Scholar] [CrossRef] [PubMed]
- Ghaemi, B.; Moshiri, A.; Herrmann, I.K.; Hajipour, M.J.; Wick, P.; Amani, A.; Kharrazi, S. Supramolecular insights into domino effects of Ag@ ZnO-induced oxidative stress in melanoma cancer cells. ACS Appl. Mater. Interfaces 2019, 11, 46408–46418. [Google Scholar] [CrossRef]
- Tarannum, N.; Pooja, K.; Jakhar, S.; Mavi, A. Nanoparticles assisted intra and transdermic delivery of antifungal ointment: An updated review. Discov. Nano 2024, 19, 11. [Google Scholar] [CrossRef]
- Mohamed, S.Y.; Elshoky, H.A.; El-Sayed, N.M.; Fahmy, H.M.; Ali, M.A. Ameliorative effect of zinc oxide-chitosan conjugates on the anticancer activity of cisplatin: Approach for breast cancer treatment. Int. J. Biol. Macromol. 2024, 257, 128597. [Google Scholar] [CrossRef]
- Pieretti, J.C.; Freire, B.M.; Armentano, G.M.; Santana, B.d.M.; Batista, B.L.; Carneiro-Ramos, M.S.; Seabra, A.B. Chronic exposure to nitric oxide sensitizes prostate cancer cells and improved ZnO/CisPt NPs cytotoxicity and selectivity. Int. J. Pharm. 2023, 640, 122998. [Google Scholar] [CrossRef]
- Ren, Q.; Sheng, Y.; Tao, C.; Niu, S.; Yu, N.; Chen, Z.; Lian, W. Zinc peroxide-based nanotheranostic platform with endogenous hydrogen peroxide/oxygen generation for enhanced photodynamic-chemo therapy of tumors. J. Colloid Interface Sci. 2024, 668, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.J.; Ahmad, A.; Khan, M.A.; Siddiqui, S. Zinc oxide nanoparticle induces apoptosis in human epidermoid carcinoma cells through reactive oxygen species and DNA degradation. Biol. Trace Elem. Res. 2021, 199, 2172–2181. [Google Scholar] [CrossRef] [PubMed]
- Fatima, H.; Jin, Z.Y.; Shao, Z.; Chen, X.J. Recent advances in ZnO-based photosensitizers: Synthesis, modification, and applications in photodynamic cancer therapy. J. Colloid Interface Sci. 2022, 621, 440–463. [Google Scholar] [CrossRef] [PubMed]
- Alipour, S.; Babaei, G.; Aziz, S.G.-G.; Abolhasani, S. Alantolactone and ZnO nanoparticles induce apoptosis activity of cisplatin in an ovarian cancer cell line (SKOV3). Res. Pharm. Sci. 2022, 17, 294–304. [Google Scholar] [CrossRef]
- Batool, M.; Khurshid, S.; Daoush, W.M.; Siddique, S.A.; Nadeem, T. Green synthesis and biomedical applications of ZnO nanoparticles: Role of PEGylated-ZnO nanoparticles as doxorubicin drug carrier against MDA-MB-231 (TNBC) cells line. Crystals 2021, 11, 344. [Google Scholar] [CrossRef]
- Zenjanab, M.K.; Alimohammadvand, S.; Doustmihan, A.; Kianian, S.; Oskouei, B.S.; Mazloomi, M.; Akbari, M.; Jahanban-Esfahlan, R. Paclitaxel for breast cancer therapy: A review on effective drug combination modalities and nano drug delivery platforms. J. Drug Deliv. Sci. Technol. 2024, 95, 105567. [Google Scholar] [CrossRef]
- Bandere, D. ZnO for Probes in Diagnostics. In ZnO and Their Hybrid Nano-Structures: Potential Candidates for Diverse Applications; Materials Research Foundations; Materials Research Forum LLC: Millersville, PA, USA, 2023; Volume 146. [Google Scholar]
- Al-Thani, A.N.; Jan, A.G.; Abbas, M.; Geetha, M.; Sadasivuni, K.K. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci. 2024, 352, 122899. [Google Scholar] [CrossRef]
- Fatima, I.; Rahdar, A.; Sargazi, S.; Barani, M.; Hassanisaadi, M.; Thakur, V.K. Quantum dots: Synthesis, antibody conjugation, and HER2-receptor targeting for breast cancer therapy. J. Funct. Biomater. 2021, 12, 75. [Google Scholar] [CrossRef]
- Amin, H.; Amin, M.A.; Osman, S.K.; Mohammed, A.M.; Zayed, G. Chitosan nanoparticles as a smart nanocarrier for gefitinib for tackling lung cancer: Design of experiment and in vitro cytotoxicity study. Int. J. Biol. Macromol. 2023, 246, 125638. [Google Scholar] [CrossRef]
- Song, X.; Qian, H.; Yu, Y. Nanoparticles mediated the diagnosis and therapy of glioblastoma: Bypass or cross the blood–brain barrier. Small 2023, 19, 2302613. [Google Scholar] [CrossRef]
- Chong, W.J.; Shen, S.; Li, Y.; Trinchi, A.; Simunec, D.P.; Kyratzis, I.; Sola, A.; Wen, C. Biodegradable PLA-ZnO nanocomposite biomaterials with antibacterial properties, tissue engineering viability, and enhanced biocompatibility. Smart Mater. Manuf. 2023, 1, 100004. [Google Scholar] [CrossRef]
- DeLong, R.K.; Comer, J.; Mathew, E.N.; Jaberi-Douraki, M. Comparative molecular immunological activity of physiological metal oxide nanoparticle and its anticancer peptide and rna complexes. Nanomaterials 2019, 9, 1670. [Google Scholar] [CrossRef]
- Abu Jarad, N.; Rachwalski, K.; Bayat, F.; Khan, S.; Shakeri, A.; MacLachlan, R.; Villegas, M.; Brown, E.D.; Hosseinidoust, Z.; Didar, T.F.; et al. A Bifunctional Spray Coating Reduces Contamination on Surfaces by Repelling and Killing Pathogens. ACS Appl. Mater. Interfaces 2023, 15, 16253–16265. [Google Scholar] [CrossRef] [PubMed]
- Hellfritzsch, M.; Christensen, D.; Foged, C.; Scherließ, R.; Thakur, A. Reconstituted dry powder formulations of ZnO-adjuvanted ovalbumin induce equivalent antigen specific antibodies but lower T cell responses than ovalbumin adjuvanted with Alhydrogel® or cationic adjuvant formulation 01 (CAF® 01). Int. J. Pharm. 2023, 648, 123581. [Google Scholar] [CrossRef] [PubMed]
- Yassin, M.T.; Al-Otibi, F.O.; Al-Askar, A.A.; Elmaghrabi, M.M. Synergistic anticandidal effectiveness of greenly synthesized zinc oxide nanoparticles with antifungal agents against nosocomial candidal pathogens. Microorganisms 2023, 11, 1957. [Google Scholar] [CrossRef]
- Gupta, J.; Hassan, P.A.; Barick, K.C. Multifunctional ZnO nanostructures: A next generation nanomedicine for cancer therapy, targeted drug delivery, bioimaging, and tissue regeneration. Nanotechnology 2023, 34, 282003. [Google Scholar] [CrossRef] [PubMed]
- Sathiyaseelan, A.; Saravanakumar, K.; Zhang, X.; Naveen, K.V.; Wang, M.-H. Ampicillin-resistant bacterial pathogens targeted chitosan nano-drug delivery system (CS-AMP-P-ZnO) for combinational antibacterial treatment. Int. J. Biol. Macromol. 2023, 237, 124129. [Google Scholar] [CrossRef]
- Wu, L.; Li, X.; Qian, X.; Wang, S.; Liu, J.; Yan, J. Lipid nanoparticle (LNP) delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity. Vaccines 2024, 12, 186. [Google Scholar] [CrossRef]
- El-Shafai, N.M.; Mostafa, Y.S.; Ramadan, M.S.; El-Mehasseb, I.M. Enhancement efficiency delivery of antiviral Molnupiravir-drug via the loading with self-assembly nanoparticles of pycnogenol and cellulose which are decorated by zinc oxide nanoparticles for COVID-19 therapy. Bioorganic Chem. 2024, 143, 107028. [Google Scholar] [CrossRef]
- DeLong, R.K.; Nava-Chavez, J.; Kumar, R.; Mathew, E.N.; Mwangi, W.; Yoon, S. Enhancing RNA Payload and Temperature Stability and Activity with Cationic Peptide-Coated Zinc Oxide Nanoparticles. ACS Pharmacol. Transl. Sci. 2024, 7, 707–715. [Google Scholar] [CrossRef]
- Liu, T.; Li, M.; Tian, Y.; Dong, Y.; Liu, N.; Wang, Z.; Zhang, H.; Zheng, A.; Cui, C. Immunogenicity and safety of a self-assembling ZIKV nanoparticle vaccine in mice. Int. J. Pharm. 2024, 660, 124320. [Google Scholar] [CrossRef] [PubMed]
- Abdel Razak, F.S.; AlJoofy, I.K.; Zaki, N.H. In vivo Evaluation of Immunomodulatory Activity of Lipopolysaccharide Zinc Oxide Nanoparticles (LPS-ZnNPS). Arch. Razi Inst. 2022, 77, 1821–1829. [Google Scholar] [PubMed]
- Liu, X.; Lin, X.; Hong, H.; Wang, J.; Tao, Y.; Huai, Y.; Pang, H.; Liu, M.; Li, J.; Bo, R. Polysaccharide from Atractylodes macrocephala Koidz Binding with Zinc Oxide Nanoparticles as a Novel Mucosal Immune Adjuvant for H9N2 Inactivated Vaccine. Int. J. Mol. Sci. 2024, 25, 2132. [Google Scholar] [CrossRef] [PubMed]
- Vagena, I.-A.; Gatou, M.-A.; Theocharous, G.; Pantelis, P.; Gazouli, M.; Pippa, N.; Gorgoulis, V.G.; Pavlatou, E.A.; Lagopati, N. Functionalized ZnO-based nanocomposites for diverse biological applications: Current trends and future perspectives. Nanomaterials 2024, 14, 397. [Google Scholar] [CrossRef]
- Shouket, S.; Khurshid, S.; Khan, J.; Batool, R.; Sarwar, A.; Aziz, T.; Alhomrani, M.; Alamri, A.S.; Sameeh, M.Y.; Filimban, F.Z. Enhancement of shelf-life of food items via immobilized enzyme nanoparticles on varied supports. A sustainable approach towards food safety and sustainability. Food Res. Int. 2023, 169, 112940. [Google Scholar] [CrossRef]
- Peng, X.; Wang, J.; Zhou, F.; Liu, Q.; Zhang, Z. Nanoparticle-based approaches to target the lymphatic system for antitumor treatment. Cell. Mol. Life Sci. 2021, 78, 5139–5161. [Google Scholar] [CrossRef]
- Khurana, A.; Allawadhi, P.; Khurana, I.; Allwadhi, S.; Weiskirchen, R.; Banothu, A.K.; Chhabra, D.; Joshi, K.; Bharani, K.K. Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today 2021, 38, 101142. [Google Scholar] [CrossRef]
- Nunez, F.A.; Castro, A.C.H.; de Oliveira, V.L.; Lima, A.C.; Oliveira, J.R.; de Medeiros, G.X.; Sasahara, G.L.; Santos, K.S.; Lanfredi, A.J.C.; Alves, W.A. Electrochemical immunosensors based on zinc oxide nanorods for detection of antibodies against SARS-CoV-2 spike protein in convalescent and vaccinated individuals. ACS Biomater. Sci. Eng. 2022, 9, 458–473. [Google Scholar] [CrossRef]
- Rios-Ibarra, C.P.; Salinas-Santander, M.; Orozco-Nunnelly, D.A.; Bravo-Madrigal, J. Nanoparticle-based antiviral strategies to combat the influenza virus. Biomed. Rep. 2024, 20, 65. [Google Scholar] [CrossRef]
- Mandal, A.K.; Katuwal, S.; Tettey, F.; Gupta, A.; Bhattarai, S.; Jaisi, S.; Bhandari, D.P.; Shah, A.K.; Bhattarai, N.; Parajuli, N. Current research on zinc oxide nanoparticles: Synthesis, characterization, and biomedical applications. Nanomaterials 2022, 12, 3066. [Google Scholar] [CrossRef]
- Mamba, F.B.; Mbuli, B.S.; Ramontja, J. Synergistic effect of ZnO/Ag(2)O@g-C(3)N(4) based nanocomposites embedded in carrageenan matrix for dye degradation in water. Heliyon 2024, 10, e31109. [Google Scholar] [CrossRef] [PubMed]
- Beydaghdari, M.; Saboor, F.H.; Babapoor, A.; Karve, V.V.; Asgari, M. Recent advances in MOF-based adsorbents for dye removal from the aquatic environment. Energies 2022, 15, 2023. [Google Scholar] [CrossRef]
- Zikalala, N.E.; Azizi, S.; Zikalala, S.A.; Kamika, I.; Maaza, M.; Zinatizadeh, A.A.; Mokrani, T.; Kaviyarasu, K. An evaluation of the biocatalyst for the synthesis and application of zinc oxide nanoparticles for water remediation—A review. Catalysts 2022, 12, 1442. [Google Scholar] [CrossRef]
- Dutta, V.; Verma, R.; Gopalkrishnan, C.; Yuan, M.-H.; Batoo, K.M.; Jayavel, R.; Chauhan, A.; Lin, K.-Y.A.; Balasubramani, R.; Ghotekar, S. Bio-inspired synthesis of carbon-based nanomaterials and their potential environmental applications: A state-of-the-art review. Inorganics 2022, 10, 169. [Google Scholar] [CrossRef]
- Khan, S.B.; Ismail, M.; Bakhsh, E.M.; Asiri, A.M. Design of simple and efficient metal nanoparticles templated on ZnO-chitosan coated textile cotton towards the catalytic reduction of organic pollutants. J. Ind. Text. 2022, 51 (Suppl. 1), 1703S–1728S. [Google Scholar] [CrossRef]
- Singh, A.; Sengar, R.S.; Rajput, V.D.; Minkina, T.; Singh, R.K. Zinc oxide nanoparticles improve salt tolerance in rice seedlings by improving physiological and biochemical indices. Agriculture 2022, 12, 1014. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Soliman, S.M.; Salem, H.M.; Desoky, E.-S.M.; Babalghith, A.O.; El-Tahan, A.M.; Ibrahim, O.M.; Ebrahim, A.A.M.; El-Mageed, T.A.A.; et al. Role of nanoparticles in enhancing crop tolerance to abiotic stress: A comprehensive review. Front. Plant Sci. 2022, 13, 946717. [Google Scholar] [CrossRef]
- Aderibigbe, F.A.; Mustapha, S.I.; Mohammed, I.A.; Adewoye, T.L.; Babatunde, E.O.; Aminullah, H.I.; Muritala, K.B. Green synthesis of zinc oxide nanoparticles for the removal of phenol from textile wastewater. Discov. Chem. Eng. 2024, 4, 24. [Google Scholar] [CrossRef]
- Joshi, K.M.; Shrivastava, V.S. Photocatalytic degradation of Chromium (VI) from wastewater using nanomaterials like TiO2, ZnO, and CdS. Appl. Nanosci. 2011, 1, 147–155. [Google Scholar] [CrossRef]
- Sharaf-El-Deen, S.; Badr, N.; Soliman, S.; Brakat, R. Efficacy of zinc oxide nanoparticles as water disinfectant against cryptosporidium parvum. J. Egypt. Soc. Parasitol. 2023, 53, 157–164. [Google Scholar] [CrossRef]
- Changsuphan, A.; Wahab, M.I.B.; Oanh, N.T.K. Removal of benzene by ZnO nanoparticles coated on porous adsorbents in presence of ozone and UV. Chem. Eng. J. 2012, 181, 215–221. [Google Scholar] [CrossRef]
- Clar, J.G.; Platten, W.E.; Baumann, E.; Remsen, A.; Harmon, S.M.; Rodgers, K.; Thomas, T.A.; Matheson, J.; Luxton, T.P. Release and transformation of ZnO nanoparticles used in outdoor surface coatings for UV protection. Sci. Total Environ. 2019, 670, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Hou, Y.; Ren, Y.; Shi, Y.; Jin, X.; Dong, Y.; Zhang, H.C. aromaticus leaf extract mediated synthesis of zinc oxide nanoparticles and their antimicrobial activity towards clinically multidrug-resistant bacteria isolated from pneumonia patients in nursing care. Mater. Res. Express 2020, 7, 095015. [Google Scholar] [CrossRef]
- Mahdavi, S.; Afkhami, A.; Jalali, M. Reducing leachability and bioavailability of soil heavy metals using modified and bare Al2O3 and ZnO nanoparticles. Environ. Earth Sci. 2015, 73, 4347–4371. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; Shaghaleh, H.; Hamoud, Y.A.; Holford, P.; Shao, H.; Qi, W.; Hashmi, M.Z.; Wu, T. Zinc oxide nanoparticles: Potential effects on soil properties, crop production, food processing, and food quality. Environ. Sci. Pollut. Res. 2021, 28, 36942–36966. [Google Scholar] [CrossRef]
- Saleem, S.; Jameel, M.H.; Akhtar, N.; Nazir, N.; Ali, A.; Zaman, A.; Rehman, A.; Butt, S.; Sultana, F.; Mushtaq, M.; et al. Modification in structural, optical, morphological, and electrical properties of zinc oxide (ZnO) nanoparticles (NPs) by metal (Ni, Co) dopants for electronic device applications. Arab. J. Chem. 2022, 15, 103518. [Google Scholar] [CrossRef]
- Bu, X.; Wu, Q.; Yuan, Y.; Wu, H.; Liu, W.; Li, X.; Han, C. The highly sensitive ethanol sensor based on nanocomposites of ZnO in situ grown on 2D Ti3C2Tx nanosheet. Nanotechnology 2022, 34, 105707. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Ghorai, U.K.; Dey, R.; Ghosh, C.K.; Pal, M. White light phosphorescence from ZnO nanoparticles for white LED applications. New J. Chem. 2022, 46, 17585–17595. [Google Scholar] [CrossRef]
- Chu, Y.-L.; Liu, Y.-H.; Chu, T.-T.; Young, S.-J. Improved UV-sensing of Au-decorated ZnO nanostructure MSM photodetectors. IEEE Sens. J. 2022, 22, 5644–5650. [Google Scholar] [CrossRef]
- Bhadra, J.; Ponnamma, D.; Alkareem, A.; Parangusan, H.; Ahmad, Z.; Al-Thani, N.; Daifalla, A.K.E.; Al-Sanari, N.A.; Mohamed, R. Development of a piezoelectric nanogenerator based on mesoporous silica/zinc oxide hybrid nanocomposite fibres. Int. J. Energy Res. 2022, 46, 8503–8515. [Google Scholar] [CrossRef]
- Morais, R.; Vieira, D.H.; Klem, M.d.S.; Gaspar, C.; Pereira, L.; Martins, R.; Alves, N. Printed in-plane electrolyte-gated transistor based on zinc oxide. Semicond. Sci. Technol. 2022, 37, 035007. [Google Scholar] [CrossRef]
- Tang, P.; Chen, J.; Qiu, T.; Ning, H.; Fu, X.; Li, M.; Xu, Z.; Luo, D.; Yao, R.; Peng, J. Recent advances in flexible resistive random access memory. Appl. Syst. Innov. 2022, 5, 91. [Google Scholar] [CrossRef]
- Das, D.; Das, M.; Sil, S.; Sahu, P.; Ray, P.P. Effect of higher carrier mobility of the reduced graphene oxide–zinc telluride nanocomposite on efficient charge transfer facility and the photodecomposition of rhodamine B. ACS Omega 2022, 7, 26483–26494. [Google Scholar] [CrossRef]
- Berrabah, I.; Dehouche, N.; Kaci, M.; Bruzaud, S.; Deguines, C.H.; Delaite, C. Morphological, crystallinity and thermal stability characterization of poly (3-hydroxybutyrate-Co-3-hydroxyhexanoate)/zinc oxide nanoparticles bionanocomposites: Effect of filler content. Mater. Today: Proc. 2022, 53, 223–227. [Google Scholar] [CrossRef]
- kumar Anbalagan, A.; Gupta, S.; Kumar, R.R.; Tripathy, A.R.; Chaudhary, M.; Haw, S.-C.; Murugesan, T.; Lin, H.-N.; Chueh, Y.-L.; Tai, N.-H.; et al. Gamma-ray engineered surface defects on zinc oxide nanorods towards enhanced NO2 gas sensing performance at room temperature. Sens. Actuators B Chem. 2022, 369, 132255. [Google Scholar] [CrossRef]
- Wang, J.; Shen, Y.; Li, X.; Xia, Y.; Yang, C. Synergistic effects of UV activation and surface oxygen vacancies on the room-temperature NO2 gas sensing performance of ZnO nanowires. Sens. Actuators B Chem. 2019, 298, 126858. [Google Scholar] [CrossRef]
- Arafat, M.M.; Dinan, B.; Akbar, S.A.; Haseeb, A.S.M.A. Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review. Sensors 2012, 12, 7207–7258. [Google Scholar] [CrossRef]
- Mirzaei, A.; Ansari, H.R.; Shahbaz, M.; Kim, J.-Y.; Kim, H.W.; Kim, S.S. Metal oxide semiconductor nanostructure gas sensors with different morphologies. Chemosensors 2022, 10, 289. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Gong, F.; Zhang, Y.; Fang, S.; Zhang, H. Advances in doped ZnO nanostructures for gas sensors. Chem. Rec. 2020, 20, 666–681. [Google Scholar] [CrossRef]
- Ma, S.; Xu, J. Nanostructured metal oxide heterojunctions for chemiresistive gas sensors. J. Mater. Chem. A 2023, 11, 23742. [Google Scholar] [CrossRef]
- Wang, J.; Chen, R.; Xiang, L.; Komarneni, S. Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review. Ceram. Int. 2018, 44, 7357–7377. [Google Scholar] [CrossRef]
- Ikram, M.; Lv, H.; Liu, Z.; Shi, K.; Gao, Y. Hydrothermally derived p–n MoS2–ZnO for efficient NO2 detection at room temperature. J. Mater. Chem. A 2021, 9, 14722–14730. [Google Scholar] [CrossRef]
- Pan, Z.; Huang, H.; Wang, T.; Yu, H.; Yang, W.; Dong, X.; Yang, Y. MoS2/ZnO pn heterostructure arrays for ultrasensitive NO2 sensors under UV irradiation. Talanta 2025, 294, 128194. [Google Scholar] [CrossRef]
- Wu, D.; Akhtar, A. H2S Gas Sensor Based on MoS2 Octahedron/ZnO–Zn2SnO₄ Nanoparticles. Molecules 2023, 28, 3230. [Google Scholar] [CrossRef]
- Mulchandani, N.; Karnad, V. Application of zinc oxide nano particles using polymeric binders on cotton fabric. Res. J. Text. Appar. 2022, 26, 310–322. [Google Scholar] [CrossRef]
- Kabeerdass, N.; Thangasamy, S.; Murugesan, K.; Arumugam, N.; Almansour, A.I.; Kumar, R.S.; Velmurugan, P.; Vijayanand, S.; Nooruddin, T.; Mohanavel, V.; et al. Embedding green synthesized zinc oxide nanoparticles in cotton fabrics and assessment of their antibacterial wound healing and cytotoxic properties: An eco-friendly approach. Green Process. Synth. 2022, 11, 875–885. [Google Scholar] [CrossRef]
- Gulati, R.; Sharma, S.; Sharma, R.K. Antimicrobial textile: Recent developments and functional perspective. Polym. Bull. 2022, 79, 5747–5771. [Google Scholar] [CrossRef] [PubMed]
- Al-Maliki, M.M.A. Nanomaterials and its Impact on the Quality of the Internal Environment for Sustainable Interior Design. J. Herit. Des. 2022, 2, 328–342. [Google Scholar]
- Rathinamoorthy, R.; Thilagavathi, G. Herbal antibacterial agents as odour control finish in textiles. In Odour in Textiles; CRC Press: Boca Raton, FL, USA, 2022; pp. 117–142. [Google Scholar]
- Shilpa, S.A.; Subbulakshmi, M.; Hikku, G. Nanoparticles of metal/metal oxide embedded fabrics to impart antibacterial activity to counteract hospital acquired infections. Eng. Res. Express 2022, 4, 032002. [Google Scholar] [CrossRef]
- Noman, M.T.; Petru, M.; Louda, P.; Kejzlar, P. Woven textiles coated with zinc oxide nanoparticles and their thermophysiological comfort properties. J. Nat. Fibers 2022, 19, 4718–4730. [Google Scholar] [CrossRef]
- Aguda, O.; Lateef, A. Recent advances in functionalization of nanotextiles: A strategy to combat harmful microorganisms and emerging pathogens in the 21st century. Heliyon 2022, 8, e09761. [Google Scholar] [CrossRef]
- Ren, Q.; Liu, W.; Bai, Q.-P.; Huang, Y.; Pan, J.; Samina, E.; Huang, X. Phototoxic Effect of UVA-Responsive Fe3O4@ZnO Nanoparticles on Squamous Skin Cell. J. Biomed. Nanotechnol. 2022, 18, 2377–2385. [Google Scholar] [CrossRef]
- Gulati, S.; Kumar, S.; Kumar, S.; Wadhawan, V.; Batra, K. Wrinkle-resistant fabrics: Nanotechnology in modern textiles. In Handbook of Consumer Nanoproducts; Springer: Berlin/Heidelberg, Germany, 2022; pp. 911–928. [Google Scholar]
- Chakraborty, N.; Narayanan, V.; Gautam, H.K. Nano-therapeutics to treat acne vulgaris. Indian J. Microbiol. 2022, 62, 167–174. [Google Scholar] [CrossRef]
- Cardoza, C.; Nagtode, V.; Pratap, A.; Mali, S.N. Emerging applications of nanotechnology in cosmeceutical health science: Latest updates. Health Sci. Rev. 2022, 4, 100051. [Google Scholar] [CrossRef]
- Khabir, Z. Transdermal Penetration of Photoluminescent Nanoparticles in Human Skin. Ph.D. Thesis, Macquarie University, Sydney, Australia, 2022. [Google Scholar]
- Shamaila, S.; Jalil, A.; Ishfaq, M.; Sharif, R. Nano-technological aspects of zinc oxide and silver in cosmetics. J. Appl. Phys. 2022, 131, 164306. [Google Scholar] [CrossRef]
- Watjanavarreerat, W.; Steier, L.; Locharoenrat, K. Use of zinc oxide nanoparticles for detection of fluoride in toothpaste gel. J. Environ. Sci. Health Part A 2022, 57, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Al-Janabi, A.A.H.S.; Bashi, A.M. Synthesis and antifungal activity of novel griseofulvin nanoparticles with zinc oxide against dermatophytic fungi: Trichophyton mentagrophytes and Trichophyton verrucosum: A primary study. Curr. Med. Mycol. 2022, 8, 40–44. [Google Scholar]
- Chauhan, R.; Kumar, A.; Tripathi, R.; Kumar, A. Advancing of zinc oxide nanoparticles for cosmetic applications. In Handbook of Consumer Nanoproducts; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–16. [Google Scholar]
- Saddik, M.S.; Elsayed, M.M.A.; El-Mokhtar, M.A.; Sedky, H.; Abdel-Aleem, J.A.; Abu-Dief, A.M.; Al-Hakkani, M.F.; Hussein, H.L.; Al-Shelkamy, S.A.; Meligy, F.Y.; et al. Tailoring of novel azithromycin-loaded zinc oxide nanoparticles for wound healing. Pharmaceutics 2022, 14, 111. [Google Scholar] [CrossRef]
- Parvin, N.; Mandal, T.K.; Joo, S.W. Application of bimetallic heterojunction nanoparticle-based multishelled porous hollow microspheres as a two-in-one inorganic UV filter. ACS Sustain. Chem. Eng. 2023, 11, 16133–16143. [Google Scholar] [CrossRef]
- Dash, K.K.; Deka, P.; Bangar, S.P.; Chaudhary, V.; Trif, M.; Rusu, A. Applications of inorganic nanoparticles in food packaging: A comprehensive review. Polymers 2022, 14, 521. [Google Scholar] [CrossRef]
- Shende, V.; Khamrui, K.; Prasad, W.; Wani, A.D.; Hussain, S.A. Preparation of whey based savory beverage with enhanced bio-accessible zinc. J. Food Sci. Technol. 2022, 59, 4288–4296. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Cui, D.-J.; Zhao, Q.; Liu, K.-K.; Zhao, W.-B.; Liu, Q.; Ma, R.-N.; Jiao, Z.; Dong, L.; Shan, C.-X. Effective control of microbial spoilage in soybeans by water-soluble ZnO nanoparticles. Food Chem. 2022, 388, 132994. [Google Scholar] [CrossRef] [PubMed]
- Odetayo, T.; Tesfay, S.; Ngobese, N.Z. Nanotechnology-enhanced edible coating application on climacteric fruits. Food Sci. Nutr. 2022, 10, 2149–2167. [Google Scholar] [CrossRef]
- Javad, S.; Azam, N.; Ghaffar, N.; Jabeen, K.; Ahmad, A. Effect of zinc oxide nanoparticles on shelf life of commonly used vegetables. Proc. Bulg. Acad. Sci. 2022, 75, 933–942. [Google Scholar] [CrossRef]
- Zare, M.; Namratha, K.; Ilyas, S.; Sultana, A.; Hezam, A.; Sunil, L.; Surmeneva, M.A.; Surmenev, R.A.; Nayan, M.B.; Ramakrishna, S.; et al. Emerging trends for ZnO nanoparticles and their applications in food packaging. ACS Food Sci. Technol. 2022, 2, 763–781. [Google Scholar] [CrossRef]
- Hegde, S.M.; Soans, S.H.; Mandapaka, R.T.; Siddesha, J.M.; Archer, A.C.; Egbuna, C.; Achar, R.R. Nanomaterials in Food System Application: Biochemical, Preservation, and Food Safety Perspectives. In Application of Nanotechnology in Food Science, Processing and Packaging; Springer: Berlin/Heidelberg, Germany, 2022; pp. 17–30. [Google Scholar]
- Khan, J.; Khurshid, S.; Sarwar, A.; Aziz, T.; Naveed, M.; Ali, U.; Makhdoom, S.I.; Nadeem, A.A.; Khan, A.A.; Sameeh, M.Y.; et al. Enhancing bread quality and shelf life via glucose oxidase immobilized on zinc oxide nanoparticles—A sustainable approach towards food safety. Sustainability 2022, 14, 14255. [Google Scholar] [CrossRef]
- Dulta, K.; Ağçeli, G.K.; Thakur, A.; Singh, S.; Chauhan, P. Development of alginate-chitosan based coating enriched with ZnO nanoparticles for increasing the shelf life of orange fruits (Citrus sinensis L.). J. Polym. Environ. 2022, 30, 3293–3306. [Google Scholar] [CrossRef]
- Etefa, H.F.; Dejene, F.B. The effect of indium tin oxide nanoparticles (ITO NPs) incorporated with ZnO NPs based on structural, optical and application for flexible dye sensitized solar cells (FDSSCs). Opt. Mater. 2024, 156, 115962. [Google Scholar] [CrossRef]
- Alam, M.W.; Sharma, A.; Sharma, A.; Kumar, S.; Junaid, P.M.; Awad, M. VOC Detection with Zinc Oxide Gas Sensors: A Review of Fabrication, Performance, and Emerging Applications. Electroanalysis 2025, 37, e202400246. [Google Scholar] [CrossRef]
- Tang, Y.; Li, Z.; Li, Z.-T.; Li, J.-S.; Yu, S.-D.; Rao, L.-S. Enhancement of luminous efficiency and uniformity of CCT for quantum dot-converted LEDs by incorporating with ZnO nanoparticles. IEEE Trans. Electron Devices 2017, 65, 158–164. [Google Scholar] [CrossRef]
- Martinez-Lopez, A.G.; Tinoco, J.C.; Elvira-Hernández, E.A.; Herrera-May, A.L. Solution-processed ZnO energy harvester devices based on flexible substrates. Microsyst. Technol. 2023, 29, 205–210. [Google Scholar] [CrossRef]
- Yoon, Y.; Truong, P.L.; Lee, D.; Ko, S.H. Metal-oxide nanomaterials synthesis and applications in flexible and wearable sensors. ACS Nanosci. Au 2021, 2, 64–92. [Google Scholar] [CrossRef]
- Buckley, D.; Lonergan, A.; O’Dwyer, C. ZnO-based Semiconductors and Structures for Transistors, Optoelectronic Devices and Sustainable Electronics. arXiv 2024, arXiv:2411.13304. [Google Scholar]
- Isyaku, U.B.; Khir, M.H.B.M.; Nawi, I.M.; Zakariya, M.A.; Zahoor, F. ZnO based resistive random access memory device: A prospective multifunctional next-generation memory. IEEE Access 2021, 9, 105012–105047. [Google Scholar] [CrossRef]
- Kwon, S.-N.; Yu, J.-H.; Na, S.-I. A systematic approach to ZnO nanoparticle-assisted electron transport bilayer for high efficiency and stable perovskite solar cells. J. Alloys Compd. 2019, 801, 277–284. [Google Scholar] [CrossRef]
- Verbič, A.; Gorjanc, M.; Simončič, B. Zinc oxide for functional textile coatings: Recent advances. Coatings 2019, 9, 550. [Google Scholar] [CrossRef]
- Jin, X.; Gao, F.; Qin, M.; Yu, Y.; Zhao, Y.; Shao, T.; Chen, C.; Zhang, W.; Xie, B.; Xiong, Y.; et al. How to make personal protective equipment spontaneously and continuously antimicrobial (incorporating oxidase-like catalysts). ACS Nano 2022, 16, 7755–7771. [Google Scholar] [CrossRef]
- Saha, B.; Saha, A.; Das, P.; Kakati, A.; Banerjee, A.; Chattopadhyay, P. A comprehensive review of ultraviolet radiation and functionally modified textile fabric with special emphasis on UV protection. Heliyon 2024, 10, e40027. [Google Scholar] [CrossRef]
- Dejene, B.K.; Geletaw, T.M. A review of plant-mediated synthesis of zinc oxide nanoparticles for self-cleaning textiles. Res. J. Text. Appar. 2024, 28, 879–892. [Google Scholar] [CrossRef]
- Hassabo, A.G.; Elmorsy, H.; Gamal, N.; Sediek, A.; Saad, F.; Hegazy, B.M.; Othman, H. Applications of nanotechnology in the creation of smart sportswear for enhanced sports performance: Efficiency and comfort. J. Text. Color. Polym. Sci. 2023, 20, 11–28. [Google Scholar] [CrossRef]
- Saleemi, S.; Naveed, T.; Riaz, T.; Memon, H.; Awan, J.A.; Siyal, M.I.; Xu, F.; Bae, J. Surface functionalization of cotton and PC fabrics using SiO2 and ZnO nanoparticles for durable flame retardant properties. Coatings 2020, 10, 124. [Google Scholar] [CrossRef]
- Aceger, S. Enhancing Color Characteristics of Dyed Cotton and Polyester Cotton Blend Fabrics with the Use of Zinc Oxide Nano Particles. Unpublished Dissertation, Busitema University, Kampala, Uganda, 2021. [Google Scholar]
- Mawkhlieng, U.; Majumdar, A. Smart nanotextiles for protection and defense. In Smart Nanotextiles: Wearable and Technical Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; pp. 311–339. [Google Scholar]
- Mohammadipour-Nodoushan, R.; Shekarriz, S.; Shariatinia, Z.; Heydari, A.; Montazer, M. Improved cotton fabrics properties using zinc oxide-based nanomaterials: A review. Int. J. Biol. Macromol. 2023, 242, 124916. [Google Scholar] [CrossRef]
- Farooq, S.; Akhtar, A.; Faisal, S.; Husain, M.D.; Siddiqui, M.O.R. Durable multifunction finishing on polyester knitted fabric by applying zinc oxide nanoparticles. Pigment. Resin Technol. 2025. [Google Scholar] [CrossRef]
- Rathinavel, S.; Shettigar, A.K. Gamma Irradiation-Induced Enhancement of Binding between ZnO Nanoparticles and Cotton Fabrics for Functional Textiles. ACS Omega 2020, 5, 12302–12311. [Google Scholar] [CrossRef]
- Porrawatkul, P.; Nuengmatcha, P.; Kuyyogsuy, A.; Pimsen, R.; Rattanaburi, P. Effect of Na and Al doping on ZnO nanoparticles for potential application in sunscreens. J. Photochem. Photobiol. B Biol. 2023, 240, 112668. [Google Scholar] [CrossRef]
- Inam, M.; Haider, Z.; Anjum, S.; Soliman, M.M.; Ahmad, B.; Hussain, M.I.; Hano, C. Differential impact of biogenic and chemically synthesized zinc oxide nanoparticles on anti-aging, anti-oxidant and anti-cancerous activities: A mechanism based study. New J. Chem. 2024, 48, 10161–10176. [Google Scholar] [CrossRef]
- Rihova, M.; Cihalova, K.; Pouzar, M.; Kuthanova, M.; Jelinek, L.; Hromadko, L.; Cicmancova, V.; Heger, Z.; Macak, J.M. Biopolymeric fibers prepared by centrifugal spinning blended with ZnO nanoparticles for the treatment of Acne vulgaris. Appl. Mater. Today 2024, 37, 102151. [Google Scholar] [CrossRef]
- Yousaf, S.; Ashraf, A.; Ali, S.; Rafiq, A.; Mahmood, A.; Bashir, F.; Farrukh, M.A.; Naseem, F.; -e-Shahwar, D. Evaluation of the preservative efficacy of green-synthesized ZnO Nanoparticles using Cucumis sativus in cream formulations. Environ. Prog. Sustain. Energy 2025, e14583. [Google Scholar] [CrossRef]
- Roslan, F.K.; Taib, C.; Azhar, A.A.; Ab Razak, S.N. Zinc Oxide as an Active Ingredient in Sensitive Skin Deodorant. Multidiscip. Appl. Res. Innov. 2025, 6, 119–124. [Google Scholar]
- Adawi, H.I.; Newbold, M.A.; Reed, J.M.; Vance, M.E.; Feitshans, I.L.; Bickford, L.R.; Lewinski, N.A. Nano-enabled personal care products: Current developments in consumer safety. NanoImpact 2018, 11, 170–179. [Google Scholar] [CrossRef]
- Bwatanglang, I.B.; Obulapuram, P.K.; Mohammad, F.; Albalawi, A.N.; Chavali, M.; Al-Lohedan, H.A.; Ibrahim, T. Metal oxide-involved photocatalytic technology in cosmetics and beauty products. In Metal Oxides for Optoelectronics and Optics-Based Medical Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 301–337. [Google Scholar]
- Hashemi, S.-S.; Pakdin, A.; Mohammadi, A.; Keshavarzi, A.; Mortazavi, M.; Sanati, P. Study the effect of Calendula officinalis extract loaded on zinc oxide nanoparticle cream in burn wound healing. ACS Appl. Mater. Interfaces 2023, 15, 59269–59279. [Google Scholar] [CrossRef] [PubMed]
- Channa, I.A.; Ashfaq, J.; Gilani, S.J.; Shah, A.A.; Chandio, A.D.; bin Jumah, M.N. UV blocking and oxygen barrier coatings based on polyvinyl alcohol and zinc oxide nanoparticles for packaging applications. Coatings 2022, 12, 897. [Google Scholar] [CrossRef]
- Gomes, B.; Ferreira, P.; Carvalho, S. Zinc nanostructures for oxygen scavenging. Nanoscale 2017, 9, 5254–5262. [Google Scholar]
- Ebrahimi, A.; Khajavi, M.Z.; Ahmadi, S.; Mortazavian, A.M.; Abdolshahi, A.; Rafiee, S.; Farhoodi, M. Novel strategies to control ethylene in fruit and vegetables for extending their shelf life: A review. Int. J. Environ. Sci. Technol. 2022, 19, 4599–4610. [Google Scholar] [CrossRef]
- Ahmed, J.; Arfat, Y.A.; Al-Attar, H.; Auras, R.; Ejaz, M. Rheological, structural, ultraviolet protection and oxygen barrier properties of linear low-density polyethylene films reinforced with zinc oxide (ZnO) nanoparticles. Food Packag. Shelf Life 2017, 13, 20–26. [Google Scholar] [CrossRef]
- Zhao, L.; Duan, G.; Zhang, G.; Yang, H.; He, S.; Jiang, S. Electrospun functional materials toward food packaging applications: A review. Nanomaterials 2020, 10, 150. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, H.; Baig, M.K.; Yahya, N.; Khodapanah, L.; Sabet, M.; Demiral, B.M.R.; Burda, M. Synthesis of ZnO nanoparticles for oil–water interfacial tension reduction in enhanced oil recovery. Appl. Phys. A 2018, 124, 128. [Google Scholar] [CrossRef]
- Le, K.H.; Nguyen, M.D.-B.; Tran, L.D.; Van Tran, C.; Van Tran, K.; Thi, H.P.N.; Thi, N.D.; Yoon, Y.S.; Nguyen, D.D.; La, D.D. A novel antimicrobial ZnO nanoparticles-added polysaccharide edible coating for the preservation of postharvest avocado under ambient conditions. Prog. Org. Coat. 2021, 158, 106339. [Google Scholar] [CrossRef]
- Motelica, L.; Ficai, D.; Petrisor, G.; Oprea, O.-C.; Trușcǎ, R.-D.; Ficai, A.; Andronescu, E.; Hudita, A.; Holban, A.M. Antimicrobial hydroxyethyl-cellulose-based composite films with zinc oxide and mesoporous silica loaded with cinnamon essential oil. Pharmaceutics 2024, 16, 1225. [Google Scholar] [CrossRef]
- Rai, A.; Sharma, V.K.; Jain, A.; Sharma, M.; Pandey, A.; Singh, H.B.; Gupta, V.K.; Singh, B.N. Microbe-fabricated nanoparticles as potent biomaterials for efficient food preservation. Int. J. Food Microbiol. 2022, 379, 109833. [Google Scholar] [CrossRef]
- Beig, B.; Niazi, M.B.K.; Jahan, Z.; Zia, M.; Shah, G.A.; Iqbal, Z.; Douna, I. Facile coating of micronutrient zinc for slow release urea and its agronomic effects on field grown wheat (Triticum aestivum L.). Sci. Total Environ. 2022, 838, 155965. [Google Scholar] [CrossRef]
- Klink, M.J.; Laloo, N.; Taka, A.L.; Pakade, V.E.; Monapathi, M.E.; Modise, J.S. Synthesis, characterization and antimicrobial activity of zinc oxide nanoparticles against selected waterborne bacterial and yeast pathogens. Molecules 2022, 27, 3532. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Liu, Y.; Zhang, P.; Zhou, P.; Wu, Z.; Lou, B.; Jiang, Y.; Shakoor, N.; Li, M.; Li, Y.; et al. Engineered Zn-based nano-pesticides as an opportunity for treatment of phytopathogens in agriculture. NanoImpact 2022, 28, 100420. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.H.; Usman, K.; Rizwan, M.; Al Jabri, H.; Alsafran, M. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Front. Plant Sci. 2022, 13, 1033092. [Google Scholar]
- Kolenčík, M.; Ernst, D.; Komár, M.; Urík, M.; Šebesta, M.; Ďurišová, Ľ.; Bujdoš, M.; Černý, I.; Chlpík, J.; Juriga, M.; et al. Effects of foliar application of ZnO nanoparticles on lentil production, stress level and nutritional seed quality under field conditions. Nanomaterials 2022, 12, 310. [Google Scholar] [CrossRef]
- Azmat, A.; Tanveer, Y.; Yasmin, H.; Hassan, M.N.; Shahzad, A.; Reddy, M.; Ahmad, A. Coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria for mitigation of synchronized effects of heat and drought stress in wheat plants. Chemosphere 2022, 297, 133982. [Google Scholar] [CrossRef]
- Kanwal, A.; Sharma, I.; Bala, A.; Upadhyay, S.K.; Singh, R. Agricultural application of synthesized ZnS nanoparticles for the development of tomato crop. Lett. Appl. NanoBioSci. 2022, 12, 58. [Google Scholar]
- Taqdees, Z.; Khan, J.; Khan, W.-U.; Kausar, S.; Afzaal, M.; Akhtar, I. Silicon and zinc nanoparticles-enriched miscanthus biochar enhanced seed germination, antioxidant defense system, and nutrient status of radish under NaCl stress. Crop Pasture Sci. 2022, 73, 556–572. [Google Scholar] [CrossRef]
- Adhikary, S.; Biswas, B.; Chakraborty, D.; Timsina, J.; Pal, S.; Tarafdar, J.C.; Banerjee, S.; Hossain, A.; Roy, S. Seed priming with selenium and zinc nanoparticles modifies germination, growth, and yield of direct-seeded rice (Oryza sativa L.). Sci. Rep. 2022, 12, 7103. [Google Scholar] [CrossRef]
- Guo, H.; Liu, Y.; Chen, J.; Zhu, Y.; Zhang, Z. The effects of several metal nanoparticles on seed germination and seedling growth: A meta-analysis. Coatings 2022, 12, 183. [Google Scholar] [CrossRef]
- Elshayb, O.M.; Nada, A.M.; Sadek, A.H.; Ismail, S.H.; Shami, A.; Alharbi, B.M.; Alhammad, B.A.; Seleiman, M.F. The integrative effects of biochar and ZnO nanoparticles for enhancing rice productivity and water use efficiency under irrigation deficit conditions. Plants 2022, 11, 1416. [Google Scholar] [CrossRef] [PubMed]
- Qasim, M.; Akhtar, W.; Haseeb, M.; Sajjad, H.; Rasheed, M. Potential role of nanoparticles in plants protection. Life Sci. J. 2022, 19, 31–38. [Google Scholar]
- Dola, D.; Mannan, M. Foliar application effects of zinc oxide nanoparticles on growth, yield and drought tolerance of soybean. Bangladesh Agron. J. 2022, 25, 73–82. [Google Scholar] [CrossRef]
- Mazhar, M.W.; Ishtiaq, M.; Hussain, I.; Parveen, A.; Bhatti, K.H.; Azeem, M.; Thind, S.; Ajaib, M.; Maqbool, M.; Sardar, T.; et al. Seed nano-priming with Zinc Oxide nanoparticles in rice mitigates drought and enhances agronomic profile. PLoS ONE 2022, 17, e0264967. [Google Scholar]
- Rahman, B.M.A.; Viphavakit, C.; Chitaree, R.; Ghosh, S.; Pathak, A.K.; Verma, S.; Sakda, N. Optical fiber, nanomaterial, and thz-metasurface-mediated nano-biosensors: A Review. Biosensors 2022, 12, 42. [Google Scholar] [CrossRef]
- Nekoukhou, M.; Fallah, S.; Abbasi-Surki, A.; Pokhrel, L.R.; Rostamnejadi, A. Improved efficacy of foliar application of zinc oxide nanoparticles on zinc biofortification, primary productivity and secondary metabolite production in dragonhead. J. Clean. Prod. 2022, 379, 134803. [Google Scholar] [CrossRef]
- Beig, B.; Niazi, M.B.K.; Sher, F.; Jahan, Z.; Malik, U.S.; Khan, M.D.; Américo-Pinheiro, J.H.P.; Vo, D.-V.N. Nanotechnology-based controlled release of sustainable fertilizers. A review. Environ. Chem. Lett. 2022, 20, 2709–2726. [Google Scholar] [CrossRef]
- Farhana; Munis, M.F.H.; Alamer, K.H.; Althobaiti, A.T.; Kamal, A.; Liaquat, F.; Haroon, U.; Ahmed, J.; Chaudhary, H.J.; Attia, H. ZnO nanoparticle-mediated seed priming induces biochemical and antioxidant changes in chickpea to alleviate Fusarium wilt. J. Fungi 2022, 8, 753. [Google Scholar] [CrossRef]
- Jiang, L.; Xiang, S.; Lv, X.; Wang, X.; Li, F.; Liu, W.; Liu, C.; Ran, M.; Huang, J.; Xu, X.; et al. Biosynthesized silver nanoparticles inhibit Pseudomonas syringae pv. tabaci by directly destroying bacteria and inducing plant resistance in Nicotiana benthamiana. Phytopathol. Res. 2022, 4, 43. [Google Scholar] [CrossRef]
- Nongbet, A.; Mishra, A.K.; Mohanta, Y.K.; Mahanta, S.; Ray, M.K.; Khan, M.; Baek, K.-H.; Chakrabartty, I. Nanofertilizers: A smart and sustainable attribute to modern agriculture. Plants 2022, 11, 2587. [Google Scholar] [CrossRef]
- Muhammad, F.; Raza, M.A.S.; Iqbal, R.; Zulfiqar, F.; Aslam, M.U.; Yong, J.W.H.; Altaf, M.A.; Zulfiqar, B.; Amin, J.; Ibrahim, M.A. Ameliorating drought effects in wheat using an exclusive or co-applied rhizobacteria and ZnO nanoparticles. Biology 2022, 11, 1564. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Ilyas, N.; Meraj, T.A.; Pour-Aboughadareh, A.; Sayyed, R.Z.; Mashwani, Z.-U.; Poczai, P. Improvement of plant responses by nanobiofertilizer: A step towards sustainable agriculture. Nanomaterials 2022, 12, 965. [Google Scholar] [CrossRef]
- Soni, S.; Jha, A.B.; Dubey, R.S.; Sharma, P. Application of nanoparticles for enhanced UV-B stress tolerance in plants. Plant Nano Biol. 2022, 2, 100014. [Google Scholar] [CrossRef]
- Chitena, L. Investigation of the Efficacy of a ZnO-Starch Nanocomposite Packaging to Prolong the Shelf Life of Fragaria ananassa (Strawberries). Master’s Thesis, Botswana International University of Science and Technology, Palapye, Botswana, 2022. [Google Scholar]
- Donia, D.T.; Carbone, M. Seed Priming with Zinc Oxide Nanoparticles to Enhance Crop Tolerance to Environmental Stresses. Int. J. Mol. Sci. 2023, 24, 17612. [Google Scholar] [CrossRef] [PubMed]
- Hanif, S.; Javed, R.; Cheema, M.; Kiani, M.Z.; Farooq, S.; Zia, M. Harnessing the potential of zinc oxide nanoparticles and their derivatives as nanofertilizers: Trends and perspectives. Plant Nano Biol. 2024, 10, 100110. [Google Scholar] [CrossRef]
- Desai, S.; Singh, M.; Chavan, A.; Wagh, N.S.; Lakkakula, J. Micro- and nanoencapsulation techniques in agriculture. In Agricultural Nanobiotechnology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 297–323. [Google Scholar]
- Linh, T.M.; Mai, N.C.; Hoe, P.T.; Lien, L.Q.; Ban, N.K.; Hien, L.T.T.; Chau, N.H.; Van, N.T. Metal-based nanoparticles enhance drought tolerance in soybean. J. Nanomater. 2020, 2020, 4056563. [Google Scholar] [CrossRef]
- Liyakat, K.S.S.; Liyakat, K.K.S. Nanosensors in Agriculture Field: A Study. Int. J. Appl. Nanotechnol. 2024, 10, 12–22p. [Google Scholar]
- Kumar, P.; Chugh, P.; Ali, S.S.; Chawla, W.; Sushmita, S.; Kumar, R.; Raval, A.V.; Shamim, S.; Bhatia, A.; Kumar, R. Trends of nanobiosensors in modern agriculture systems. Appl. Biochem. Biotechnol. 2025, 197, 667–690. [Google Scholar] [CrossRef]
- Liu, X.; Ali, K.; Dua, K.; Xu, R. The role of zinc in the pathogenesis of lung disease. Nutrients 2022, 14, 2115. [Google Scholar] [CrossRef]
- Ndebele, R.T.; Yao, Q.; Shi, Y.-N.; Zhai, Y.-Y.; Xu, H.-L.; Lu, C.-T.; Zhao, Y.-Z. Progress in the application of nano-and micro-based drug delivery systems in pulmonary drug delivery. BIO Integr. 2022, 3, 71–83. [Google Scholar] [CrossRef]
- Nagarajan, M.; Maadurshni, G.B.; Tharani, G.K.; Udhayakumar, I.; Kumar, G.; Mani, K.P.; Sivasubramanian, J.; Manivannan, J. Exposure to zinc oxide nanoparticles (ZnO-NPs) induces cardiovascular toxicity and exacerbates pathogenesis–Role of oxidative stress and MAPK signaling. Chem.-Biol. Interact. 2022, 351, 109719. [Google Scholar] [CrossRef]
- Hazeem, L. Single and combined toxicity effects of zinc oxide nanoparticles: Uptake and accumulation in marine microalgae, toxicity mechanisms, and their fate in the marine environment. Water 2022, 14, 2669. [Google Scholar] [CrossRef]
- Hazarika, A.; Yadav, M.; Yadav, D.K.; Yadav, H.S. An overview of the role of nanoparticles in sustainable agriculture. Biocatal. Agric. Biotechnol. 2022, 43, 102399. [Google Scholar] [CrossRef]
- Mech, A.; Gottardo, S.; Amenta, V.; Amodio, A.; Belz, S.; Bøwadt, S.; Drbohlavová, J.; Farcal, L.; Jantunen, P.; Małyska, A.; et al. Safe-and sustainable-by-design: The case of Smart Nanomaterials. A perspective based on a European workshop. Regul. Toxicol. Pharmacol. 2022, 128, 105093. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Tong, X.; Ye, Z.; Lin, Z.; Zhou, T.; Huang, S.; Li, Y.; Lin, J.; Wen, C.; Ma, J. Zinc phosphate, zinc oxide, and their dual-phase coatings on pure Zn foam with good corrosion resistance, cytocompatibility, and antibacterial ability for potential biodegradable bone-implant applications. Chem. Eng. J. 2022, 450, 137946. [Google Scholar] [CrossRef]
- Battistin, M.; Pascalicchio, P.; Tabaro, B.; Hasa, D.; Bonetto, A.; Manfredini, S.; Baldisserotto, A.; Scarso, A.; Ziosi, P.; Brunetta, A.; et al. A safe-by-design approach to “reef safe” sunscreens based on zno and organic uv filters. Antioxidants 2022, 11, 2209. [Google Scholar] [CrossRef]
- González-Vega, J.G.; García-Ramos, J.C.; Chavez-Santoscoy, R.A.; Castillo-Quiñones, J.E.; Arellano-Garcia, M.E.; Toledano-Magaña, Y. Lung models to evaluate silver nanoparticles’ toxicity and their impact on human health. Nanomaterials 2022, 12, 2316. [Google Scholar] [CrossRef]
- Zhang, H.; Miao, C.; Huo, Z.; Luo, T. Effects of zinc oxide nanoparticles transformation in sulfur-containing water on its toxicity to microalgae: Physicochemical analysis, photosynthetic efficiency and potential mechanisms. Water Res. 2022, 223, 119030. [Google Scholar] [CrossRef]
- Afzal, S.; Singh, N.K. Effect of zinc and iron oxide nanoparticles on plant physiology, seed quality and microbial community structure in a rice-soil-microbial ecosystem. Environ. Pollut. 2022, 314, 120224. [Google Scholar] [CrossRef]
- Neu-Baker, N.M.; Eastlake, A.; Hodson, L. Results of the 2019 survey of engineered nanomaterial occupational health and safety practices. Int. J. Environ. Res. Public Health 2022, 19, 7676. [Google Scholar] [CrossRef]
- Zhou, X.; Jin, W.; Sun, H.; Li, C.; Jia, J. Perturbation of autophagy: An intrinsic toxicity mechanism of nanoparticles. Sci. Total Environ. 2022, 823, 153629. [Google Scholar] [CrossRef] [PubMed]
Applications | Details | References |
---|---|---|
Antibacterial | ||
Medical bandages | ZnO NPs incorporated into bandages to prevent infections in wounds | [35] |
Food packaging | Used as coatings to inhibit bacterial growth on perishable food products | [36] |
Water filtration systems | Integrated into filters to eliminate waterborne bacterial pathogens | [37] |
Antibacterial sprays | Development of surface sprays to reduce microbial contamination | [38] |
Coatings for medical devices | Prevent bacterial biofilm formation on catheters and implants | [39] |
Antibacterial textiles | ZnO-NP-infused fabrics for odor and infection control | [40] |
Oral care products | Added to toothpaste to combat dental plaque and bacterial infections | [41] |
Agricultural applications | Prevent bacterial infections in seeds and crops | [42] |
Cosmetics | Used in creams for antibacterial properties | [43] |
Hand sanitizers | Enhanced with ZnO NPs for extended antimicrobial activity | [44] |
Antifungal | ||
Antifungal coatings | Prevent fungal growth on construction materials | [45] |
Seed treatment | Protect seeds from fungal infections | [46] |
Food storage | Inhibit fungal spoilage of stored grains and fruits | [47] |
Skin infection treatment | Topical formulations for treating fungal skin infections | [48] |
Antifungal paints | Applied on walls to prevent mold formation | [49] |
Textile industry | Prevent fungal damage to natural fibers | [50] |
Crop protection | Prevent fungal diseases in plants like powdery mildew | [51] |
Fungal keratitis treatment | Used in eye drops to treat fungal keratitis | [52] |
Medical equipment | Used in coatings to reduce fungal contamination | [53] |
Pharmaceutical applications | Formulated into antifungal drugs | [54] |
Antiviral | ||
COVID-19 surface coatings | Reduce viral spread on frequently touched surfaces | [55] |
Hand sanitizers | Enhanced with ZnO NPs for antiviral efficacy | [25] |
Antiviral fabrics | Incorporated into masks to block viral particles | [56] |
Treatment of herpes infections | Topical formulations to manage Herpes Simplex Virus | [57] |
Influenza virus inhibition | ZnO NPs studied for their effect on reducing viral replication | [58] |
Antiviral creams | Effective in managing skin-related viral infections | [59] |
Dental antiviral applications | Added to dental materials to prevent viral infections in oral cavities | [60] |
Antiviral sprays | Development of surface disinfectants for public spaces | [61] |
Preventing Hepatitis B infection | Investigated for reducing HBV replication | [62] |
Zika virus inhibition | Studied for their effect on mosquito-borne viral diseases | [63] |
Application Area | Specific Application | Details | Reference |
---|---|---|---|
Targeted Drug Delivery | Cancer Therapy | ZnO NPs conjugated with peptides for targeted drug delivery in prostate cancer cells | [76] |
Antibiotic Delivery | ZnO NPs functionalized with ampicillin show enhanced antibacterial activity | [77] | |
Gene Delivery | ZnO NPs for delivering plasmid DNA into mammalian cells for genetic disorder treatment | [78] | |
Controlled Release and Drug Loading | pH-Responsive Drug Release | ZnO NPs loaded with doxorubicin show controlled release at acidic pH in tumor environments | [79] |
High Drug Loading Capacity | Modified ZnO NPs used for high loading and controlled release of hydrophobic drugs | [80] | |
Multifunctional Drug Delivery Systems | ZnO NPs combined with fluorescent dyes for dual drug delivery and bioimaging | [81] | |
Overcoming Drug Resistance | Reversing Multidrug Resistance in Cancer | ZnO NPs block efflux pumps to enhance drug accumulation in drug-resistant breast cancer cells | [82] |
Enhancing Antibiotic Efficacy | ZnO NPs disrupt bacterial membranes to potentiate the effect of tetracycline against MRSA | [83] | |
Combination Therapy | ZnO NPs co-loaded with paclitaxel and resveratrol for treating multidrug-resistant cancers | [84] |
Application Area | Specific Application | Details | Reference |
---|---|---|---|
Photodynamic Therapy (PDT) | Mechanism of Action | ZnO NPs generate ROS under UV light, inducing apoptosis in cancer cells | [92] |
Improved Targeting | Functionalized ZnO NPs improve localization in tumor tissues for PDT | [93] | |
Enhanced Photosensitivity | ZnO NPs combined with natural photosensitizers improve ROS generation | [94] | |
Chemotherapy Enhancement | Combination with Cisplatin | ZnO NPs reduce cisplatin resistance in ovarian cancer cells | [95] |
Enhanced Doxorubicin Delivery | ZnO NPs increase doxorubicin uptake in multidrug-resistant cancer cells | [96] | |
Reduced Drug Toxicity | ZnO NPs lower the systemic toxicity of chemotherapy drugs | [78] | |
Co-delivery of Multiple Drugs | ZnO NPs deliver doxorubicin and paclitaxel simultaneously for synergistic effects | [96] | |
Nanotheranostics | Real-Time Tumor Imaging | ZnO NPs functionalized with fluorescent dyes enable imaging-guided therapy | [97] |
Dual-Mode Imaging | ZnO NPs integrated with MRI contrast agents for precise tumor localization | [78] | |
Drug-Activated Imaging | ZnO NPs release imaging agents upon drug delivery for real-time monitoring | [98] | |
Targeting Specific Cancer Types | Breast Cancer Therapy | ZnO NPs functionalized with antibodies target HER2-positive breast cancer cells | [99] |
Lung Cancer Treatment | ZnO NPs loaded with gefitinib improve targeting of lung adenocarcinoma | [100] | |
Glioblastoma Treatment | ZnO NPs penetrate the blood–brain barrier to treat glioblastoma | [101] | |
Reduction of Side Effects | Minimizing Chemotherapy-Induced Nausea | ZnO NPs decrease the systemic release of chemotherapy agents causing adverse effects | [78] |
Better Biodegradability | ZnO NPs exhibit excellent biodegradability, reducing long-term toxicity | [102] |
Application Area | Specific Application | Details | Reference |
---|---|---|---|
Adjuvant Activity | Mechanism of Adjuvant Action | ZnO NPs stimulate cytokine production, enhancing vaccine potency | [113] |
Improving Vaccine Efficacy | ZnO NPs as adjuvants showed superior results in influenza vaccine trials | [114] | |
Safety and Biocompatibility | ZnO NPs exhibit biocompatibility, reducing adverse effects in preclinical vaccine studies | [115] | |
Antigen Delivery Systems | Enhanced Stability of Antigens | ZnO NPs protect protein antigens from enzymatic degradation, increasing their shelf life | [116] |
Targeted Delivery | ZnO NPs functionalized with peptides target lymphatic tissues effectively | [117] | |
Controlled Release of Antigens | ZnO NPs enable the gradual release of antigens, leading to sustained immune activation | [115] | |
New Vaccine Development | COVID-19 Vaccines | ZnO NPs aid in stable delivery of mRNA-based COVID-19 vaccines | [118] |
Vaccines for Emerging Infectious Diseases | ZnO NPs are being evaluated for Zika and SARS-CoV-2 combination vaccines | [119] | |
Multivalent Vaccines | ZnO NPs contribute to simultaneous antigen delivery for influenza and RSV vaccines | [120] |
Application Area | Specific Application | Mechanism/Functionality | Key Findings/Outcomes | References |
---|---|---|---|---|
Water Purification | Degradation of Organic Pollutants | Photocatalysis under UV light | Efficient removal of textile dyes and phenolic compounds from wastewater | [129] |
Adsorption of Heavy Metals | High affinity for metal ions on nanoparticle surfaces | Removal of cadmium (Cd) and chromium (Cr) from industrial wastewater | [130] | |
Disinfection of Pathogens | Reactive oxygen species generation causing microbial inactivation | Successful elimination of Escherichia coli and Cryptosporidium from water systems | [131] | |
Air Purification | Photocatalytic Degradation of VOCs | Oxidation of harmful organic compounds into non-toxic byproducts | Reduction in indoor air pollutants, including formaldehyde and benzene | [132] |
Removal of Particulate Matter | Aggregation of particles facilitated by surface interactions | Enhanced capture of particulate matter in urban environments using ZnO coatings on filters | [133] | |
Inactivation of Airborne Pathogens | Antimicrobial activity through surface interactions and ion release | Suppression of bacterial growth in hospital and industrial ventilation systems | [134] | |
Soil Remediation | Immobilization of Heavy Metals | Chemical binding and stabilization of toxic metals in soil | Immobilization of lead (Pb) and arsenic (As), reducing leaching risks | [135] |
Degradation of Organic Pollutants in Soils | UV-activated degradation of pesticides and herbicides | Reduction in chlorpyrifos and atrazine residues in agricultural soils | [135] | |
Enhancement of Soil Quality | Stimulation of microbial activity and nutrient cycling | Improved soil fertility and crop productivity in treated agricultural fields | [136] |
Sensing Material | Target Gas | Operating Temp (°C) | Response/Recovery Time (s) | Limit of Detection (LOD) | Reference |
---|---|---|---|---|---|
Pure ZnO Nanorods | NO2 | Room temperature | 60/80 | 1 ppm | [146] |
ZnO Nanowires | NO2 | Room temp | 40/55 | 0.5 ppm | [147] |
ZnO–SnO2 Heterostructure | Ethanol | 250 | 12/18 | 10 ppm | [152] |
MoS2/ZnO Heterostructure | NO2 | Room temp | 10/13 | 100 ppb | [153] |
MoS2/ZnO Heterostructure | NO2 (UV-aided) | Room temp | 7/11 | 50 ppb | [154] |
MoS2/ZnO Hierarchical | H2S | Room temp | 9/14 | 0.5 ppm | [155] |
Application | Description | Recent Studies |
---|---|---|
Electronics and Optoelectronics | ||
Transparent Conductive Films | ZnO NPs used in displays, touch screens, and solar cells as cost-effective alternatives to ITO | [184] |
Gas Sensors | High-sensitivity gas sensors for environmental monitoring and industrial safety | [185] |
Light-Emitting Diodes (LEDs) | High-efficiency LEDs in UV and visible light spectra | [186] |
Photodetectors | UV light detection for environmental monitoring and medical diagnostics | [78] |
Piezoelectric Devices | Energy-harvesting devices for wearable electronics | [187] |
Flexible Electronics | ZnO NPs in wearable sensors and foldable displays for enhanced flexibility | [188] |
Transistors | Thin-film transistors for next-generation electronic devices | [189] |
Memory Devices | Non-volatile memory devices like RRAM with low power consumption | [190] |
Solar Cells | Electron transport layers in perovskite solar cells for improved efficiency | [191] |
Thin-Film Coatings | Protective coatings for electronic devices to enhance UV protection and durability | [192] |
Textiles | ||
Antimicrobial Textiles | Fabrics with long-lasting antimicrobial protection for medical and hygiene products | [193] |
UV-Blocking Fabrics | Textiles that block harmful UV rays, ideal for outdoor clothing | [194] |
Self-Cleaning Textiles | Fabrics with photocatalytic self-cleaning properties | [195] |
Moisture-Wicking Fabrics | Enhanced breathability for activewear and outdoor gear | [196] |
Flame-Retardant Fabrics | Textiles with improved safety through flame-retardant properties | [197] |
Anti-Odor Fabrics | Fabrics that prevent odor caused by bacteria, popular in socks and underwear | [40] |
Enhanced Dyeing | Improved dyeability and color fastness for vibrant and durable colors | [198] |
Thermal Regulation | Textiles that regulate temperature, useful in sportswear and military uniforms | [199] |
Anti-Static Fabrics | Fabrics with reduced static electricity, beneficial in electronic work environments | [200] |
Durability Enhancement | Increased resistance to wear and tear, extending garment lifespan | [201] |
Improved bonding | Enhanced nanoparticle adhesion and durable antimicrobial finishing | [202] |
Cosmetics | ||
Sunscreens | Broad-spectrum UV protection in daily-use sunscreens | [203] |
Anti-Aging Creams | Prevention of photoaging and promotion of collagen synthesis | [204] |
Acne Treatment | Reduction in acne-causing bacteria and soothing of inflamed skin | [205] |
Moisturizers | Enhanced skin hydration and barrier function, ideal for dry and sensitive skin types | [206] |
Makeup Products | Mattifying and skin-tone-evening effects in foundations and powders | [172] |
Deodorants | Long-lasting freshness without harsh chemicals | [207] |
Toothpaste | Prevention of cavities, gum disease, and bad breath in dental care products | [170] |
Hair Care Products | Scalp soothing, dandruff reduction, and UV protection in shampoos and conditioners | [208] |
Antiperspirants | Reduction in sweat and bacteria responsible for body odor | [209] |
Wound Healing Creams | Acceleration of healing and reduction in infection risk in wound care | [210] |
Food Packaging | ||
Antimicrobial Packaging | Prevention of microbial growth to extend the shelf life of food products | [36] |
UV-Blocking Packaging | Protection of food products from photodegradation and spoilage | [211] |
Oxygen Scavenging | Reduction in oxygen levels to slow down oxidation and spoilage | [212] |
Ethylene Removal | Removal of ethylene gas to extend the shelf life of fresh produce | [213] |
Active Biodegradable Packaging | Sustainable packaging materials with antimicrobial and UV-blocking functions | [211] |
Nanocomposite Films | Enhanced mechanical strength and barrier properties in food packaging materials | [214] |
Smart Packaging | Real-time monitoring of food freshness through changes in temperature, pH, or gas composition | [180] |
Odor-Absorbing Packaging | Neutralization of unwanted odors released by certain foods during storage | [215] |
Improved Barrier Properties | Enhanced protection against moisture, gases, and oils | [216] |
Edible Coatings | Edible coatings that maintain freshness and extend the shelf life of fresh fruits and vegetables | [217] |
Biofilm Development | Biomedical applications such as topical dressings or as packaging for the food industry. | [218,219] |
Application Area | Description | Example/Study | Reference |
---|---|---|---|
Antimicrobial Activity | ZnO NPs protect seeds and crops from pathogens by inhibiting microbial growth | Inhibition of Pseudomonas syringae in various crops | [236,237] |
Fertilizer Efficiency Enhancement | ZnO NPs improve nutrient uptake and enhance crop growth by acting as a smart fertilizer component | Increased growth and yield in wheat and maize due to improved root development | [236,238] |
Pest and Disease Management | ZnO NPs serve as a dual-action agent by protecting crops from pathogens and repelling insects | Formulation of ZnO NPs in sprays for fungal and bacterial infection protection and insect repulsion | [230] |
Soil Health Improvement | ZnO NPs provide a slow-release source of zinc, essential for soil fertility and plant health | Improved soil fertility in zinc-deficient soils and better nutrient availability | [239,240] |
UV Protection for Crops | ZnO NPs act as UV shields, protecting plants from excessive UV radiation | Application of ZnO NPs to tomato and strawberry plants to reduce UV stress | [241,242] |
Seed Germination and Growth Promotion | ZnO NPs enhance seed germination and early plant growth by promoting water uptake and enzyme activity | Faster germination and more robust seedlings in wheat treated with ZnO NPs | [243,244] |
Water Management | ZnO NPs are used in materials for soil moisture retention, aiding in efficient water use in agriculture | Development of ZnO-NP-based materials for consistent water supply to crops during dry periods | [245] |
Nano-Encapsulation of Agrochemicals | ZnO NPs are used to encapsulate agrochemicals for targeted delivery and reduced environmental impact | Nano-encapsulation of herbicides and insecticides using ZnO NPs for enhanced efficacy | [246] |
Biotic and Abiotic Stress Tolerance | ZnO NPs enhance crop tolerance to biotic and abiotic stresses, such as pathogen attack, drought, and salinity | Application of ZnO NPs to soybean for drought resistance and to rice for salinity tolerance | [127,247] |
Nanobiosensors for Precision Agriculture | ZnO NPs are incorporated into nanobiosensors for real-time monitoring of soil health, nutrient levels, and plant stress | Development of nanobiosensors using ZnO NPs for optimizing agricultural inputs in precision farming | [248,249] |
Area | Concerns | Examples/Studies | References |
---|---|---|---|
Human Health Risks | Cytotoxicity, genotoxicity, respiratory toxicity, dermal toxicity | DNA damage in human lung cells; respiratory diseases in workers; skin penetration in damaged skin | [258] |
Environmental Impact | Ecotoxicity in aquatic systems, soil toxicity, bioaccumulation | Inhibition of algal growth; reduction in soil microbial diversity; bioaccumulation in aquatic organisms | [259,260] |
Safety Measures and Regulations | Guidelines, green synthesis, surface modifications, safe-by-design approaches | OSHA exposure limits; surface-modified ZnO NPs; Safe-by-Design strategies | [261,262] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebaka, V.R.; Ravi, P.; Reddy, M.C.; Thummala, C.; Mandal, T.K. Zinc Oxide Nanoparticles in Modern Science and Technology: Multifunctional Roles in Healthcare, Environmental Remediation, and Industry. Nanomaterials 2025, 15, 754. https://doi.org/10.3390/nano15100754
Lebaka VR, Ravi P, Reddy MC, Thummala C, Mandal TK. Zinc Oxide Nanoparticles in Modern Science and Technology: Multifunctional Roles in Healthcare, Environmental Remediation, and Industry. Nanomaterials. 2025; 15(10):754. https://doi.org/10.3390/nano15100754
Chicago/Turabian StyleLebaka, Veeranjaneya Reddy, Perugu Ravi, Madhava C. Reddy, Chandrasekhar Thummala, and Tapas Kumar Mandal. 2025. "Zinc Oxide Nanoparticles in Modern Science and Technology: Multifunctional Roles in Healthcare, Environmental Remediation, and Industry" Nanomaterials 15, no. 10: 754. https://doi.org/10.3390/nano15100754
APA StyleLebaka, V. R., Ravi, P., Reddy, M. C., Thummala, C., & Mandal, T. K. (2025). Zinc Oxide Nanoparticles in Modern Science and Technology: Multifunctional Roles in Healthcare, Environmental Remediation, and Industry. Nanomaterials, 15(10), 754. https://doi.org/10.3390/nano15100754