Excited-State-Altering Ratiometric Fluorescent Probes for the Response of β-Galactosidase in Senescent Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Photophysical Properties
2.2. DFT Caculation of Electron Distribution
2.3. Detection of β-Gal in Solution
2.4. Sensing β-Gal in Senescent Cells
3. Materials and Methods
3.1. Synthesis
3.2. UV-Vis and Fluorescence Spectroscopy
3.3. β-Gal Hydrolysis in Solution
3.4. Cell Culture
3.5. Cellular Response of Probes to β-Gal
3.6. Fluorescence Co-Localization Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gil, J. The challenge of identifying senescent cells. Nat. Cell Biol. 2023, 25, 1554–1556. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Hickson, L.J.; Eirin, A.; Kirkland, J.L.; Lerman, L.O. Cellular senescence: The good, the bad and the unknown. Nat. Rev. Nephrol. 2022, 18, 611–627. [Google Scholar] [CrossRef] [PubMed]
- McHugh, D.; Gil, J. Senescence and aging: Causes, consequences, and therapeutic avenues. J. Cell Biol. 2017, 217, 65–77. [Google Scholar] [CrossRef]
- Park, J.; Lee, Y.; Park, J. Recent Developments in Small-Molecule Fluorescent Probes for Cellular Senescence. Chemosensors 2024, 12, 141. [Google Scholar] [CrossRef]
- Sun, W.; Gao, Y.; Wu, Y.; Wu, W.; Wang, C.; Chen, J.; Luan, C.; Hua, M.; Liu, W.; Gong, W.; et al. Targeted apoptosis of senescent cells by valproic acid alleviates therapy-induced cellular senescence and lung aging. Phytomedicine 2024, 135, 156131. [Google Scholar] [CrossRef]
- Dimri, G.P.; Lee, X.; Basile, G.; Acosta, M.; Scott, G.; Roskelley, C.; Medrano, E.E.; Linskens, M.; Rubelj, I.; Pereira-Smith, O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 1995, 92, 9363–9367. [Google Scholar] [CrossRef]
- Lee, B.Y.; Han, J.A.; Im, J.S.; Morrone, A.; Johung, K.; Goodwin, E.C.; Kleijer, W.J.; DiMaio, D.; Hwang, E.S. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell 2006, 5, 187–195. [Google Scholar] [CrossRef]
- Wei, H.; Wu, G.; Tian, X.; Liu, Z. Smart Fluorescent Probes for In Situ Imaging of Enzyme Activity: Design Strategies and Applications. Future Med. Chem. 2018, 10, 2729–2744. [Google Scholar] [CrossRef]
- Liu, H.-W.; Chen, L.; Xu, C.; Li, Z.; Zhang, H.; Zhang, X.-B.; Tan, W. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem. Soc. Rev. 2018, 47, 7140–7180. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, L.-L.; Han, H.-H.; He, X.-P.; Cao, W.; James, T.D. Selective FRET nanoprobe based on carbon dots and naphthalimide–isatin for the ratiometric detection of peroxynitrite in drug-induced liver injury. Chem. Sci. 2024, 15, 757–764. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, J.; Chang, B. Bioresponsive fluorescent probes active in the second near-infrared window. iRADIOLOGY 2023, 1, 36–60. [Google Scholar] [CrossRef]
- Li, H.; Kim, Y.; Jung, H.; Hyun, J.Y.; Shin, I. Near-infrared (NIR) fluorescence-emitting small organic molecules for cancer imaging and therapy. Chem. Soc. Rev. 2022, 51, 8957–9008. [Google Scholar] [CrossRef]
- Zhang, J.; Chai, X.; He, X.-P.; Kim, H.-J.; Yoon, J.; Tian, H. Fluorogenic probes for disease-relevant enzymes. Chem. Soc. Rev. 2019, 48, 683–722. [Google Scholar] [CrossRef]
- Chai, X.; Ma, X.; Sun, L.-L.; Hu, Y.; Zhang, W.; Zhang, S.; Zhou, J.; Zhu, L.; Han, H.-H.; He, X.-P. A Mitochondria-Targeting and Peroxynitrite-Activatable Ratiometric Fluorescent Probe for Precise Tracking of Oxidative Stress-Induced Mitophagy. Anal. Chem. 2024, 96, 20161–20168. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Diao, Q.; Lv, L.; Li, T.; Ma, P.; Song, D. A novel NIR fluorescent probe for enhanced β-galactosidase detection and tumor imaging in ovarian cancer models. Spectrochim. Acta A 2024, 317, 124411. [Google Scholar] [CrossRef]
- Liu, C.; Mei, Y.; Yang, H.; Zhang, Q.; Zheng, K.; Zhang, P.; Ding, C. Ratiometric Fluorescent Probe for Real-Time Detection of β-Galactosidase Activity in Lysosomes and Its Application in Drug-Induced Senescence Imaging. Anal. Chem. 2024, 96, 3223–3232. [Google Scholar] [CrossRef]
- Valieva, Y.; Ivanova, E.; Fayzullin, A.; Kurkov, A.; Igrunkova, A. Senescence-Associated β-Galactosidase Detection in Pathology. Diagnostics 2022, 12, 2309. [Google Scholar] [CrossRef]
- Li, L.; Jia, F.; Li, Y.; Peng, Y. Design strategies and biological applications of β-galactosidase fluorescent sensor in ovarian cancer research and beyond. RSC Adv. 2024, 14, 3010–3023. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Li, H.; Choi, J.; Boo, J.; Jo, H.; Hyun, J.Y.; Shin, I. Glycosidase-targeting small molecules for biological and therapeutic applications. Chem. Soc. Rev. 2023, 52, 7036–7070. [Google Scholar] [CrossRef]
- Wang, H.; Zhuang, Y.; Fu, S.; Shen, Y.; Qian, H.; Yan, X.; Ge, J. Modular and Fast Assembly of Self-Immobilizing Fluorogenic Probes for β-Galactosidase Detection. Anal. Chem. 2024, 96, 18939–18945. [Google Scholar] [CrossRef]
- Wang, J.-B.; Zhao, X.-R.; Hu, X.-L.; Zang, Y.; Li, J.; He, X.-P. Fluorogenic Labeling Probe for the Imaging of Endogenous β-Galactosidase Activity in Cancer and Senescent Cells. ACS Appl. Mater. Interfaces 2024, 16, 68918–68927. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ma, X.; Cui, C.; Chen, Z.; Wang, Y.; Deenik, P.R.; Cui, L. Noninvasive NIR Imaging of Senescence via In Situ Labeling. J. Med. Chem. 2021, 64, 17969–17978. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, L.; Jiang, M.; Xiao, L.; Xiang, Y.; Wang, R.; Liu, Z.; Zhou, R.; Yang, M.; Li, C.; et al. An NIR Fluorescence Turn-on and MRI Bimodal Probe for Concurrent Real-Time In Vivo Sensing and Labeling of β-Galactosidase. Angew. Chem. Int. Ed. 2023, 62, e202313137. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-J.; Podder, A.; Maiti, M.; Lee, J.M.; Chung, B.G.; Bhuniya, S. Selective monitoring of vascular cell senescence via β-Galactosidase detection with a fluorescent chemosensor. Sens. Actuators B Chem. 2018, 274, 194–200. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Z.; Chen, A.; Zhang, P. A turn-on fluorescent assay for real-time determination of β-galactosidase and its application in living cell imaging. Spectrochim. Acta A 2022, 265, 120345. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, M.-Y.; Han, H.-H.; Zang, Y.; Chen, G.-R.; Li, J.; He, X.-P.; Vidal, S. A general strategy to the intracellular sensing of glycosidases using AIE-based glycoclusters. Chem. Sci. 2022, 13, 247–256. [Google Scholar] [CrossRef]
- Fan, F.; Zhang, L.; Zhou, X.; Mu, F.; Shi, G. A sensitive fluorescent probe for β-galactosidase activity detection and application in ovarian tumor imaging. J. Mater. Chem. B 2021, 9, 170–175. [Google Scholar] [CrossRef]
- Chen, S.; Wang, L.; Ma, X.; Wu, Y.; Hou, S. Kill two birds with one stone: A near-infrared ratiometric fluorescent probe for simultaneous detection of β-galactosidase in senescent and cancer cells. Sens. Actuators B Chem. 2022, 367, 132061. [Google Scholar] [CrossRef]
- Lee, H.W.; Heo, C.H.; Sen, D.; Byun, H.-O.; Kwak, I.H.; Yoon, G.; Kim, H.M. Ratiometric Two-Photon Fluorescent Probe for Quantitative Detection of β-Galactosidase Activity in Senescent Cells. Anal. Chem. 2014, 86, 10001–10005. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Wang, C.; Huang, C.; Jia, N. A new long-wavelength fluorescent probe for tracking peroxynitrite in live cells and inflammatory sites of zebrafish. Analyst 2020, 145, 828–835. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, H.; Zhang, J.; Yang, J.; Wang, P. A NIR fluorescent probe based on tricyanofuran for the detection of β-galactosidase in living ovarian tumor cells and in vivo. Bioorganic Chem. 2024, 153, 107926. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Zhang, Y.; Zheng, M.; Fan, C.; Zhang, P.; Limeng, Y.; Yang, F.; Zeng, C.; Han, X.; Shu, W. Novel Ultrasensitive Fluorescent Probe for Bioimaging Carboxylesterase and Detecting Pesticide Residues in Foods. J. Agric. Food Chem. 2024, 72, 20615–20621. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.-C.; Thet, N.; Heylen, R.A.; Sedgwick, A.C.; James, T.D.; Jenkins, A.T.A.; He, X.-P. Repurposing a long-wavelength fluorescent boronate probe for the detection of reactive oxygen species (ROS) in bacteria. Sens. Diagn. 2023, 2, 1181–1185. [Google Scholar] [CrossRef]
- Wu, Y.; Ge, C.; Zhang, Y.; Wang, Y.; Zhang, D. ICT-based fluorescent probes for intracellular pH and biological species detection. Front. Chem. 2023, 11, 1304531. [Google Scholar] [CrossRef]
- Abeywickrama, C.S. Large Stokes shift benzothiazolium cyanine dyes with improved intramolecular charge transfer (ICT) for cell imaging applications. Chem. Commun. 2022, 58, 9855–9869. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Guo, Z.; Chi, W.; Fu, W.; Abedi, S.A.A.; Liu, X.; Tian, H.; Zhu, W.-H. Fluorescence umpolung enables light-up sensing of N-acetyltransferases and nerve agents. Nat. Commun. 2021, 12, 3869. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian, 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016.
- Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 2024, 161, 802503. [Google Scholar] [CrossRef]
- Martin, R.L. Natural transition orbitals. J. Chem. Phys. 2003, 118, 4775–4777. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon 2020, 165, 461–467. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Yadav, I.S.; Misra, R. Design, synthesis and functionalization of BODIPY dyes: Applications in dye-sensitized solar cells (DSSCs) and photodynamic therapy (PDT). J. Mater. Chem. C 2023, 11, 8688–8723. [Google Scholar] [CrossRef]
- Ahmad, H.; Muhammad, S.; Mazhar, M.; Farhan, A.; Iqbal, M.S.; Hiria, H.; Yu, C.; Zhang, Y.; Guo, B. Unveiling cellular mysteries: Advances in BODIPY dyes for subcellular imaging. Coord. Chem. Rev. 2025, 526, 216383. [Google Scholar] [CrossRef]
- Huang, H.; Wu, Y.; He, X.; Liu, Y.; Zhu, J.-H.; Gu, M.; Zhou, D.; Long, S.; Chen, Y.; Wang, L.; et al. Electrostatic Co-Assembly of Cyanine Pair for Augmented Photoacoustic Imaging and Photothermal Therapy. Adv. Sci. 2025, 2416905. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.-N.; Dong, L.; Sun, L.-L.; Li, W.-J.; Xie, J.; Li, C.; Ren, S.; Zhang, Z.; Han, H.-H.; Zhang, Z. Excited-State-Altering Ratiometric Fluorescent Probes for the Response of β-Galactosidase in Senescent Cells. Molecules 2025, 30, 1221. https://doi.org/10.3390/molecules30061221
Han Y-N, Dong L, Sun L-L, Li W-J, Xie J, Li C, Ren S, Zhang Z, Han H-H, Zhang Z. Excited-State-Altering Ratiometric Fluorescent Probes for the Response of β-Galactosidase in Senescent Cells. Molecules. 2025; 30(6):1221. https://doi.org/10.3390/molecules30061221
Chicago/Turabian StyleHan, Ya-Nan, Lei Dong, Lu-Lu Sun, Wen-Jia Li, Jianjing Xie, Congyu Li, Shuhui Ren, Zhan Zhang, Hai-Hao Han, and Zhong Zhang. 2025. "Excited-State-Altering Ratiometric Fluorescent Probes for the Response of β-Galactosidase in Senescent Cells" Molecules 30, no. 6: 1221. https://doi.org/10.3390/molecules30061221
APA StyleHan, Y.-N., Dong, L., Sun, L.-L., Li, W.-J., Xie, J., Li, C., Ren, S., Zhang, Z., Han, H.-H., & Zhang, Z. (2025). Excited-State-Altering Ratiometric Fluorescent Probes for the Response of β-Galactosidase in Senescent Cells. Molecules, 30(6), 1221. https://doi.org/10.3390/molecules30061221