Impact of Supercritical Carbon Dioxide on Pore Structure and Gas Transport in Bituminous Coal: An Integrated Experiment and Simulation
Abstract
:1. Introduction
2. Samples and Methodology
2.1. Sample
2.2. ScCO2 Treatment
2.3. Experimental Characterization of Sample Pore and Chemical Structure
- (1)
- Pore Structure
- (2)
- Chemical Structure
2.4. Simulation Methods
2.4.1. Construction of Coal Macromolecular and Supramolecular Models
2.4.2. Simulation of ScCO2 Injection Process
2.4.3. Simulation Calculation of Pore Structure Parameters
2.4.4. ReaxFF-MD Simulation Calculations
2.4.5. Diffusion Coefficient Calculation Method
3. Results and Discussion
3.1. CO2 Adsorption Capacity of TL Coal
3.2. Changes in Pore Structure Characteristics of TL Coal
3.3. Changes in Chemical Characteristics of TL Coal
Characteristics of Chemical Structure Changes in Coal
3.4. Change Mechanism of Micropore and Mesopore Structure in TL Coal
3.4.1. Mechanism Analysis of Chemical Structure Change
3.4.2. Mechanism Analysis of Pore Structure Change
3.5. Analysis of Gas Diffusion Characteristics During the Reaction Process
4. Conclusions
- (1)
- After ScCO2 treatment, the micropore volume of the TL coal sample increased from 0.021 to 0.025 cm3/g (19.1%), while the micropore’s specific surface area increased from 58.93 to 65.52 m2/g (11.2%). The mesopore volume increased by 14.4%, from 2.29 × 10−3 to 2.65 × 10−3 cm3/g, with the mesopore’s specific surface area increasing from 0.69 to 0.73 m2/g. Changes in macropore volume and specific surface area were not significant. These alterations indicate a more complex pore structure, which can significantly influence methane adsorption and desorption in coal seams.
- (2)
- Following ScCO2 exposure, the content of aromatic structures, oxygen-containing functional groups, and hydroxyl groups in TL coal decreased, while aliphatic structures increased. Notably, within aromatic structures, the proportions of (CH2)n, 2H, and 1H increased. In oxygen-containing functional groups, the proportions of 2 °C-O secondary alcohols and 2 °C-O phenols increased. In hydroxyl groups, the proportion of -OH increased, while within aliphatic structures, RCH3 decreased and R2CH2 increased.
- (3)
- The evolution of coal pore structure under ScCO2 treatment progresses through distinct stages: Swelling Phase: The breakage of low-energy bonds reduces intramolecular spacing while increasing intermolecular spacing, forming new micropores. This leads to a reduction in the volume of existing micropores while increasing mesopore volume. Early Dissolution Phase: Further chemical bond breakage leads to increased micropore volume. Released small molecules occupy mesopore spaces, converting some mesopores into micropores. Later Dissolution Phase: Minimal chemical bond changes occur, but weakened π-π interactions and van der Waals forces between aromatic layers result in a further increase in mesopore volume. These findings provide a new perspective on the long-term impact of ScCO2 on coal matrix porosity, which is critical for assessing CO2 storage stability and gas migration behavior.
- (4)
- During ScCO2 treatment, the mean square displacement (MSD) and self-diffusion coefficient of CH4 initially decrease and then increase. In the swelling phase, coal matrix expansion reduces pore volume, suppressing gas diffusion capacity. However, over time, the mobilization effect of CO2 leads to further pore expansion, ultimately enhancing the self-diffusion coefficient of CH4. This suggests that ScCO2 injection may initially hinder methane desorption but can improve overall gas recovery efficiency over prolonged exposure, providing insights into CO2-ECBM field applications.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Shen, J.; Gao, J.; Wang, W.; Zhu, L.; Gu, Y.; Wang, T. Cost estimation of Non-CO2 greenhouse gas emissions reduction- A bottom-up analysis of coal-bed methane extraction and utilization in Shanxi, China. Energy 2024, 309, 133007. [Google Scholar] [CrossRef]
- Almolliyeh, M.; Sadasivam, S.; Chen, M.; Masum, S.; Thomas, H. Experimental investigation of CO2-CH4 core flooding in large intact bituminous coal cores using bespoke hydrostatic core holder. Int. J. Coal Geol. 2023, 279, 104376. [Google Scholar] [CrossRef]
- Lin, X.; Liu, Z.; Zhu, W.; Zhao, T.; Liu, S.; Sun, C.; Bai, G.; Zhang, Y. Investigation on coal permeability evolution considering the internal differential strain and its effects on CO2 sequestration capacity in deep coal seams. Energy 2024, 304, 132026. [Google Scholar] [CrossRef]
- Pyshyev, S.; Prysiazhnyi, Y.; Shved, M.; Namiesnik, J.; Bratychak, M. State of the art in the field of emission reduction of sulphur dioxide produced during coal combustion. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2387–2414. [Google Scholar] [CrossRef]
- Orr, J. Onshore geologic storage of CO2. Science 2009, 325, 1656–1658. [Google Scholar] [CrossRef]
- Wang, D.; Han, X.R.; Si, L.; Zhou, Y. A coordinated control strategy and dynamic characteristics of coal-fired units coupled with the S-CO2 energy storage cycle. Appl. Energy 2024, 372, 123812. [Google Scholar] [CrossRef]
- Zou, Y.; Song, Q.; Zhang, P.; Xu, S.; Bao, J.; Xue, S.; Qin, L.; Wang, H.; Lin, L.; Liu, C. Research status of building materials utilization and CO2 curing technology on typical coal-based solid waste: A critical review. J. CO2 Util. 2024, 84, 102860. [Google Scholar] [CrossRef]
- Li, S.; Gong, Y.; Fu, S.; Wu, N.; Wang, L. CH4 and CO2 adsorption–desorption-diffusion characteristics in surfactant-modified coal under microscopic conditions. J. Mol. Liq. 2024, 410, 125598. [Google Scholar] [CrossRef]
- Mostafa, A.; Scholtès, L.; Golfier, F. Pore-scale hydro-mechanical modeling of gas transport in coal matrix. Fuel 2023, 345, 128165. [Google Scholar] [CrossRef]
- Li, Y.; Xu, H.; Zhao, Y.; Yi, X.; Chen, L.; Jin, F.; Hua, D. The integrated production of hydrochar and methane from lignocellulosic fermentative residue coupling hydrothermal carbonization with anaerobic digestion. Chemosphere 2023, 340, 139929. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, D.; Geng, J.; Jin, Z.; Wang, C.; Ren, K. Effects of CO2 intrusion on pore structure characteristics of mineral-bearing coal: Implication for CO2 injection pressure. J. Nat. Gas. Sci. Eng. 2022, 104, 104808. [Google Scholar] [CrossRef]
- Guan, Y.; Zhou, Z.; Ge, Z.; Deng, Q.; Jia, Y.; Huang, S.; Chen, C.; Gong, S. Effect of ScCO2-H2O treatment duration on the microscopic structure of coal reservoirs: Implications for CO2 geological sequestration in coal. Int. J. Coal Geol. 2024, 282, 104439. [Google Scholar] [CrossRef]
- Liu, X.; Jia, X.; Liu, W.; Nie, B.; Zhang, C.; Song, D. Mechanical strength and porosity changes of bituminous coal induced by supercritical CO2 interactions: Influence of saturation pressure. Geoenergy 2023, 225, 211691. [Google Scholar] [CrossRef]
- Su, E.; Liang, Y.; Chen, X.; Wang, Z.; Ni, X.; Zou, Q.; Chen, H.; Wei, J. Relationship between pore structure and mechanical properties of bituminous coal under sub-critical and super-critical CO2 treatment. Energy 2023, 280, 128155. [Google Scholar] [CrossRef]
- Zhang, G.; Ranjith, P.; Li, Z.; Gao, M.; Ma, Z. Long-term effects of CO2-water-coal interactions on structural and mechanical changes of bituminous coal. J. Petrol. Sci. Eng. 2021, 207, 109093. [Google Scholar] [CrossRef]
- Wu, J.; Gan, Y.; Shi, Z.; Huang, P.; Shen, L. Pore-scale lattice Boltzmann simulation of CO2-CH4 displacement in shale matrix. Energy 2023, 278, 127991. [Google Scholar] [CrossRef]
- Liu, B.; Wen, H.; Cheng, X.; Fan, S.; Mi, W.; Li, R. Competitive adsorption law of multi-component gases during CO2 displacement of CH4 in coal seams. J. CO2 Util. 2023, 76, 102581. [Google Scholar] [CrossRef]
- Wang, H.; Xiang, J.; Deng, X.; Gao, W. Molecular simulation of the adsorption and diffusion properties of CH4 and CO2 in the microporous system of coal. Fuel 2024, 360, 130566. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, D.; Su, E.; Jiang, Z.; Wang, C.; Chu, Y.; Ye, C. Pore structure and diffusion characteristics of intact and tectonic coals: Implications for selection of CO2 geological sequestration site. J. Nat. Gas Sci. Eng. 2020, 81, 103388. [Google Scholar] [CrossRef]
- Liang, X.; Kang, T.; Kang, J.; Zhang, X.; Zhang, L.; Li, H.; Zhu, W.; Guo, J.; Zhang, B. Experimental study of influence of natural organic solvent limonene on methane adsorption–desorption behaviors of selected rank coals. Energy 2024, 291, 130491. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, X.; Nie, B.; Wu, W.; Wang, R. Methane sorption behavior on tectonic coal under the influence of moisture. Fuel 2022, 327, 125150. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, S.; Li, Z.; Liu, B.; Wang, R. Effect of pore structure on competitive sorption and diffusion of mixed methane and carbon dioxide in anthracite, South Qinshui Basin, China. Int. J. Coal Geol. 2022, 253, 103956. [Google Scholar] [CrossRef]
- GB/T 19222-2003; Sampling of Coal Petrology. China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China, 2003.
- GB/T 212-2008; Proximate Analysis of Coal. Standardization Administration of China: Beijing, China, 2008.
- ISO 11760:2005; Classification of Coals. International Organization for Standardization: Geneva, Switzerland, 2005.
- SY/T 6154-2019; Determination of Rock Specific Surface Area and Pore Size Distribution—Static Adsorption Capacity Method. China National Petroleum Corporation: Beijing, China, 2019.
- Jagiello, J.; Kenvin, J.; Celzard, A.; Fierro, V. Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models. Carbon 2019, 144, 206–215. [Google Scholar] [CrossRef]
- Bałys, M.; Brodawka, E.; Jagiello, J. Evaluation of methane adsorption isotherms at ambient temperature on carbon materials from NLDFT pore size analysis derived from standard N2 and CO2 adsorption isotherms. ChemenGresdes 2024, 207, 320–330. [Google Scholar] [CrossRef]
- Bian, J.; Li, X.; Zeng, F.; Wang, X. The construction and evaluation of a medium-rank coal molecular model using a hybrid experimental-simulation-theoretical method. Energy Fuel 2019, 33, 12905–12915. [Google Scholar] [CrossRef]
- Dong, K.; Kong, S.Q.; Niu, Z.Y.; Jia, B.Y. Research on the Interaction Mechanisms between ScCO2 and Low-Rank/High-Rank Coal with the ReaxFF-MD Force Field. Molecules 2024, 29, 3014. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Xin, Q.; Dai, Y.; Chen, Y.; Liu, S.; Zhang, X.; Yang, Y.; Gao, X. Competitive transport and adsorption of CO2/H2O in the graphene nano-slit pore: A molecular dynamics simulation study. Sep. Purif. Technol. 2025, 353, 128394. [Google Scholar] [CrossRef]
- Guo, D.; Zhang, L.; Zhao, Y.; Yang, X.; Wen, S.; Wu, J.; Chen, X. Impact of the water content on CO2 and CH4 adsorption and diffusion in quartz nanopores: A comprehensive study using GCMC, MD, and DFT. Colloid Surface A 2023, 703, 135442. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, B.; Wang, D.; Kang, T.; Feng, Z.; Li, L.; Li, H.; Liang, X.; Zhu, W.; Zhang, J. Molecular simulation study on the interaction between different clay minerals and organic matter and their impact on the mechanical heterogeneity of anthracite coal. J. China Coal Soc. 2024, online. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Liu, S.; Li, W.; Tang, X. Temperature effect on gas adsorption capacity in different sized pores of coal: Experiment and numerical modeling. J. Petrol. Sci. Eng. 2018, 03, 821–830. [Google Scholar] [CrossRef]
- Xu, T.; Wang, C.; Hong, D. Programmable heating and quenching for enhancing coal pyrolysis tar yield: A ReaxFF molecular dynamics study. Energy 2023, 285, 129404. [Google Scholar] [CrossRef]
- Dong, W.; Hong, R.; Yang, Y.; Wang, D.; Qiu, B.; Chu, H. Analysis of the nanostructure evolution of soot in n-heptane/iso-octane with 2, 5-dimethylfuran addition: A combined experimental study and ReaxFF MD simulations. Combust. Flame 2024, 270, 113751. [Google Scholar] [CrossRef]
- Tran, T.; Duong, D.; Pham, T.; Ho, K. Investigation of mean-square displacement and elastic moduli of solid argon up to 85 GPa. Chem. Phys. 2020, 539, 110928. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, W.; Liu, Q.; Liu, Z. An extension of atomic mean square displacement method for calculating melting temperatures in II-VI compounds. Soild State Sci. 2024, 156, 107681. [Google Scholar] [CrossRef]
- Li, S.; Wu, S.; Wang, B.; Zhang, J.; Wang, L. Investigation of desorption and diffusion of gas within low-rank bituminous coal under moisture-stress constraints. Fuel 2024, 373, 132320. [Google Scholar] [CrossRef]
- Guo, H.; Gao, Z.; Yu, Y.; Wang, K.; Yuan, L.; Wang, L.; Feng, H.; Ren, B.; Zhang, H. Experimental investigation on the effect of multiscale pore characteristics of tectonic coal on gas adsorption/desorption and diffusion characteristics. Powder Technol. 2024, 444, 119945. [Google Scholar] [CrossRef]
- Gao, F.; Jia, Z.; Cui, Z.; Li, Y.; Jiang, H. Evolution of macromolecular structure during coal oxidation via FTIR, XRD and Raman. Fuel Process. Technol. 2024, 262, 108114. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, X.; Ren, D.; Lu, W.; Yuan, S. CO enhancement in coal gasification with CO2: Effect of minerals. Fuel 2025, 379, 133118. [Google Scholar] [CrossRef]
- Liu, S.; Sang, S.; Ma, J.; Wang, T.; Du, Y.; Fang, H. Effects of supercritical CO2 on micropores in bituminous and anthracite coal. Fuel 2019, 242, 96–108. [Google Scholar] [CrossRef]
- Mohsen, S.; David, W.; Abbas, E. Experimental investigations on the effect of CO2 on mechanics of coal. Int. J. Coal Geol. 2014, 128–129, 12–23. [Google Scholar] [CrossRef]
- Zhang, G.; Fu, X.; Li, X. Pore-Fracture Alteration of Different Rank Coals: Implications for CO2 Sequestration in Coal. Fuel 2021, 289, 119734. [Google Scholar] [CrossRef]
- Major, M.; Kasturie, P.; Michael, O.D. Physicochemical characterization of South African coals upon short-term flue gas exposure using conventional and advanced techniques. Mater. Sci. Energy Technol. 2020, 3, 25–35. [Google Scholar]
Sample | Proximate Analysis (%) | Ultimate Analysis (%) | Ro,max (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vdaf | Cdaf | Hdaf | Odaf | Ndaf | Sdaf | ||
TL | 0.38 | 6.91 | 23.9 | 86.34 | 3.96 | 6.14 | 1.09 | 4.47 | 1.45 |
SSAmic | PVmic | SSAmes | PVmes | SSAmac | PVmac | |
---|---|---|---|---|---|---|
Untreated | 58.93 | 0.021 | 0.69 | 2.29 | 0.004 | 0.001 |
Treated | 65.52 | 0.025 | 0.73 | 2.65 | 0.004 | 0.001 |
SSAmic | PVmic | SSAmes | PVmes | SSAmac | PVmac | |
---|---|---|---|---|---|---|
Untreated | 63.56 | 0.025 | 0.82 | 2.48 | 0.005 | 0.001 |
Treated | 69.47 | 0.031 | 0.92 | 2.87 | 0.005 | 0.001 |
Untreated | Treated | ||||
---|---|---|---|---|---|
Assignment | Position, cm−1 | Area Percentage, % | Position, cm−1 | Area Percentage, % | |
Aromatic structure | (CH2)n | 718.2 | 3.45 | 721.4 | 7.45 |
4H | 747.6 | 36.57 | 750.3 | 24.97 | |
3H | 793.4 | 21.29 | 795.2 | 15.29 | |
2H | 836.3 | 18.56 | 840.9 | 19.84 | |
1H | 869.2 | 20.13 | 872.2 | 32.45 | |
Oxygen-containing groups | alkyl ethers | 1035.4 | 49.60% | 1037.2 | 27.23% |
2 °C-O secondary alcohols | 1119.8 | 6.26% | 1123.5 | 24.54% | |
2 °C-O phenols | 1213.5 | 2.43% | 1211.9 | 20.89% | |
2 °C-O in aryl ethers | 1298.2 | 1.65% | 1292.4 | 2.63% | |
carboxyl C=O | 1683.7 | 40.06% | 1689.2 | 22.71 | |
Aliphatic hydrocarbons | (sym.) R2CH2 | 2842.5 | 18.45 | 2856.3 | 18.90 |
(asym.) R2CH2 | 2925.4 | 36.73 | 2939.6 | 47.12 | |
(asym.) RCH3 | 2948.9 | 44.82 | 2950.1 | 33.98 | |
Hydroxyl groups | -OH | 3367.3 | 41.25 | 3376.2 | 59.19 |
OH-π | 3542.5 | 58.75 | 3556.6 | 40.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, K.; Niu, Z.; Kong, S.; Jia, B. Impact of Supercritical Carbon Dioxide on Pore Structure and Gas Transport in Bituminous Coal: An Integrated Experiment and Simulation. Molecules 2025, 30, 1200. https://doi.org/10.3390/molecules30061200
Dong K, Niu Z, Kong S, Jia B. Impact of Supercritical Carbon Dioxide on Pore Structure and Gas Transport in Bituminous Coal: An Integrated Experiment and Simulation. Molecules. 2025; 30(6):1200. https://doi.org/10.3390/molecules30061200
Chicago/Turabian StyleDong, Kui, Zhiyu Niu, Shaoqi Kong, and Bingyi Jia. 2025. "Impact of Supercritical Carbon Dioxide on Pore Structure and Gas Transport in Bituminous Coal: An Integrated Experiment and Simulation" Molecules 30, no. 6: 1200. https://doi.org/10.3390/molecules30061200
APA StyleDong, K., Niu, Z., Kong, S., & Jia, B. (2025). Impact of Supercritical Carbon Dioxide on Pore Structure and Gas Transport in Bituminous Coal: An Integrated Experiment and Simulation. Molecules, 30(6), 1200. https://doi.org/10.3390/molecules30061200