Postbiotic Effects of Pediococcus acidophilus LS for Anti-Melanogenesis, Photoprotection, and Wound Repair
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Culture Conditions
2.2. Cell Culture
2.3. Cell Viability Assay
2.4. Melanin Content Assay
2.5. Fontana–Masson Staining Assays
2.6. Preparation of Cell Extracts and Western Blot Analysis
2.7. UVA-Induced ROS Measurement in HaCaT Cells
2.8. Measurement of α-MSH Expression
2.9. In Vitro Wound Healing Model
2.10. Expression Analysis of Collagen Type I and Wound Healing-Related Proteins
2.11. Statistical Analysis
3. Results
3.1. Effect of CFS-LS on Melanin Production in B16F10 Cells
3.2. Effect of CFS-LS on Melanogenesis-Related Protein Expression in B16F10 Cells
3.3. Effect of CFS-LS on UVA-Induced Photodamage in HaCaT Cells
3.4. Effect of CFS-LS on Skin Wound Healing in HaCaT Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CFS-LS | Pediococcus acidophilus strain LS-derived cell-free supernatant |
UV | Ultraviolet |
ROS | Reactive oxygen species |
α-MSH | α-melanocyte-stimulating hormone |
MC1R | Melanocortin 1 receptor |
MITF | Microphthalmia-associated transcription factor |
TRP | Tyrosinase-related proteins |
CM-H2DCFDA | 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester |
NMR | Nuclear magnetic resonance |
GC-MS | Gas chromatography–mass spectrometry |
LC-MS | Liquid chromatography–mass spectrometry |
References
- Amoh, Y.; Yang, M.; Li, L.; Reynoso, J.; Bouvet, M.; Moossa, A.R.; Katsuoka, K.; Hoffman, R.M. Nestin-linked green fluorescent protein transgenic nude mouse for imaging human tumor angiogenesis. Cancer Res. 2005, 65, 5352–5357. [Google Scholar] [CrossRef]
- Ahn, S.J.; Koketsu, M.; Ishihara, H.; Lee, S.M.; Ha, S.K.; Lee, K.H.; Kang, T.H.; Kima, S.Y. Regulation of melanin synthesis by selenium-containing carbohydrates. Chem. Pharm. Bull. 2006, 54, 281–286. [Google Scholar] [CrossRef]
- Videira, I.F.d.S.; Moura, D.F.L.; Magina, S. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 2013, 88, 76–83. [Google Scholar] [CrossRef]
- Kondo, T.; Hearing, V.J. Update on the regulation of mammalian melanocyte function and skin pigmentation. Expert. Rev. Dermatol. 2011, 6, 97–108. [Google Scholar] [CrossRef]
- Narayanan, D.L.; Saladi, R.N.; Fox, J.L. Ultraviolet radiation and skin cancer. Int. J. Dermatol. 2010, 49, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Soehnge, H.; Ouhtit, A.; Ananthaswamy, O. Mechanisms of induction of skin cancer by UV radiation. Front. Biosci. 1997, 2, D538–D551. [Google Scholar] [CrossRef]
- Garmyn, M.; Young, A.R.; Miller, S.A. Mechanisms of and variables affecting UVR photoadaptation in human skin. Photochem. Photobiol. Sci. 2018, 17, 1932–1940. [Google Scholar] [CrossRef]
- Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef]
- Cui, R.; Widlund, H.R.; Feige, E.; Lin, J.Y.; Wilensky, D.L.; Igras, V.E.; D’Orazio, J.; Fung, C.Y.; Schanbacher, C.F.; Granter, S.R.; et al. Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell 2007, 128, 853–864. [Google Scholar] [CrossRef]
- Hearing, V.J.; Tsukamoto, K. Enzymatic control of pigmentation in mammals. FASEB J. 1991, 5, 2902–2909. [Google Scholar] [CrossRef]
- Abramowitz, J.; Chavin, W. Acute effects of two melanocytolytic agents, hydroquinone and β-mercaptoethanolamine, upon tyrosinase activity and cyclic nucleotide levels in murine melanomas. Chem. Biol. Interact. 1980, 32, 195–208. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef]
- Pattapulavar, V.; Ramanujam, S.; Kini, B.; Christopher, J.G. Probiotic-derived postbiotics: A perspective on next-generation therapeutics. Front. Nutr. 2025, 12, 1624539. [Google Scholar] [CrossRef]
- Im, A.R.; Kim, H.S.; Hyun, J.W.; Chae, S. Potential for tyndalized Lactobacillus acidophilus as an effective component in moisturizing skin and anti-wrinkle products. Exp. Ther. Med. 2016, 12, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.Y.; Jeong, D.; Park, S.H.; Shin, K.K.; Hong, Y.H.; Kim, E.; Yu, Y.G.; Kim, T.R.; Kim, H.; Lee, J.; et al. Antiwrinkle and Antimelanogenesis Effects of Tyndallized Lactobacillus acidophilus KCCM12625P. Int. J. Mol. Sci. 2020, 21, 1620. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Seo, H.; Mahmud, H.A.; Islam, M.I.; Sultana, O.F.; Lee, Y.; Kim, M.; Song, H.Y. Melanin Bleaching and Melanogenesis Inhibition Effects of Pediococcus acidilactici PMC48 Isolated from Korean Perilla Leaf Kimchi. J. Microbiol. Biotechnol. 2020, 30, 1051–1059. [Google Scholar] [CrossRef]
- Meng, Z.; Oh, S. Antioxidant and Antimelanogenic Activities of Kimchi-Derived Limosilactobacillus fermentum JNU532 in B16F10 Melanoma Cells. J. Microbiol. Biotechnol. 2021, 31, 990–998. [Google Scholar] [CrossRef]
- Lee, S.; Park, H.O.; Yoo, W. Anti-Melanogenic and Antioxidant Effects of Cell-Free Supernatant from Lactobacillus gasseri BNR17. Microorganisms 2022, 10, 788. [Google Scholar] [CrossRef]
- Chang, C.H.; Teng, P.Y.; Lee, T.T.; Yu, B. Effects of multi-strain probiotic supplementation on intestinal microbiota, tight junctions, and inflammation in young broiler chickens challenged with Salmonella enterica subsp. enterica. Asian-Australas. J. Anim. Sci. 2020, 33, 1797–1808. [Google Scholar] [CrossRef]
- Fidler, I.J. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res. 1975, 35, 218–224. Available online: https://pubmed.ncbi.nlm.nih.gov/1109790/ (accessed on 6 September 2025).
- Boukamp, P.; Petrussevska, R.T.; Breitkreutz, D.; Hornung, J.; Markham, A.; Fusenig, N.E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 1988, 106, 761–771. [Google Scholar] [CrossRef]
- Oh, M.C.; Fernando, P.; Piao, M.J.; Kang, K.A.; Herath, H.; Hyun, J.W. Baicalein Inhibits alpha-Melanocyte-stimulating Hormone-stimulated Melanogenesis via p38 Mitogen-activated Protein Kinase Pathway in B16F10 Mouse Melanoma Cells. J. Cancer Prev. 2023, 28, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.; Lee, H.J.; Park, W.S.; Kang, D.M.; Ahn, M.J.; Yoon, H.; Yoo, J.C.; Moon, D.K.; Woo, D.K. Catechin-7-O-alpha-L-rhamnopyranoside can reduce alpha-MSH-induced melanogenesis in B16F10 melanoma cells through competitive inhibition of tyrosinase. Int. J. Med. Sci. 2022, 19, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Cheah, S.; Chia, K.; Tan, C.; Lee, S.-K. Depigmenting Effect of Azelaic Acid and Glycolic Acid in MNT-1 and B16-F10 Melanoma Cells. Clin. Exp. Investig. 2020, 1–10. [Google Scholar] [CrossRef]
- Cholia, R.P.; Kumari, S.; Kumar, S.; Kaur, M.; Kaur, M.; Kumar, R.; Dhiman, M.; Mantha, A.K. An in vitro study ascertaining the role of H(2)O(2) and glucose oxidase in modulation of antioxidant potential and cancer cell survival mechanisms in glioblastoma U-87 MG cells. Metab. Brain Dis. 2017, 32, 1705–1716. [Google Scholar] [CrossRef]
- Lombardi, F.; Palumbo, P.; Mattei, A.; Augello, F.R.; Cifone, M.G.; Giuliani, M.; Cinque, B. Soluble Fraction from Lysates of Selected Probiotic Strains Differently Influences Re-Epithelialization of HaCaT Scratched Monolayer Through a Mechanism Involving Nitric Oxide Synthase 2. Biomolecules 2019, 9, 756. [Google Scholar] [CrossRef]
- Kim, M.J.; Won, K.J.; Kim, D.Y.; Won, Y.R.; Kim, N.Y.; Lee, D.K.; Hong, B.S.; Lee, H.M. Skin Wound Healing and Anti-Wrinkle-Promoting In Vitro Biological Activities of Caragana sinica Flower Absolute and Its Chemical Composition. Pharmaceuticals 2023, 16, 235. [Google Scholar] [CrossRef]
- Bazireh, H.; Shariati, P.; Azimzadeh Jamalkandi, S.; Ahmadi, A.; Boroumand, M.A. Isolation of Novel Probiotic Lactobacillus and Enterococcus Strains From Human Salivary and Fecal Sources. Front. Microbiol. 2020, 11, 597946. [Google Scholar] [CrossRef]
- Chang, C.H.; Teng, P.Y.; Lee, T.T.; Yu, B. Effects of Multi-Strain Probiotics Combined with Gardeniae fructus on Intestinal Microbiota, Metabolites, and Morphology in Broilers. J. Poult. Sci. 2019, 56, 32–43. [Google Scholar] [CrossRef]
- Gao, H.; Li, X.; Chen, X.; Hai, D.; Wei, C.; Zhang, L.; Li, P. The Functional Roles of Lactobacillus acidophilus in Different Physiological and Pathological Processes. J. Microbiol. Biotechnol. 2022, 32, 1226. [Google Scholar] [CrossRef]
- Vinderola, G.; Benkowski, A.; Bernardeau, M.; Chenoll, E.; Collado, M.C.; Cronin, U.; Eckhardt, E.; Green, J.B.; Ipharraguerre, I.R.; Kemperman, R.; et al. Postbiotics: A perspective on their quantification. Front. Nutr. 2025, 12, 1582733. [Google Scholar] [CrossRef]
- Moradi, M.; Molaei, R.; Guimaraes, J.T. A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzym. Microb. Technol. 2021, 143, 109722. [Google Scholar] [CrossRef]
- Yaprak Colak, E.; Duran, N. Synergistic antibacterial effects of postbiotics combined with linezolid and amikacin against nosocomial pathogens. Front. Cell. Infect. Microbiol. 2025, 15, 1616501. [Google Scholar] [CrossRef] [PubMed]
- Arora, N.; Siddiqui, E.M.; Mehan, S. Involvement of adenylate cyclase/cAMP/CREB and SOX9/MITF in melanogenesis to prevent vitiligo. Mol. Cell Biochem. 2021, 476, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B.E.; Karandikar, M.; Berman, K.; Cobb, M.H. Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr. Rev. 2001, 22, 153–183. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.Y.; Kim, E.; Park, S.H.; Hwang, K.H.; Kim, D.; Jung, Y.J.; Kopalli, S.R.; Hong, Y.D.; Sung, G.H.; Cho, J.Y. Antimelanogenesis Effects of Theasinensin A. Int. J. Mol. Sci. 2021, 22, 7453. [Google Scholar] [CrossRef]
- Deng, H.; Wan, M.; Li, H.; Chen, Q.; Li, R.; Liang, B.; Zhu, H. Curcumin protection against ultraviolet-induced photo-damage in Hacat cells by regulating nuclear factor erythroid 2-related factor 2. Bioengineered 2021, 12, 9993–10006. [Google Scholar] [CrossRef]
- Shao, L.; Huang, J.; Li, Y.; Ma, L.; Niu, Y.; Jiang, W.; Yuan, C.; Bai, T.; Yang, S. Antioxidant Activities of the Cell-Free Supernatant of a Potential Probiotic Cutibacterium acnes Strain CCSM0331, Isolated From a Healthy Skin. J. Cosmet. Dermatol. 2025, 24, e70105. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Dhawan, G.; Kapoor, R.; Agathokleous, E.; Calabrese, V. Hormesis: Wound healing and keratinocytes. Pharmacol. Res. 2022, 183, 106393. [Google Scholar] [CrossRef]
- Santoro, M.M.; Gaudino, G. Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp. Cell Res. 2005, 304, 274–286. [Google Scholar] [CrossRef]
- Scott, E.; De Paepe, K.; Van de Wiele, T. Postbiotics and Their Health Modulatory Biomolecules. Biomolecules 2022, 12, 1640. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-H.; Yang, J.-S.; Lai, Y.-J.; Yu, B.; Hsu, Y.-M. Postbiotic Effects of Pediococcus acidophilus LS for Anti-Melanogenesis, Photoprotection, and Wound Repair. Microorganisms 2025, 13, 2207. https://doi.org/10.3390/microorganisms13092207
Chang C-H, Yang J-S, Lai Y-J, Yu B, Hsu Y-M. Postbiotic Effects of Pediococcus acidophilus LS for Anti-Melanogenesis, Photoprotection, and Wound Repair. Microorganisms. 2025; 13(9):2207. https://doi.org/10.3390/microorganisms13092207
Chicago/Turabian StyleChang, Chiung-Hung, Jai-Sing Yang, Yen-Ju Lai, Bi Yu, and Yuan-Man Hsu. 2025. "Postbiotic Effects of Pediococcus acidophilus LS for Anti-Melanogenesis, Photoprotection, and Wound Repair" Microorganisms 13, no. 9: 2207. https://doi.org/10.3390/microorganisms13092207
APA StyleChang, C.-H., Yang, J.-S., Lai, Y.-J., Yu, B., & Hsu, Y.-M. (2025). Postbiotic Effects of Pediococcus acidophilus LS for Anti-Melanogenesis, Photoprotection, and Wound Repair. Microorganisms, 13(9), 2207. https://doi.org/10.3390/microorganisms13092207