Independent and Interactive Effects of Precipitation Intensity and Duration on Soil Microbial Communities in Forest and Grassland Ecosystems of China: A Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Calculation of the Treatment Effect Size
2.3. Data Processing and Analysis
3. Results
3.1. Effects of Precipitation Changes on MBC and MBN
3.2. Effects of Precipitation Changes on Soil Bacterial and Fungal Diversity in Forest and Grassland Ecosystems
3.3. Effects of Precipitation Changes on Soil C-, P-, and N-Cycling Enzyme Activities and Antioxidant Enzymes in Forest and Grassland Ecosystems
3.4. Relationships Between Environmental Factors and Microbial Biomass, Diversity, and Enzyme Activity
4. Discussion
4.1. Effects of Precipitation Changes on MBC and Nitrogen in Forest and Grassland Ecosystems
4.1.1. Effects of Precipitation Changes, Including Their Magnitude and Duration, on MBC in Forest and Grassland Ecosystems
4.1.2. Effects of Precipitation Changes, Along with Their Magnitude and Duration, on MBN in Forest and Grassland Ecosystems
4.2. Effects of Precipitation Changes on the Diversity of Bacterial and Fungal Communities in Soil Microbial Populations in Forest and Grassland Ecosystems
4.2.1. Effects of Precipitation Changes, Including Their Magnitude and Duration, on Bacterial Communities in Forest and Grassland Ecosystems
4.2.2. Effects of Precipitation Changes, Including Their Magnitude and Duration, on Fungal Communities in Forest and Grassland Ecosystems
4.3. Effects of Precipitation Changes on the Activities of Soil Carbon-, Phosphorus-, and Nitrogen-Cycling Enzymes and Antioxidant Enzymes in Forest and Grassland Ecosystems
4.3.1. Effects of Precipitation Changes on the Activity of Soil Carbon-Cycling Enzymes in Forest and Grassland Ecosystems
4.3.2. Effects of Precipitation Changes on the Activity of Soil Phosphorus-Cycling Enzymes in Forest and Grassland Ecosystems
4.3.3. Effects of Precipitation Changes on the Activities of Soil Nitrogen-Cycling Enzymes and Antioxidant Enzymes in Forest and Grassland Ecosystems
4.4. Relationship Between Environmental Factors and the Biomass, Diversity and Activity of Soil Microbial Communities
4.4.1. The Relationship Between Environmental Factors and Soil Microbial Biomass
4.4.2. The Relationship Between Environmental Factors and Soil Microbial Diversity
4.4.3. The Relationship Between Environmental Factors and Soil Microbial Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Section. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- Zhang, C.; Xi, N. Precipitation Changes Regulate Plant and Soil Microbial Biomass Via Plasticity in Plant Biomass Allocation in Grasslands: A Meta-Analysis. Front. Plant Sci. 2021, 12, 614968. [Google Scholar] [CrossRef]
- Yu, J.; Yu, Z.; Li, J.; Xie, J.; Shangguan, Z.; Deng, L. Responses of Soil Microbial Biomass C:N:P Stoichiometry to Increased Precipitation and Nitrogen Deposition in Temperate Shrublands. Eur. J. Soil Biol. 2023, 119, 103553. [Google Scholar] [CrossRef]
- She, W.; Bai, Y.; Zhang, Y.; Qin, S.; Feng, W.; Sun, Y.; Zheng, J.; Wu, B. Resource Availability Drives Responses of Soil Microbial Communities to Short-term Precipitation and Nitrogen Addition in a Desert Shrubland. Frontiers in Microbiology. Front. Microbiol. 2018, 9, 186. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhao, X.; Lin, Q.; Li, G.; Kong, W. Using a Combination of PLFA and DNA-Based Sequencing Analyses to Detect Shifts in the Soil Microbial Community Composition after a Simulated Spring Precipitation in a Semi-Arid Grassland in China. Sci. Total Environ. 2019, 657, 1237–1245. [Google Scholar] [CrossRef]
- Xu, Z.; Hou, Y.; Zhang, L.; Liu, T.; Zhou, G. Ecosystem Responses to Warming and Watering in Typical and Desert Steppes. Sci. Rep. 2016, 6, 34801. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, C.; Wang, Y.; Xu, Z.; Duan, J.; Hao, Y.; Smaill, S. Soil Extractable Carbon and Nitrogen, Microbial Biomass and Microbial Metabolic Activity in Response to Warming and Increased Precipitation in a Semiarid Inner Mongolian Grassland. Geoderma 2013, 206, 24–31. [Google Scholar] [CrossRef]
- Huang, S.; Ye, G.; Lin, J.; Chen, K.; Xu, X.; Ruan, H.; Tan, F.; Chen, H.Y.H. Autotrophic and Heterotrophic Soil Respiration Responds Asymmetrically to Drought in a Subtropical Forest in the Southeast China. Soil Biol. Biochem. 2018, 123, 242–249. [Google Scholar] [CrossRef]
- Xiao, Y.; Bao, F.; Xu, X.; Yu, K.; Wu, B.; Gao, Y.; Zhang, J. The Influence of Precipitation Timing and Amount on Soil Microbial Community in a Temperate Desert Ecosystem. Front. Microbiol. 2023, 14, 1249036. [Google Scholar] [CrossRef]
- Zhao, C.; Miao, Y.; Yu, C.; Zhu, L.; Wang, F.; Jiang, L.; Hui, D.; Wan, S. Soil Microbial Community Composition and Respiration along an Experimental Precipitation Gradient in a Semiarid Steppe. Sci. Rep. 2016, 6, 24317. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Y.; Ma, H.; Zhang, Y.; Zhang, J.; Zhang, H.; Luo, X.; Li, J. Responses of Soil Microbial Communities and Networks to Precipitation Change in a Typical Steppe Ecosystem of the Loess Plateau. Microorganisms 2022, 10, 817. [Google Scholar] [CrossRef]
- Waring, B.G.; Hawkes, C.V. Short-Term Precipitation Exclusion Alters Microbial Responses to Soil Moisture in a Wet Tropical Forest. Microb. Ecol. 2015, 69, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, D.; Liang, G.; Qiu, Q.; Liu, J.; Zhou, G.; Liu, S.; Chu, G.; Yan, J. Effects of Precipitation on Soil Organic Carbon Fractions in Three Subtropical Forests in Southern China. J. Plant Ecol. 2015, 9, 10–19. [Google Scholar] [CrossRef]
- Divergent Regulating Modes of Greenhouse Gas Emissions at Different Soil Layers under Altered Precipitation Regime. CATENA 2024, 239, 107953. [CrossRef]
- Shi, L.; Zhang, H.; Liu, T.; Mao, P.; Zhang, W.; Shao, Y.; Fu, S. An Increase in Precipitation Exacerbates Negative Effects of Nitrogen Deposition on Soil Cations and Soil Microbial Communities in a Temperate Forest. Environ. Pollut. 2018, 235, 293–301. [Google Scholar] [CrossRef]
- Su, X.; Su, X.; Zhou, G.; Du, Z.; Yang, S.; Ni, M.; Qin, H.; Huang, Z.; Zhou, X.; Deng, J. Drought Accelerated Recalcitrant Carbon Loss by Changing Soil Aggregation and Microbial Communities in a Subtropical Forest. Soil Biol. Biochem. 2020, 148, 107898. [Google Scholar] [CrossRef]
- Yang, S.; Xu, Z.; Wang, R.; Zhang, Y.; Yao, F.; Zhang, Y.; Turco, R.F.; Jiang, Y.; Zou, H.; Li, H. Variations in Soil Microbial Community Composition and Enzymatic Activities in Response to Increased N Deposition and Precipitation in Inner Mongolian Grassland. Appl. Soil Ecol. 2017, 119, 275–285. [Google Scholar] [CrossRef]
- Zhao, Q.; Jian, S.; Nunan, N.; Maestre, F.T.; Tedersoo, L.; He, J.; Wei, H.; Tan, X.; Shen, W. Altered Precipitation Seasonality Impacts the Dominant Fungal but Rare Bacterial Taxa in Subtropical Forest Soils. Biol. Fertil. Soils 2017, 53, 231–245. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, L.; Chen, Z.; Gao, Y.; Kong, J.; He, Q.; Su, Y.; Li, J.; Qiu, Q. Seasonal variations of soil bacterial and fungal communities in a subtropical Eucalyptus plantation and their responses to throughfall reduction. Front. Microbiol. 2023, 14, 1113616. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Xu, X.; Ding, J.; Bao, F.; De Costa, Y.; Zhuang, W.; Wu, B. The Responses to Long-Term Water Addition of Soil Bacterial, Archaeal, and Fungal Communities in a Desert Ecosystem. Microorganisms 2021, 9, 981. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, S.; Gao, Q.; Liu, S.; Ganjurjav, H.; Wang, X.; Su, X.; Wu, X. Soil Bacterial and Fungal Diversity Differently Correlated with Soil Biochemistry in Alpine Grassland Ecosystems in Response to Environmental Changes. Sci. Rep. 2017, 7, 43077. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Z.; Lei, L.; Ru, J.; Song, J.; Zhong, M.; Tian, R.; Zhang, A.; Zheng, M.; Hui, D.; et al. Asymmetric Responses of Soil Respiration in Three Temperate Steppes along a Precipitation Gradient in Northern China Revealed by Soil-Monolith Transplanting Experiment. Agric. For. Meteorol. 2020, 294, 108126. [Google Scholar] [CrossRef]
- Na, X.; Yu, H.; Wang, P.; Zhu, W.; Niu, Y.; Huang, J. Vegetation Biomass and Soil Moisture Coregulate Bacterial Community Succession under Altered Precipitation Regimes in a Desert Steppe in Northwestern China. Soil Biol. Biochem. 2019, 136, 107520. [Google Scholar] [CrossRef]
- Yu, S.; Mo, Q.; Chen, Y.; Li, Y.; Li, Y.; Zou, B.; Xia, H.; Jun, W.; Li, Z.; Wang, F. Effects of Seasonal Precipitation Change on Soil Respiration Processes in a Seasonally Dry Tropical Forest. Ecol. Evol. 2020, 10, 467–479. [Google Scholar] [CrossRef]
- Hu, Y.; Li, J.; Zhao, S.; Zeng, D. Soil Respiration Response to Precipitation Reduction in a Grassland and a Mongolian Pine Plantation in Semi-Arid Northeast China. J. For. Res. 2019, 30, 1925–1934. [Google Scholar] [CrossRef]
- Wu, K.; Xu, W.; Yang, W. Effects of Precipitation Changes on Soil Bacterial Community Composition and Diversity in the Junggar Desert of Xinjiang, China. PeerJ 2020, 8, e8433. [Google Scholar] [CrossRef]
- Diao, H.; Chen, X.; Zhao, X.; Dong, K.; Wang, C. Effects of Nitrogen Addition and Precipitation Alteration on Soil Respiration and Its Components in a Saline-Alkaline Grassland. Geoderma 2022, 406, 115541. [Google Scholar] [CrossRef]
- Chen, F.; Yan, G.; Xing, Y.; Zhang, J.; Wang, Q.; Wang, H.; Huang, B.; Hong, Z.; Dai, G.; Zheng, X.; et al. Effects of N Addition and Precipitation Reduction on Soil Respiration and Its Components in a Temperate Forest. Agric. For. Meteorol. 2019, 271, 336–345. [Google Scholar] [CrossRef]
- Xu, M.; Xu, L.; Fang, H.; Cheng, S.; Yu, G.; Yang, Y.; Lu, M. Alteration in Enzymatic Stoichiometry Controls the Response of Soil Organic Carbon Dynamic to Nitrogen and Water Addition in Temperate Cultivated Grassland. Eur. J. Soil Biol. 2020, 101, 103248. [Google Scholar] [CrossRef]
- Fuchslueger, L.; Bahn, M.; Hasibeder, R.; Kienzl, S.; Fritz, K.; Schmitt, M.; Watzka, M.; Richter, A. Drought History Affects Grassland Plant and Microbial Carbon Turnover during and after a Subsequent Drought Event. J. Ecol. 2016, 104, 1453–1465. [Google Scholar] [CrossRef]
- Li, N.; Wang, B.; Zhou, Y.; Li, H.; Zhu, Z.; Dou, Y.; Huang, Y.; Jiao, F.; An, S. Response of the C-Fixing Bacteria Community to Precipitation Changes and Its Impact on Bacterial Necromass Accumulation in Semiarid Grassland. J. Environ. Manage. 2024, 354, 120289. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Li, L.; Liu, B.; Zhang, Z.; Liu, Y.; Xie, M. Different and Unified Responses of Soil Bacterial and Fungal Community Composition and Predicted Functional Potential to 3 Years’ Drought Stress in a Semiarid Alpine Grassland. Front. Microbiol. 2023, 14, 1104944. [Google Scholar] [CrossRef]
- Wan, Q.; Li, L.; Liu, B.; Xie, M.; Zhang, Z. Altered Intra-Annual Precipitation Patterns Affect the N-Limitation Status of Soil Microorganisms in a Semiarid Alpine Grassland. Ecol. Indic. 2024, 158, 111457. [Google Scholar] [CrossRef]
- Xu, S.; Geng, W.; Sayer, E.J.; Zhou, G.; Zhou, P.; Liu, C. Soil Microbial Biomass and Community Responses to Experimental Precipitation Change: A Meta-Analysis. Soil Ecol. Lett. 2020, 2, 93–103. [Google Scholar] [CrossRef]
- Yang, Y.; Li, T.; Wang, Y.; Cheng, H.; Chang, S.X.; Liang, C.; An, S. Negative Effects of Multiple Global Change Factors on Soil Microbial Diversity. Soil Biol. Biochem. 2021, 156, 108229. [Google Scholar] [CrossRef]
- Liu, C.; Siri, M.; Li, H.; Ren, C.; Huang, J.; Feng, C.; Liu, K. Drought Is Threatening Plant Growth and Soil Nutrients of Grassland Ecosystems: A Meta-analysis. Ecol. Evol. 2023, 13, e10092. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Wang, J.; Ding, L.; Yao, P.; Qiao, M.; Yao, S. Meta-Analyses of the Effects of Major Global Change Drivers on Soil Respiration across China. Atmos. Environ. 2017, 150, 181–186. [Google Scholar] [CrossRef]
- Fu, Z.; Niu, S.; Dukes, J.S. What Have We Learned from Global Change Manipulative Experiments in China? A Meta-Analysis. Sci. Rep. 2015, 5, 12344. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.; Gurmesa, G.A.; Yu, G.; Li, L.; Zhang, W.; Fang, H.; Mo, J. Effects of Nitrogen Deposition on Carbon Cycle in Terrestrial Ecosystems of China: A Meta-Analysis. Environ. Pollut. 2015, 206, 352–360. [Google Scholar] [CrossRef]
- Yan, Z.; Li, Y.; Wu, H.; Zhang, K.; Hao, Y.; Wang, J.; Zhang, X.; Yan, L.; Kang, X. Different Responses of Soil Hydrolases and Oxidases to Extreme Drought in an Alpine Peatland on the Qinghai-Tibet Plateau, China. Eur. J. Soil Biol. 2020, 99, 103195. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, K.; Loik, M.E.; Sun, W. Differential Responses of Soil Bacteria and Fungi to Altered Precipitation in a Meadow Steppe. Geoderma 2021, 384, 114812. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, J.; Lambers, H.; Wu, J.; Qin, G.; Li, Y.; Li, Y.; Li, Z.; Wang, J.; Wang, F. Intensified rainfall in the wet season alters the microbial contribution to soil carbon storage. Plant Soil 2022, 476, 337–351. [Google Scholar] [CrossRef]
- Huang, G.; Li, Y.; Su, Y.G. Effects of Increasing Precipitation on Soil Microbial Community Composition and Soil Respiration in a Temperate Desert, Northwestern China. Soil Biol. Biochem. 2015, 83, 52–56. [Google Scholar] [CrossRef]
- Yan, G.; Mu, C.; Xing, Y.; Wang, Q. Responses and Mechanisms of Soil Greenhouse Gas Fluxes to Changes in Precipitation Intensity and Duration: A Meta-Analysis for a Global Perspective. Can. J. Soil Sci. 2018, 98, 591–603. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Hedges, L.V.; Tipton, E.; Johnson, M.C. Robust Variance Estimation in Meta-regression with Dependent Effect Size Estimates. Res. Synth. Methods 2010, 1, 39–65. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, W.; Yang, H.; Yu, X.; Gutknecht, J.L.M.; Zhang, Z.; Wan, S.; Ma, K. Soil Microbial Responses to Warming and Increased Precipitation and Their Implications for Ecosystem C Cycling. Oecologia 2013, 173, 1125–1142. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.; Pandya, N.R.; Thomas, V.O.; Krishnayya, N.S.R. Impact of Rainfall Gradient on Aboveground Biomass and Soil Organic Carbon Dynamics of Forest Covers in Gujarat, India. Ecol. Res. 2014, 29, 1053–1063. [Google Scholar] [CrossRef]
- Ren, C.; Zhao, F.; Shi, Z.; Chen, J.; Han, X.; Yang, G.; Feng, Y.; Ren, G. Differential Responses of Soil Microbial Biomass and Carbon-Degrading Enzyme Activities to Altered Precipitation. Soil Biol. Biochem. 2017, 115, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, Y.; Zhang, B.; Li, A.; Daryanto, S.; Wang, L.; Huang, J. The impacts of precipitation increase and nitrogen addition on soil respiration in a semiarid temperate steppe. Ecosphere 2017, 8, e01655. [Google Scholar] [CrossRef]
- Toledo, S.; Gargaglione, V.; Yahdjian, L.; Peri, P.L. Differential Responses of Soil Microorganisms to Precipitation Changes in Austral Semiarid Grasslands. Pedobiologia 2023, 97–98, 150873. [Google Scholar] [CrossRef]
- Steenwerth, K.; Jackson, L.; Calderon, F.; Scow, K.; Rolston, D. Response of Microbial Community Composition and Activity in Agricultural and Grassland Soils after a Simulated Rainfall. Soil Biol. Biochem. 2005, 37, 2249–2262. [Google Scholar] [CrossRef]
- Ma, J. Responses of Soil Microbial Community Structure under Litter to Changes in Precipitation and Nitrogen Addition in a Desert Steppe. Eur. J. Soil Biol. 2025, 124, 103696. [Google Scholar] [CrossRef]
- Du, Y.; Wang, Y.; Su, F.; Jiang, J.; Wang, C.; Yu, M.; Yan, J. The Response of Soil Respiration to Precipitation Change Is Asymmetric and Differs between Grasslands and Forests. Glob. Change Biol. 2020, 26, 6015–6024. [Google Scholar] [CrossRef]
- Rocci, K.S.; Bird, M.; Blair, J.M.; Knapp, A.K.; Liang, C.; Cotrufo, M.F. Thirty Years of Increased Precipitation Modifies Soil Organic Matter Fractions but Not Bulk Soil Carbon and Nitrogen in a Mesic Grassland. Soil Biol. Biochem. 2023, 185, 109145. [Google Scholar] [CrossRef]
- Meier, I.C.; Leuschner, C. Variation of Soil and Biomass Carbon Pools in Beech Forests across a Precipitation Gradient. Glob. Change Biol. 2010, 16, 1035–1045. [Google Scholar] [CrossRef]
- Ru, J.; Wan, S.; Hui, D.; Song, J. Overcompensation of Ecosystem Productivity Following Sustained Extreme Drought in a Semiarid Grassland. Ecology 2023, 104, e3997. [Google Scholar] [CrossRef]
- Guasconi, D.; Manzoni, S.; Hugelius, G. Climate-Dependent Responses of Root and Shoot Biomass to Drought Duration and Intensity in Grasslands–a Meta-Analysis. Sci. Total Environ. 2023, 903, 166209. [Google Scholar] [CrossRef]
- Holguin, J.; Collins, S.L.; McLaren, J.R. Belowground Responses to Altered Precipitation Regimes in Two Semi-Arid Grasslands. Soil Biol. Biochem. 2022, 171, 108725. [Google Scholar] [CrossRef]
- Bloor, J.M.G.; Bardgett, R.D. Stability of Above-Ground and below-Ground Processes to Extreme Drought in Model Grassland Ecosystems: Interactions with Plant Species Diversity and Soil Nitrogen Availability. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 193–204. [Google Scholar] [CrossRef]
- Li, J.; Yang, C.; Zhou, H.; Shao, X. Responses of Plant Diversity and Soil Microorganism Diversity to Water and Nitrogen Additions in the Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 2020, 22, e01003. [Google Scholar] [CrossRef]
- Lu, H.; Liu, S.; Wang, H.; Luan, J.; Schindlbacher, A.; Liu, Y.; Wang, Y. Experimental Throughfall Reduction Barely Affects Soil Carbon Dynamics in a Warm-Temperate Oak Forest, Central China. Sci. Rep. 2017, 7, 15099. [Google Scholar] [CrossRef]
- Yang, A.; Song, B.; Zhang, W.; Zhang, T.; Li, X.; Wang, H.; Zhu, D.; Zhao, J.; Fu, S. Chronic Enhanced Nitrogen Deposition and Elevated Precipitation Jointly Benefit Soil Microbial Community in a Temperate Forest. Soil Biol. Biochem. 2024, 193, 109397. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, G.; Kuzyakov, Y.; Jenerette, G.D.; Ma, Y.; Liu, W.; Wang, Z.; Shen, W. Soil Nitrogen Transformation Responses to Seasonal Precipitation Changes Are Regulated by Changes in Functional Microbial Abundance in a Subtropical Forest. Biogeosciences 2017, 14, 2513–2525. [Google Scholar] [CrossRef]
- Landesman, W.J.; Dighton, J. Response of Soil Microbial Communities and the Production of Plant-Available Nitrogen to a Two-Year Rainfall Manipulation in the New Jersey Pinelands. Soil Biol. Biochem. 2010, 42, 1751–1758. [Google Scholar] [CrossRef]
- Wen, S.; Tian, Y.; Ouyang, S.; Song, M.; Li, X.; Zhang, Y.; Gao, S.; Xu, X.; Kuzyakov, Y. High Frequency of Extreme Precipitation Increases Stipa Grandis Biomass by Altering Plant and Microbial Nitrogen Acquisition. Biol. Fertil. Soils 2022, 58, 63–75. [Google Scholar] [CrossRef]
- Wang, Z.; Na, R.; Koziol, L.; Schellenberg, M.P.; Li, X.; Ta, N.; Jin, K.; Wang, H. Response of Bacterial Communities and Plant-Mediated Soil Processes to Nitrogen Deposition and Precipitation in a Desert Steppe. Plant Soil 2020, 448, 277–297. [Google Scholar] [CrossRef]
- Khalili, B.; Ogunseitan, O.A.; Goulden, M.L.; Allison, S.D. Interactive Effects of Precipitation Manipulation and Nitrogen Addition on Soil Properties in California Grassland and Shrubland. Appl. Soil Ecol. 2016, 107, 144–153. [Google Scholar] [CrossRef]
- Marañón-Jiménez, S.; Asensio, D.; Sardans, J.; Zuccarini, P.; Ogaya, R.; Mattana, S.; Peñuelas, J. Seasonal Drought in Mediterranean Soils Mainly Changes Microbial C and N Contents Whereas Chronic Drought Mainly Impairs the Capacity of Microbes to Retain P. Soil Biol. Biochem. 2022, 165, 108515. [Google Scholar] [CrossRef]
- Deng, L.; Peng, C.; Kim, D.-G.; Li, J.; Liu, Y.; Hai, X.; Liu, Q.; Huang, C.; Shangguan, Z.; Kuzyakov, Y. Drought Effects on Soil Carbon and Nitrogen Dynamics in Global Natural Ecosystems. Earth-Sci. Rev. 2021, 214, 103501. [Google Scholar] [CrossRef]
- Sun, Y.; Liao, J.; Zou, X.; Xu, X.; Yang, J.; Chen, H.Y.H.; Ruan, H. Coherent Responses of Terrestrial C:N Stoichiometry to Drought across Plants, Soil, and Microorganisms in Forests and Grasslands. Agric. For. Meteorol. 2020, 292–293, 108104. [Google Scholar] [CrossRef]
- Zhang, K.; Qiu, Y.; Zhao, Y.; Wang, S.; Deng, J.; Chen, M.; Xu, X.; Wang, H.; Bai, T.; He, T.; et al. Moderate Precipitation Reduction Enhances Nitrogen Cycling and Soil Nitrous Oxide Emissions in a Semi-arid Grassland. Glob. Change Biol. 2023, 29, 3114–3129. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, J.A.; Gonzalez, A. Biotic Nitrogen Fixation in the Bryosphere Is Inhibited More by Drought than Warming. Oecologia 2016, 181, 1243–1258. [Google Scholar] [CrossRef] [PubMed]
- Rico, L.; Ogaya, R.; Terradas, J.; Peñuelas, J. Community Structures of N2-fixing Bacteria Associated with the Phyllosphere of a H Olm Oak Forest and Their Response to Drought. Plant Biol. 2014, 16, 586–593. [Google Scholar] [CrossRef]
- Wang, N.; Wang, M.; Li, S.; Sui, X.; Han, S.; Feng, F. Effects of Variation in Precipitation on the Distribution of Soil Bacterial Diversity in the Primitive Korean Pine and Broadleaved Forests. World J. Microbiol. Biotechnol. 2014, 30, 2975–2984. [Google Scholar] [CrossRef]
- Li, X.; Yan, Y.; Lu, X.; Fu, L.; Liu, Y. Responses of Soil Bacterial Communities to Precipitation Change in the Semi-Arid Alpine Grassland of Northern Tibet. Front. Plant Sci. 2022, 13, 1036369. [Google Scholar] [CrossRef]
- He, D.; Shen, W.; Eberwein, J.; Zhao, Q.; Ren, L.; Wu, Q.L. Diversity and Co-Occurrence Network of Soil Fungi Are More Responsive than Those of Bacteria to Shifts in Precipitation Seasonality in a Subtropical Forest. Soil Biol. Biochem. 2017, 115, 499–510. [Google Scholar] [CrossRef]
- Martin-Laurent, F.; Philippot, L.; Hallet, S.; Chaussod, R.; Germon, J.C.; Soulas, G.; Catroux, G. DNA Extraction from Soils: Old Bias for New Microbial Diversity Analysis Methods. Appl. Environ. Microbiol. 2001, 67, 2354–2359, Erratum in Appl. Environ. Microbiol. 2001, 67, 4397.. [Google Scholar] [CrossRef] [PubMed]
- İnceoǧlu, Ö.; Hoogwout, E.F.; Hill, P.; Van Elsas, J.D. Effect of DNA Extraction Method on the Apparent Microbial Diversity of Soil. Appl. Environ. Microbiol. 2010, 76, 3378–3382. [Google Scholar] [CrossRef]
- Changey, F.; Blaud, A.; Pando, A.; Herrmann, A.M.; Lerch, T.Z. Monitoring Soil Microbial Communities Using Molecular Tools: DNA Extraction Methods May Offset Long-term Management Effects. Eur. J. Soil Sci. 2021, 72, 1026–1041. [Google Scholar] [CrossRef]
- Toberman, H.; Freeman, C.; Evans, C.; Fenner, N.; Artz, R.R.E. Summer Drought Decreases Soil Fungal Diversity and Associated Phenol Oxidase Activity in Upland Calluna Heathland Soil: Summer Drought Effects on Heathland Fungi. FEMS Microbiol. Ecol. 2008, 66, 426–436. [Google Scholar] [CrossRef]
- Narayanan, A.; Ismert, K.J.; Smith, M.D.; Jumpponen, A. Soil Fungal Communities Are Compositionally Resistant to Drought Manipulations—Evidence from Culture-Dependent and Culture-Independent Analyses. Fungal Ecol. 2021, 51, 101062. [Google Scholar] [CrossRef]
- He, J.-D.; Wu, Q.-S.; Zou, Y.-N. Effects of Mycorrhiza and Drought Stress on the Diversity of Fungal Community in Soils and Roots of Trifoliate Orange. Biotechnology 2018, 18, 32–41. [Google Scholar] [CrossRef]
- Lagueux, D.; Jumpponen, A.; Porras-Alfaro, A.; Herrera, J.; Chung, Y.A.; Baur, L.E.; Smith, M.D.; Knapp, A.K.; Collins, S.L.; Rudgers, J.A. Experimental Drought Re-ordered Assemblages of Root-associated Fungi across North American Grasslands. J. Ecol. 2021, 109, 776–792. [Google Scholar] [CrossRef]
- Huang, Q.; Jiao, F.; Huang, Y.; Li, N.; Wang, B.; Gao, H.; An, S. Response of Soil Fungal Community Composition and Functions on the Alteration of Precipitation in the Grassland of Loess Plateau. Sci. Total Environ. 2021, 751, 142273. [Google Scholar] [CrossRef]
- Jumpponen, A.; Jones, K.L. Tallgrass Prairie Soil Fungal Communities Are Resilient to Climate Change. Fungal Ecol. 2014, 10, 44–57. [Google Scholar] [CrossRef]
- Louw, N.; Gherardi, L.A.; Sala, O.E.; Chung, Y.A. Dryland Soil Mycobiome Response to Long-term Precipitation Variability Depends on Host Type. J. Ecol. 2022, 110, 2984–2997. [Google Scholar] [CrossRef]
- Hai, X.; Li, J.; Liu, Y.; Wu, J.; Li, J.; Shangguan, Z.; Deng, L. Manipulated Precipitation Regulated Carbon and Phosphorus Limitations of Microbial Metabolisms in a Temperate Grassland on the Loess Plateau, China. J. Arid Land 2022, 14, 1109–1123. [Google Scholar] [CrossRef]
- McDaniel, M.D.; Kaye, J.P.; Kaye, M.W. Increased Temperature and Precipitation Had Limited Effects on Soil Extracellular Enzyme Activities in a Post-Harvest Forest. Soil Biol. Biochem. 2013, 56, 90–98. [Google Scholar] [CrossRef]
- Hui, D.; Deng, Q.; Tian, H.; Luo, Y. Climate Change and Carbon Sequestration in Forest Ecosystems. In Handbook of Climate Change Mitigation and Adaptation; Chen, W.-Y., Suzuki, T., Lackner, M., Eds.; Springer: New York, NY, USA, 2015; pp. 1–40. [Google Scholar] [CrossRef]
- Ma, W.; Li, J.; Gao, Y.; Xing, F.; Sun, S.; Zhang, T.; Zhu, X.; Chen, C.; Li, Z. Responses of Soil Extracellular Enzyme Activities and Microbial Community Properties to Interaction between Nitrogen Addition and Increased Precipitation in a Semi-Arid Grassland Ecosystem. Sci. Total Environ. 2020, 703, 134691. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, C.; Wang, Y.; Xu, Z.; Han, H.; Li, L.; Wan, S. Warming and Increased Precipitation Have Differential Effects on Soil Extracellular Enzyme Activities in a Temperate Grassland. Sci. Total Environ. 2013, 444, 552–558. [Google Scholar] [CrossRef]
- Akinyemi, D.S.; Zhu, Y.; Zhao, M.; Zhang, P.; Shen, H.; Fang, J. Response of Soil Extracellular Enzyme Activity to Experimental Precipitation in a Shrub-Encroached Grassland in Inner Mongolia. Glob. Ecol. Conserv. 2020, 23, e01175. [Google Scholar] [CrossRef]
- Rajper, A.M.; Willing, B.P.; Cahill, J.F.; Bork, E.W.; Chang, S.X.; Carlyle, C.N. Drought and Defoliation Affect Soil Extracellular Enzyme Activity in Northern Temperate Grasslands. J. Arid Environ. 2024, 223, 105197. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, K.; Luo, Y.; Du, L.; Tian, R.; Wang, S.; Shen, Y.; Zhang, J.; Li, N.; Shao, W.; et al. Responses of Soil Enzyme Activity to Long-Term Nitrogen Enrichment and Water Addition in a Typical Steppe. Agronomy 2023, 13, 1920. [Google Scholar] [CrossRef]
- Liu, M.; Wang, M.; Sun, C.; Wu, H.; Zhao, X.; Liu, E.; Dong, W.; Yan, M. Self-Regulation of Soil Enzyme Activity and Stoichiometry under Nitrogen Addition and Plastic Film Mulching in the Loess Plateau Area, Northwest China. Agriculture 2023, 13, 938. [Google Scholar] [CrossRef]
- Buchkowski, R.W.; Schmitz, O.J.; Bradford, M.A. Microbial Stoichiometry Overrides Biomass as a Regulator of Soil Carbon and Nitrogen Cycling. Ecology 2015, 96, 1139–1149. [Google Scholar] [CrossRef]
- Shen, H.; Zhang, Q.; Bi, R.; Xu, X.; Zhang, X.; Fan, C.; Xiong, Z. Linkages of Nitrogen-Cycling Microbial Resistance and Resilience to Soil Nutrient Stoichiometry under Dry-Rewetting Cycles with Different Fertilizations and Temperatures in a Vegetable Field. Sci. Total Environ. 2022, 820, 153294. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Soil Enzyme Activity in a Mediterranean Forest after Six Years of Drought. Soil Sci. Soc. Am. J. 2010, 74, 838–851. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, X. Differential Responses of Soil Extracellular Enzyme Activity and Stoichiometry to Precipitation Changes in a Poplar Plantation. Environ. Res. 2024, 241, 117565. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.P.; Singh, V.; Gupta, V.K.; Shukla, R.; Prabha, R.; Sarma, B.K.; Patel, J.S. Microbial Inoculation in Rice Regulates Antioxidative Reactions and Defense Related Genes to Mitigate Drought Stress. Sci. Rep. 2020, 10, 4818. [Google Scholar] [CrossRef]
- Singh, M.; Sharma, J.G.; Giri, B. Microbial Inoculants Improve Growth in Zea Mays L. under Drought Stress by up-Regulating Antioxidant, Mineral Acquisition, and Ultrastructure Modulations. Symbiosis 2023, 91, 55–77. [Google Scholar] [CrossRef]
- Zou, Y.-N.; Wu, Q.-S.; Kuča, K. Unravelling the Role of Arbuscular Mycorrhizal Fungi in Mitigating the Oxidative Burst of Plants under Drought Stress. Plant Biol. 2021, 23, 50–57. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z. Soil Microbial Biomass C and N along a Climatic Transect in the Mongolian Steppe. Biol. Fertil. Soils 2004, 39, 344–351. [Google Scholar] [CrossRef]
- Wichern, F.; Joergensen, R.G. Soil Microbial Properties Along a Precipitation Transect in Southern Africa. Arid Land Res. Manag. 2009, 23, 115–126. [Google Scholar] [CrossRef]
- Montiel-González, C.; Tapia-Torres, Y.; Souza, V.; García-Oliva, F. The Response of Soil Microbial Communities to Variation in Annual Precipitation Depends on Soil Nutritional Status in an Oligotrophic Desert. PeerJ 2017, 5, e4007. [Google Scholar] [CrossRef] [PubMed]
- Mganga, K.; Sietiö, O.; Meyer, N.; Poeplau, C.; Adamczyk, S.; Biasi, C.; Kalu, S.; Räsänen, M.; Ambus, P.; Fritze, H.; et al. Microbial carbon use efficiency along an altitudinal gradient. Soil Biology and Biochemistry. Soil Biol. Biochem. 2022, 173, 108799. [Google Scholar] [CrossRef]
- Hagedorn, F.; Joos, O. Experimental Summer Drought Reduces Soil CO2 Effluxes and DOC Leaching in Swiss Grassland Soils along an Elevational Gradient. Biogeochemistry 2014, 117, 395–412. [Google Scholar] [CrossRef]
- He, X.; Hou, E.; Veen, G.F.; Ellwood, M.D.F.; Dijkstra, P.; Sui, X.; Zhang, S.; Wen, D.; Chu, C. Soil Microbial Biomass Increases along Elevational Gradients in the Tropics and Subtropics but Not Elsewhere. Glob. Ecol. Biogeogr. 2020, 29, 345–354. [Google Scholar] [CrossRef]
- Xiong, X.; Lyu, M.; Deng, C.; Li, X.; Lu, Y.; Lin, W.; Jiang, Y.; Xie, J. Carbon and Nitrogen Availability Drives Seasonal Variation in Soil Microbial Communities along an Elevation Gradient. Forests 2022, 13, 1657. [Google Scholar] [CrossRef]
- Song, H.-K.; Shi, Y.; Yang, T.; Chu, H.; He, J.-S.; Kim, H.; Jablonski, P.; Adams, J.M. Environmental Filtering of Bacterial Functional Diversity along an Aridity Gradient. Sci. Rep. 2019, 9, 866. [Google Scholar] [CrossRef] [PubMed]
- Angel, R.; Soares, M.I.M.; Ungar, E.D.; Gillor, O. Biogeography of Soil Archaea and Bacteria along a Steep Precipitation Gradient. ISME J. 2010, 4, 553–563. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Li, L.; Zeng, F.; Li, X.; Li, L.; Yue, J. Elevational Patterns in the Diversity and Composition of Soil Archaeal and Bacterial Communities Depend on Climate, Vegetation, and Soil Properties in an Arid Mountain Ecosystem. CATENA 2025, 249, 108679. [Google Scholar] [CrossRef]
- Shen, C.; Gunina, A.; Luo, Y.; Wang, J.; He, J.; Kuzyakov, Y.; Hemp, A.; Classen, A.T.; Ge, Y. Contrasting Patterns and Drivers of Soil Bacterial and Fungal Diversity across a Mountain Gradient. Environ. Microbiol. 2020, 22, 3287–3301. [Google Scholar] [CrossRef]
- Feyissa, A.; Gurmesa, G.A.; Yang, F.; Long, C.; Zhang, Q.; Cheng, X. Soil Enzyme Activity and Stoichiometry in Secondary Grasslands along a Climatic Gradient of Subtropical China. Sci. Total Environ. 2022, 825, 154019. [Google Scholar] [CrossRef]
- Nottingham, A.T.; Turner, B.L.; Whitaker, J.; Ostle, N.; Bardgett, R.D.; McNamara, N.P.; Salinas, N.; Meir, P. Temperature Sensitivity of Soil Enzymes along an Elevation Gradient in the Peruvian Andes. Biogeochemistry 2016, 127, 217–230. [Google Scholar] [CrossRef]
- Tatsumi, C.; Taniguchi, T.; Du, S.; Yamanaka, N.; Tateno, R. The Steps in the Soil Nitrogen Transformation Process Vary along an Aridity Gradient via Changes in the Microbial Community. Biogeochemistry 2019, 144, 15–29. [Google Scholar] [CrossRef]
- Yang, T.; Li, X.; Hu, B.; Li, F.; Wei, D.; Wang, Z.; Huang, L.; Bao, W. Climate and Soil Properties Shape Latitudinal Patterns of Soil Extracellular Enzyme Activity and Stoichiometry: Evidence from Southwest China. Appl. Soil Ecol. 2024, 197, 105319. [Google Scholar] [CrossRef]
- Yan, G.; Han, S.; Wang, Q.; Wang, X.; Hu, C.; Xing, Y. Variations of the Effects of Reduced Precipitation and N Addition on Microbial Diversity among Different Seasons in a Temperate Forest. Appl. Soil Ecol. 2021, 166, 103995. [Google Scholar] [CrossRef]
- Li, Z.; Peng, Q.; Dong, Y.; He, Y.; Yan, Z.; Guo, Y.; Qin, S.; Qi, Y. Response of soil respiration to water and nitrogen addition and its influencing factors: A four-year field experiment in a temperate steppe. Plant Soil 2021, 471, 427–442. [Google Scholar] [CrossRef]
- Wang, J.; Peñuelas, J.; Shi, X.; Liu, Y.; Delgado Baquerizo, M.; Mao, J.; Zhang, G.; Liu, C.; Pan, G. Soil Microbial Biodiversity Supports the Delivery of Multiple Ecosystem Functions under Elevated CO2 and Warming. Commun. Earth Environ. 2024, 5, 615. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, B.; Li, W. Independent and Interactive Effects of Precipitation Intensity and Duration on Soil Microbial Communities in Forest and Grassland Ecosystems of China: A Meta-Analysis. Microorganisms 2025, 13, 1915. https://doi.org/10.3390/microorganisms13081915
Hu B, Li W. Independent and Interactive Effects of Precipitation Intensity and Duration on Soil Microbial Communities in Forest and Grassland Ecosystems of China: A Meta-Analysis. Microorganisms. 2025; 13(8):1915. https://doi.org/10.3390/microorganisms13081915
Chicago/Turabian StyleHu, Bo, and Wei Li. 2025. "Independent and Interactive Effects of Precipitation Intensity and Duration on Soil Microbial Communities in Forest and Grassland Ecosystems of China: A Meta-Analysis" Microorganisms 13, no. 8: 1915. https://doi.org/10.3390/microorganisms13081915
APA StyleHu, B., & Li, W. (2025). Independent and Interactive Effects of Precipitation Intensity and Duration on Soil Microbial Communities in Forest and Grassland Ecosystems of China: A Meta-Analysis. Microorganisms, 13(8), 1915. https://doi.org/10.3390/microorganisms13081915