Transcriptome of Kurthia gibsonii TYL-A1 Revealed the Biotransformation Mechanism of Tylosin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Media
2.2. The Changes of Cell Membrane of Strain TYL-A1 Under TYL Exposure
2.2.1. Determination of Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectrometer (FTIR)
2.2.2. Determination of Cell-Surface Hydrophobicity (CSH)
2.2.3. Determination of Membrane Permeability
2.3. Determination of ROS Level
2.4. Determination of Antioxidant Reaction Metrics
2.5. Determination of ATP Content
2.6. Transcriptome Sequencing
2.7. Validation of Transcriptome Sequencing Data
2.8. Expression of the Degradation Gene Heterologously
3. Results
3.1. Cell Membrane Reaction Under TYL Exposure
3.2. ROS
3.3. Antioxidant Reactions
3.4. ATP Content
3.5. Transcriptome Sequencing Analysis
3.5.1. Metabolic Pathway of Strain TYL-A1 GO
3.5.2. Metabolic Pathway of Strain TYL-A1 KEGG
3.6. Transcriptome Data Validation
3.7. Degradation of TYL by Possible Degradation Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boonsaner, M.; Hawker, D.W. Evaluation of food chain transfer of the antibiotic oxytetracycline and human risk assessment. Chemosphere 2013, 93, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Koch, N.; Islam, N.F.; Sonowal, S.; Prasad, R.; Sarma, H. Environmental antibiotics and resistance genes as emerging contaminants: Methods of detection and bioremediation. Curr. Res. Microb. Sci. 2021, 2, 100027. [Google Scholar] [CrossRef] [PubMed]
- Selvam, A.; Xu, D.; Zhao, Z.; Wong, J.W.C. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Bioresour. Technol. 2012, 126, 383–390. [Google Scholar] [CrossRef]
- Tullo, E.; Finzi, A.; Guarino, M. Review: Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Sci. Total Environ. 2019, 650, 2751–2760. [Google Scholar] [CrossRef]
- Ashworth, D.J.; Ibekwe, A.M.; Men, Y.; Ferreira, J.F.S. Dissemination of antibiotics through the wastewater–soil–plant–earthworm continuum. Sci. Total Environ. 2023, 858, 159841. [Google Scholar] [CrossRef] [PubMed]
- González-Pleiter, M.; Gonzalo, S.; Rodea-Palomares, I.; Leganés, F.; Rosal, R.; Boltes, K.; Marco, E.; Fernández-Piñas, F. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Res. 2013, 47, 2050–2064. [Google Scholar] [CrossRef]
- Qamar, M.U.; Aatika; Chughtai, M.I.; Ejaz, H.; Mazhari, B.B.; Maqbool, U.; Alanazi, A.; Alruwaili, Y.; Junaid, K. Antibiotic-Resistant Bacteria, Antimicrobial Resistance Genes, and Antibiotic Residue in Food from Animal Sources: One Health Food Safety Concern. Microorganisms 2023, 11, 161. [Google Scholar] [CrossRef] [PubMed]
- Cazer, C.L.; Eldermire, E.R.B.; Lhermie, G.; Murray, S.A.; Scott, H.M.; Gröhn, Y.T. The effect of tylosin on antimicrobial resistance in beef cattle enteric bacteria: A systematic review and meta-analysis. Prev. Vet. Med. 2020, 176, 104934. [Google Scholar] [CrossRef] [PubMed]
- Sultan, I.; Rahman, S.; Jan, A.T.; Siddiqui, M.T.; Mondal, A.H.; Haq, Q.M.R. Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front. Microbiol. 2018, 9, 2066. [Google Scholar] [CrossRef]
- Nguyen, B.-A.T.; Chen, Q.-L.; He, J.-Z.; Hu, H.-W. Livestock manure spiked with the antibiotic tylosin significantly altered soil protist functional groups. J. Hazard. Mater. 2022, 427, 127867. [Google Scholar] [CrossRef] [PubMed]
- Prado, N.; Ochoa, J.; Amrane, A. Biodegradation and biosorption of tetracycline and tylosin antibiotics in activated sludge system. Process Biochem. 2009, 44, 1302–1306. [Google Scholar] [CrossRef]
- Reis, A.C.; Kolvenbach, B.A.; Nunes, O.C.; Corvini, P.F.X. Biodegradation of antibiotics: The new resistance determinants—part I. New Biotechnol. 2020, 54, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.D. Bacterial resistance to antibiotics: Enzymatic degradation and modification. Adv. Drug Deliv. Rev. 2005, 57, 1451–1470. [Google Scholar] [CrossRef]
- Ningthoujam, R.; Satiraphan, M.; Sompongchaiyakul, P.; Bureekul, S.; Luadnakrob, P.; Pinyakong, O. Bacterial community shifts in a di-(2-ethylhexyl) phthalate-degrading enriched consortium and the isolation and characterization of degraders predicted through network analyses. Chemosphere 2023, 310, 136730. [Google Scholar] [CrossRef]
- Tanveer, S.; Ilyas, N.; Akhtar, N.; Akhtar, N.; Bostan, N.; Hasnain, Z.; Niaz, A.; Zengin, G.; Gafur, A.; Fitriatin, B.N. Unlocking the interaction of organophosphorus pesticide residues with ecosystem: Toxicity and bioremediation. Environ. Res. 2024, 249, 118291. [Google Scholar] [CrossRef] [PubMed]
- Hearn, E.M.; Patel, D.R.; van den Berg, B. Outer-membrane transport of aromatic hydrocarbons as a first step in biodegradation. Proc. Natl. Acad. Sci. USA 2008, 105, 8601–8606. [Google Scholar] [CrossRef] [PubMed]
- Dawan, J.; Ahn, J. Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Microorganisms 2022, 10, 1385. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Z.-q.; Wang, M.; Yu, K.-f.; Zhang, T.; Lin, H.; Zheng, H.-b. Biodegradation of tylosin in swine wastewater by Providencia stuartii TYL-Y13: Performance, pathway, genetic background, and risk assessment. J. Hazard. Mater. 2022, 440, 129716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xu, S.-y.; Lin, H.; Yang, J.; Zhao, Z.-q.; Barceló, D.; Zheng, H.-b. Efficient degradation of tylosin by Klebsiella oxytoca TYL-T1. Sci. Total Environ. 2022, 847, 157305. [Google Scholar] [CrossRef] [PubMed]
- Sarafin, Y.; Donio, M.B.S.; Velmurugan, S.; Michaelbabu, M.; Citarasu, T. Kocuria marina BS-15 a biosurfactant producing halophilic bacteria isolated from solar salt works in India. Saudi J. Biol. Sci. 2014, 21, 511–519. [Google Scholar] [CrossRef]
- Soto-Padilla, M.Y.; Valenzuela-Encinas, C.; Dendooven, L.; Marsch, R.; Gortáres-Moroyoqui, P.; Estrada-Alvarado, M.I. Isolation and phylogenic identification of soil haloalkaliphilic strains in the former Texcoco Lake. Int. J. Environ. Health Res. 2014, 24, 82–90. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Y.; Zhang, J.; Wang, L.; Basang, W.; Zhu, Y.; Gao, Y. Development and assessment of an immobilized bacterial alliance that efficiently degrades tylosin in wastewater. PLoS ONE 2024, 19, e0304113. [Google Scholar] [CrossRef] [PubMed]
- Hao, P.; Lv, Z.; Wu, S.; Zhang, X.; Gou, C.; Wang, L.; Zhu, Y.; Basang, W.; Gao, Y. Transcriptome profiling of Microbacterium resistens MZT7 reveals mechanisms of 17β-estradiol response and biotransformation. Environ. Res. 2023, 217, 114963. [Google Scholar] [CrossRef] [PubMed]
- Franchi, M.; Bramanti, E.; Bonzi, L.M.; Orioli, P.L.; Vettori, C.; Gallori, E. Clay-nucleic acid complexes: Characteristics and implications for the preservation of genetic material in primeval habitats. Orig. Life Evol. Biosph. 1999, 29, 297–315. [Google Scholar] [CrossRef] [PubMed]
- Grenni, P.; Ancona, V.; Barra Caracciolo, A. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Sharma, V.K.; Johnson, N.; Cizmas, L.; McDonald, T.J.; Kim, H. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere 2016, 150, 702–714. [Google Scholar] [CrossRef]
- Müller, E.; Schüssler, W.; Horn, H.; Lemmer, H. Aerobic biodegradation of the sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate and sole carbon and nitrogen source. Chemosphere 2013, 92, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Kassotaki, E.; Buttiglieri, G.; Ferrando-Climent, L.; Rodriguez-Roda, I.; Pijuan, M. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products. Water Res. 2016, 94, 111–119. [Google Scholar] [CrossRef]
- Bouyahya, A.; Abrini, J.; Dakka, N.; Bakri, Y. Essential oils of Origanum compactum increase membrane permeability, disturb cell membrane integrity, and suppress quorum-sensing phenotype in bacteria. J. Pharm. Anal. 2019, 9, 301–311. [Google Scholar] [CrossRef]
- Tang, S.; Yin, H.; Zhou, S.; Chen, S.; Peng, H.; Liu, Z.; Dang, Z. Simultaneous Cr(VI) removal and 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) biodegradation by Pseudomonas aeruginosa in liquid medium. Chemosphere 2016, 150, 24–32. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, J.; Li, J.; Cao, B.; Chen, Y.; Liu, D.; Wang, X.; Zhang, Y. Exogenous Zn2+ enhance the biodegradation of atrazine by regulating the chlorohydrolase gene trzN transcription and membrane permeability of the degrader Arthrobacter sp. DNS10. Chemosphere 2020, 238, 124594. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Wasilkowski, D.; Mrozik, A. Implications of Bacterial Adaptation to Phenol Degradation under Suboptimal Culture Conditions Involving Stenotrophomonas maltophilia KB2 and Pseudomonas moorei KB4. Water 2022, 14, 2845. [Google Scholar] [CrossRef]
- Krasowska, A.; Sigler, K. How microorganisms use hydrophobicity and what does this mean for human needs? Front. Cell. Infect. Microbiol. 2014, 4, 112. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yin, H.; Peng, H.; Lu, G.; Dang, Z. Proteomic mechanism of decabromodiphenyl ether (BDE-209) biodegradation by Microbacterium Y2 and its potential in remediation of BDE-209 contaminated water-sediment system. J. Hazard. Mater. 2020, 387, 121708. [Google Scholar] [CrossRef] [PubMed]
- Lennicke, C.; Cochemé, H.M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 2021, 81, 3691–3707. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Deng, S.; Wang, L.; Hu, Y.; Cao, B.; Lv, J.; Qu, J.; Wang, L.; Wang, Y.; Zhang, Y. Nicosulfuron inhibits atrazine biodegradation by Arthrobacter sp. DNS10:Influencing mechanisms insight from bacteria viability, gene transcription and reactive oxygen species production. Environ. Pollut. 2021, 273, 116517. [Google Scholar] [CrossRef]
- Mempin, R.; Tran, H.; Chen, C.; Gong, H.; Kim Ho, K.; Lu, S. Release of extracellular ATP by bacteria during growth. BMC Microbiol. 2013, 13, 301. [Google Scholar] [CrossRef]
- Nikoletopoulou, V.; Markaki, M.; Palikaras, K.; Tavernarakis, N. Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta 2013, 1833, 3448–3459. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Das, S. Bacterial enzymatic degradation of recalcitrant organic pollutants: Catabolic pathways and genetic regulations. Environ. Sci. Pollut. Res. Int. 2023, 30, 79676–79705. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, G.; Liu, R.; Zhou, X.; Bartlam, M.; Wang, Y. Transcriptome Profiling of Stenotrophomonas sp. Strain WZN-1 Reveals Mechanisms of 2,2′,4,4′-Tetrabromodiphenyl Ether (BDE-47) Biotransformation. Environ. Sci. Technol. 2022, 56, 11288–11299. [Google Scholar] [CrossRef]
- Kumari, A.; Bano, N.; Bag, S.K.; Chaudhary, D.R.; Jha, B. Transcriptome-Guided Insights Into Plastic Degradation by the Marine Bacterium. Front. Microbiol. 2021, 12, 751571. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, R.; Kong, D.; Liu, Z.; Wu, X.; Xu, J.; Li, Y. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins. Front. Environ. Sci. Eng. 2019, 14, 9. [Google Scholar] [CrossRef]
- Locher, K.P. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol. 2016, 23, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Salam, L.B.; Obayori, O.S. Functional characterization of the ABC transporters and transposable elements of an uncultured Paracoccus sp. recovered from a hydrocarbon-polluted soil metagenome. Folia Microbiol. 2023, 68, 299–314. [Google Scholar] [CrossRef]
- Davidson Amy, L.; Dassa, E.; Orelle, C.; Chen, J. Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems. Microbiol. Mol. Biol. Rev. 2008, 72, 317–364. [Google Scholar] [CrossRef]
- Scagliola, A.; Mainini, F.; Cardaci, S. The Tricarboxylic Acid Cycle at the Crossroad Between Cancer and Immunity. Antioxid. Redox Signal 2020, 32, 834–852. [Google Scholar] [CrossRef]
- Arnold, P.K.; Finley, L.W.S. Regulation and function of the mammalian tricarboxylic acid cycle. J. Biol. Chem. 2023, 299, 102838. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.-Y.; Chien, C.-C.; Tang, P.; Chen, C.-C.; Chen, C.-Y.; Chen, S.-C. The integrated analysis of transcriptome and proteome for exploring the biodegradation mechanism of 2, 4, 6-trinitrotoluene by Citrobacter sp. J. Hazard. Mater. 2018, 349, 79–90. [Google Scholar] [CrossRef]
- Ohkubo, T.; Matsumoto, Y.; Ogasawara, Y.; Sugita, T. Alkaline stress inhibits the growth of Staphylococcus epidermidis by inducing TCA cycle-triggered ROS production. Biochem. Biophys. Res. Commun. 2022, 588, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yao, Y.; Li, H.; Han, Z.; Ma, X. Integrated transcriptome and metabolism unravel critical roles of carbon metabolism and oxidoreductase in mushroom with Korshinsk peashrub substrates. BMC Genom. 2024, 25, 763. [Google Scholar] [CrossRef]
- Gu, M.; Fang, W.; Li, X.; Yang, W.; Waigi, M.G.; Kengara, F.O.; Wu, S.; Han, C.; Zhang, Y. Up-regulation of ribosomal and carbon metabolism proteins enhanced pyrene biodegradation in fulvic acid-induced biofilm system. Environ. Pollut. 2022, 294, 118602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ruan, Y.; Liu, W.; Chen, Q.; Gu, L.; Guo, A. Transcriptome Analysis of Gene Expression in Dermacoccus abyssi HZAU 226 under Lysozyme Stress. Microorganisms 2020, 8, 707. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhao, C.; Zhao, B.; Duan, X.; Hao, P.; Liang, X.; Yang, L.; Gao, Y. Transcriptome of Kurthia gibsonii TYL-A1 Revealed the Biotransformation Mechanism of Tylosin. Microorganisms 2024, 12, 2597. https://doi.org/10.3390/microorganisms12122597
Wang Y, Zhao C, Zhao B, Duan X, Hao P, Liang X, Yang L, Gao Y. Transcriptome of Kurthia gibsonii TYL-A1 Revealed the Biotransformation Mechanism of Tylosin. Microorganisms. 2024; 12(12):2597. https://doi.org/10.3390/microorganisms12122597
Chicago/Turabian StyleWang, Ye, Cuizhu Zhao, Boyu Zhao, Xinran Duan, Peng Hao, Xiaojun Liang, Lianyu Yang, and Yunhang Gao. 2024. "Transcriptome of Kurthia gibsonii TYL-A1 Revealed the Biotransformation Mechanism of Tylosin" Microorganisms 12, no. 12: 2597. https://doi.org/10.3390/microorganisms12122597
APA StyleWang, Y., Zhao, C., Zhao, B., Duan, X., Hao, P., Liang, X., Yang, L., & Gao, Y. (2024). Transcriptome of Kurthia gibsonii TYL-A1 Revealed the Biotransformation Mechanism of Tylosin. Microorganisms, 12(12), 2597. https://doi.org/10.3390/microorganisms12122597