Resuspension and Dissemination of MS2 Virus from Flooring After Human Activities in Built Environment: Impact of Dust Particles
Abstract
:1. Importance
2. Introduction
3. Materials and Methods
3.1. MS-2 Preparation
3.2. Experimental Conditions and Assays
3.3. Statistical Methods
Quantitative Microbial Risk Assessment Exposure Model
4. Results
4.1. Experimental Outcome
4.2. Quantitative Microbial Risk Assessment Results
5. Discussion/Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, B.; Sharpe, P.; Iddon, C.; Hathway, E.A.; Noakes, C.J.; Fitzgerald, S. Modelling uncertainty in the relative risk of exposure to the SARS-CoV-2 virus by airborne aerosol transmission in well mixed indoor air. Build. Environ. 2021, 191, 107617. [Google Scholar] [CrossRef] [PubMed]
- Onakpoya, I.J.; Henegha, C.J.; Spencer, E.A.; Brassey, J.; Rosca, E.C.; Maltoni, S.; Pluddemann, A. Evans. D.H., Conly, J.M., and Jefferson, T. Viral cultures for assessing fomite transmission of SAR-CoV-2; a systemic review and meta-analysis. J. Hosp. Infect. 2022, 130, 63–94. [Google Scholar] [CrossRef] [PubMed]
- Rawat, A.D.; Brown, M.S.; Roberts, D.M.; Ferro, A.R. Resuspension of seeded particles containing live Influenza A virus in a full-scale laboratory. Buildings 2023, 13, 1734. [Google Scholar] [CrossRef]
- Nastasi n Renninger, N.; Bope, A.; Cocran, S.J.; Greaves, J.; Haines, S.R.; Balasubrahmaniam, N.; Sturat, K.; Panescu, J.; Bibby, K.; Hull, N.M.; et al. Persistence of viable MS2 and Phi6 bacteriophages on carpet and dust. Indoor Air 2021, 32, e12969. [Google Scholar] [CrossRef]
- Short, K.R.; Cowling, B.J. Assessing the potential for fomite transmission of SARS-CoV-2. Lancet Microbe 2023, 4, e380–e381. [Google Scholar] [CrossRef]
- Rosario, K.; Fierer, N.; Mulle, S.; Luongo, J.; Breitbart, M. Diversity of DNA and RNA viruses in indoor air as assessed via metagenomics sequencing. Environ. Sci. Technol. 2018, 52, 1014–1027. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. Environmental Protectional Agency “The National Human Activity Pattern Survey (NHAPS): AResource for Assessing Exposure to Environmental Pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 23–52. [Google Scholar]
- Stephens, B.; Azimi, P.; Thoemmes, M.S.; Heidarinejad, M.; Allen, J.G.; Gilbert, A.G. Microbial exchange via fomites and implications for human health. Biol. Pollut. 2019, 5, 198–213. [Google Scholar] [CrossRef]
- Pasquarella, C.; Pitzurra, O.; Savino, A. The index of microbial air contamination. J. Hosp. Contam. 2000, 46, 241–256. [Google Scholar] [CrossRef]
- Qian, J.; Peccia, J.; Ferro, A.R. Walking induced particle suspension in indoor environments. Atmos. Environ. 2014, 89, 464–481. [Google Scholar] [CrossRef]
- Ijaz, M.K.; Sattar, S.A.; Nims, R.W.; Boone, S.A.; McKinney, J.; Gerba, C.P. Environmental dissemination of respiratory viruses; dynamic interdependencies of respiratory droplets, aerosols, aerial particulates, environmental surfaces, and contribution of viral re-aerosolization. PeerJ 2023, 11, e16420. [Google Scholar] [CrossRef]
- Morgan, C.N.; Whitehill, F.; Doty, J.B.; Schulte, J.; Matheny, A.; Stringer, J.; Delaney, L.J.; Esparza, R.; Rao, A.K.; McCollum, A.M. Environmental persistence of Monkeypox virus on surfaces in households of person with travel-associated infection, Dallas, Texas, USA, 2021. Emerg. Infect. Dis. 2022, 28, 1982–1986. [Google Scholar] [CrossRef] [PubMed]
- Rawat, A.D.; Ferro, A.R. Respiratory virus deposition and resuspension from indoor surfaces. In Studies to Combat COVID-19 Using Science and Engineering; Springer: Singapore, 2022; pp. 107–118. [Google Scholar] [CrossRef]
- Ferro, A.R. Resuspension. In Handbook of Indoor Air Quality; Springer Nature: Singapore, 2022; pp. 1–18. [Google Scholar]
- Wei, J.; Li, Y. Airborne spread of infectious agents in the indoor environment. Am. J. Infect. Control 2016, 44, S102–S108. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, G.; Fratini, M.; Libera, S.D.; Iaconellis, M.; Muscillo, M. Viral infections acquired indoors through contact transmission. Ann. Ist. Super Sanita 2013, 49, 124–132. [Google Scholar]
- Duchaine, C. Assessing microbial decontamination of indoor air with particular focus on human pathogenic viruses. Am. J. Infect. Control 2016, 44, S121–S126. [Google Scholar] [CrossRef]
- Kohanski, M.A.; Lo, L.J.; Waring, M.S. Review of indoor aerosol generation, transport, and control in the context of COVID-19. Int. Forum Allergy Rhinol. 2020, 10, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Pitol, A.K.; Julian, T.R. Community transmission of SARS-CoV-2 by surfaces: Risks and risk reduction strategies. Environ. Sci. Technol. Lett. 2021, 8, 263–269. [Google Scholar] [CrossRef]
- Ijaz, M.K.; Zargar, B.; Wright, K.E.; Rubino, J.R.; Sattar, S.A. Generic aspects of the airborne spread of human pathogens indoors and emerging air decontamination technologies. Am. J. Infect. Control 2016, 44, S109–S120. [Google Scholar] [CrossRef] [PubMed]
- Baig, T.A.; Zhang, M.; Smith, B.L.; King, M.D. Environmental effects on viable virus transport and resuspension in ventilation airflow. Viruses 2022, 14, 616. [Google Scholar] [CrossRef]
- Alhaji, M.M. The impacts of surface roughness on indoor aerodynamics of virus laden particles: The case of contact, deposition and resuspension. In Proceedings of the 11th International Conference for Indoor Air Quality, Ventilation and Energy Conservation in Buildings, Tokyo, Japan, 20–23 May 2023. [Google Scholar] [CrossRef]
- Middleton, J.; Lopes, H.; Michealson, K.; Reid, J. Planning the second wave pandemic of COVID-19 and planning for winter: A statement from the association of scholls of public health in the European region. Int. J. Public Health 2020, 65, 1525–1527. [Google Scholar] [CrossRef]
- Khare, P.; Marr, L.C. Simulation of vertical concentration gradient of influenza viruses in dust resuspended by walking. Indoor Air 2014, 25, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Thatcher, T.L.; Layton, D.W. Deposition, resuspension, and penetration of particles within residence. Atmos. Environ. 1995, 29, 1487–1497. [Google Scholar] [CrossRef]
- Qian, J.; Ferro, A.R. Resuspension of dust particles in a chamber and associated environmental factors. Aerosol Sci. Technol. 2008, 42, 566–578. [Google Scholar] [CrossRef]
- Hospodsky, D.; Qian, J.; Nazaroff, W.W.; Yamamoto, N.; Bibby, K.; Rismani-Yazdi, H.; Peccis, J. Human occupancy as a source of indoor airborne bacteria. PLoS ONE 2012, 7, e34867. [Google Scholar] [CrossRef]
- Evans, M.R.; Meldrum, R.; Lane, W.; Gardner, D.; Ribeiro, C.D.; Gallimore, C.I.; Westmoreland, D. An outbreak of viral gastroenteritis following environmental contamination at a concert hall. Epidemiol Infect. 2002, 129, 355–360. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Leela, K.S. Textbook of Immunology, 2nd ed.; TextbookJP Medical Ltd.: Hongkong, China, 2013. [Google Scholar]
- Black, J.G. Microbiology: Principles and Exploration, 8th ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Wu, T.; Fu, M.; Martin, V.; Taubel, M.; Xu, Y.; Boor, B.E. Particle resuspension dynamics in the infant near-floor microenvironment. Environ. Sci. Technol. 2021, 55, 186–1875. [Google Scholar] [CrossRef] [PubMed]
- Asadi, S.; Bouvier, N.; Wexler, A.S.; Ristenpart, W.D. The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol Sci. Technol. 2020, 54, 635–638. [Google Scholar] [CrossRef]
- Gerba, C. Indicator Microorganisms. In Environmental Microbiology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2000; p. 559. [Google Scholar]
- Abney, S.E.; Wilson, A.M.; Ijaz, M.K.; McKinney, J.; Reynolds, K.A.; Gerba, C.P. Minding the matrix: The importance of inoculum suspensions on finger transfer efficiency of virus. J. Appl. Microbiol. 2022, 133, 3083–3093. [Google Scholar] [CrossRef]
- Anderson, C.E.; Boehm, A.B. Transfer rate of enveloped and nonenveloped viruses between fingernails and surfaces. Appl. Environ. Microbiol. 2021, 87, e01215-21. [Google Scholar] [CrossRef]
- Beamer, P.; Plotkin, K.R.; Gerba, C.P.; Sifuentes, L.Y.; Koenig, K.W.; Reynolds, K.A. Modeling of human viruses on hands and risk of infection in an office workplace using micro-activity data. J. Occup. Environ. Hyg. 2015, 12, 266–275. [Google Scholar] [CrossRef]
- U.S. EPA. Exposure Factors Handbook, 2011 ed.; Final Report; U.S. Environmental Protection Agency: Washington, DC, USA, 2011; EPA/600/R-09/052F. [Google Scholar]
- Van Abel, M.; Schoen, M.E.; Kissel, J.C.; Meschke, J.C. Comparison of Risk Predicted by Multiple Norovirus Dose-Response Models and Implications for Quantitative Microbial Risk Assessment. Risk Anal. 2017, 37, 245–264. [Google Scholar] [CrossRef] [PubMed]
- Gerba, C.P.; Bentancourt, W.Q. Viral aggregation: Impact on virus behavior in the Environment. Environ. Sci. Technol. 2017, 51, 7318–7325. [Google Scholar] [CrossRef] [PubMed]
- Auyeung, W.; Canales, R.A.; Leckie, J.O. The fraction of total hand surface area involved in young children’s outdoor hand-to-object contacts. Environ. Res. 2008, 108, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Sifuentes, L.Y.; Kornig, D.W.; Phillips, R.L.; Reynolds, K.A.; Gerba, C.P. Use of Hygiene Protocols to Control the Spread of Viruses in a Hotel. Food Environ. Virol. 2023, 6, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Galton, J.; Tovey, E.; Mc laws, M.; Rawlinson, W.D. The role of particle size in aerosolized pathogen transmission: A review. J. Infect. 2011, 62, 1–13. [Google Scholar] [CrossRef]
- Cheesbrough, J.S.; Green, J.; Gallimore, C.I.; Wright, P.A.; Brown, D.W.G. Widespread environmental contamination with Norwalk-like viruses (NLV) detected in a prolonged hotel outbreak of gastroenteritis. Epidemiol. Infect. 2000, 125, 93–98. [Google Scholar] [CrossRef]
- Kimura, H.; Nagano, K.; Kimura, N.; Shimizu, M.; Ueno, Y.; Morikane, K.; Okabe, N. A norovirus outbreak associated with environmental contamination at a hotel. Epidemiol. Infect. 2011, 139, 317–325. [Google Scholar] [CrossRef]
- Marks, P.J.; Vipond, I.B.; Carlisle, D.; Deakin, D.; Fey, R.E.; Caul, E.O. Evidence for airborne transmission of Norwalk-like virus (NLV) in a hotel restaurant. Epidemiol. Infect. 2000, 124, 481–487. [Google Scholar] [CrossRef]
- Atta, H.I. Aerosolization and bioaerosols. In Aeromicrobiology: Developments in Applied Microbiology and Biotechnology; Academic Press: Cambridge, MA, USA, 2023; pp. 17–37. [Google Scholar] [CrossRef]
- Lou, Y.; Lou, X.; Du, M.; Chen, Z.; Long, L. Editorial: Prevalent disease in vulnerable populations: Current situations ans influencing factors. Front. Public Health 2024, 12, 1444852. [Google Scholar] [CrossRef]
- Liu, Q.; Deng, J.; Yan, W.; Qin, C.; Diu, M.; Wang, Y.; Zhang, S.; Lui, M.; Liu, J. Burden and trends of infectious disease mortality attributed to air pollution, unsafe water, sanitation, and hygiene, and non-optimal temperature globally and in different socio-demographic index regions. Glob. Health Res. Policy 2024, 9, 23. [Google Scholar] [CrossRef]
Parameter | Variable | Units | Point Value or Distribution | Source | |
---|---|---|---|---|---|
Transfer efficiency | Surface-to-hand | Fraction (unitless) | Normal (mean = 0.34, SD = 0.12), range 0–1 | [35] | |
Hand-to-mouth | Fraction (unitless) | Normal (mean = 0.41, SD = 0.1098), range 0–1 | [34] | ||
Fraction of the hand | Surface contacts | Fraction (unitless) | Uniform (min = 0.008, max = 0.25) | [40] | |
Mouth contacts | Fraction (unitless) | Uniform (min = 0.008, max = 0.012) | [40] | ||
Hand surface area for a single hand | cm2 | Uniform (min = 445, max = 535) | [36,37] | ||
Norovirus concentration on floors | Log10 | Log10 viral particles/cm2 | 4, 5, 6, 7, 8 | This study (Assumed to explore wide range) | |
Ratio of concentrations on surfaces to floors | Fraction (unitless) | See Table S1 | This study | ||
Dose–response parameters | 0.72 | “Fraction of secretor positive (Se+) individuals who are fully susceptible” | [38] | ||
1106 | Mena aggregate size | [38] |
Height Above Floor | Carpet | Hard Flooring | ||
---|---|---|---|---|
Vacuuming | Walking | Vacuuming | Walking | |
<30 cm | 5.3 (0.04) | 1.8 (0.0002) | −0.85 (0.01) * | 5.4 (0.02) |
55–105 cm | 5.4 (0.05) | 1.0 (0.0002) | 3.5 (0.002) | 2.2 (0.004) |
>122 cm | 5.4 (0.04) | 2.0 (0.0001) | 2.9 (0.0005) | 3.8 (0.006) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boone, S.A.; Ijaz, M.K.; McKinney, J.; Gerba, C.P. Resuspension and Dissemination of MS2 Virus from Flooring After Human Activities in Built Environment: Impact of Dust Particles. Microorganisms 2024, 12, 2564. https://doi.org/10.3390/microorganisms12122564
Boone SA, Ijaz MK, McKinney J, Gerba CP. Resuspension and Dissemination of MS2 Virus from Flooring After Human Activities in Built Environment: Impact of Dust Particles. Microorganisms. 2024; 12(12):2564. https://doi.org/10.3390/microorganisms12122564
Chicago/Turabian StyleBoone, Stephanie A., M. Khalid Ijaz, Julie McKinney, and Charles P. Gerba. 2024. "Resuspension and Dissemination of MS2 Virus from Flooring After Human Activities in Built Environment: Impact of Dust Particles" Microorganisms 12, no. 12: 2564. https://doi.org/10.3390/microorganisms12122564
APA StyleBoone, S. A., Ijaz, M. K., McKinney, J., & Gerba, C. P. (2024). Resuspension and Dissemination of MS2 Virus from Flooring After Human Activities in Built Environment: Impact of Dust Particles. Microorganisms, 12(12), 2564. https://doi.org/10.3390/microorganisms12122564