Evaluation of In Vitro Inhibition of β-Hematin Formation: A Step Towards a Comprehensive Understanding of the Mechanism of Action of New Arylamino Alcohols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Arylamino Alcohols Derivatives 1a-b, 2a-b and 3a-b
2.2. Inhibition of β-Hematin Formation
2.3. In Vitro Toxicity
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. 2023. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023 (accessed on 28 October 2024).
- Egan, T.J. Haemozoin formation. Mol. Biochem. Parasitol. 2008, 157, 127–136. [Google Scholar] [CrossRef] [PubMed]
- de Villiers, K.A.; Egan, T.J. Heme Detoxification in the Malaria Parasite: A Target for Antimalarial Drug Development. Acc. Chem. Res. 2021, 54, 2649–2659. [Google Scholar] [CrossRef] [PubMed]
- Wiser, M.F. The Digestive Vacuole of the Malaria Parasite: A Specialized Lysosome. Pathogens 2024, 13, 182. [Google Scholar] [CrossRef]
- Baelmans, R.; Deharo, E.; Munoz, V.; Sauvain, M.; Ginsburg, H. Experimental Conditions for Testing the Inhibitory Activity of Chloroquine on the Formation of beta-Hematin. Exp. Parasitol. 2000, 96, 243–248. [Google Scholar] [CrossRef]
- Mullié, C.; Jonet, A.; Desgrouas, C.; Taudon, N.; Sonnet, P. Differences in anti-malarial activity of 4-aminoalcohol quinoline enantiomers and investigation of the presumed underlying mechanism of action. Malar. J. 2012, 11, 65. [Google Scholar] [CrossRef]
- Herraiz, T.; Guillén, H.; González-Peña, D.; Arán, V.J. Antimalarial Quinoline Drugs Inhibit β-Hematin and Increase Free Hemin Catalyzing Peroxidative Reactions and Inhibition of Cysteine Proteases. Sci. Rep. 2019, 9, 15398. [Google Scholar] [CrossRef]
- Combrinck, J.M.; Mabotha, T.E.; Ncokazi, K.K.; Ambele, M.A.; Taylor, D.; Smith, P.J.; Hoppe, H.C.; Egan, T.J. Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem. Biol. 2013, 8, 133e137. [Google Scholar] [CrossRef]
- Wong, W.; Bai, X.C.; Sleebs, B.E.; Triglia, T.; Brown, A.; Thompson, J.K.; Jackson, K.E.; Hanssen, E.; Marapana, D.S.; Fernandez, I.S.; et al. The antimalarial Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nat. Microbiol. 2017, 2, 17031. [Google Scholar] [CrossRef]
- Kumar, A.; Ghosh, D.K.; Ali, J.; Ranjan, A. Characterization of Lipid Binding Properties of Plasmodium falciparum Acyl-Coenzyme A Binding Proteins and Their Competitive Inhibition by Mefloquine. ACS Chem. Biol. 2019, 14, 901–915. [Google Scholar] [CrossRef]
- Kumar, A.; Ghosh, D.K.; Ranjan, A. Differential Stabilities of Mefloquine-Bound Human and Plasmodium Falciparum Acyl-CoA-Binding Proteins. ACS Omega. 2021, 6, 1883–1893. [Google Scholar] [CrossRef]
- Gunjan, S.; Singh, S.K.; Sharma, T.; Dwivedi, H.; Chauhan, B.S.; Imran Siddiqi, M.; Tripathi, R. Mefloquine Induces ROS Mediated Programmed Cell Death in Malaria Parasite: Plasmodium. Apoptosis 2016, 21, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Karle, J.M.; Olmeda, R.; Gerena, L.; Milhous, W.K. Plasmodium falciparum: Role of Absolute Stereochemistry in the Antimalarial Activity of Synthetic Amino Alcohol Antimalarial Agents. Exp. Parasitol. 1993, 76, 345–351. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for the Treatment of Malaria, 3rd ed.; World Health Organization: Geneva, Switzerland, 2015; Available online: https://www.afro.who.int/sites/default/files/2017-06/9789241549127_eng.pdf (accessed on 28 October 2024).
- Hood, J.E.; Jenkins, J.W.; Milatovic, D.; Rongzhu, L.; Aschner, M. Mefloquine induces oxidative stress and neurodegeneration in primary rat cortical neurons. Neurotoxicology 2010, 31, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Görlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O. Calcium and ROS: A mutual interplay. Redox Biol. 2015, 6, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Baudry, S.; Pham, Y.T.; Baune, B.; Vidrequin, S.; Crevoisier, C.; Gimenez, F.; Farinotti, R. Stereoselective Passage of Mefloquine Through the Blood-Brain Barrier in the Rat. J. Pharm. Pharmacol. 1997, 49, 1086–1090. [Google Scholar] [CrossRef]
- Barraud de Lagerie, S.; Comets, E.; Gautrand, C.; Fernandez, C.; Auchere, D.; Singlas, E.; Mentre, F.; Gimenez, F. Cerebral uptake of mefloquine enantiomers with and without the P-gp inhibitor elacridar (GF1210918) in mice. Br. J. Pharmacol 2004, 141, 1214–1222. [Google Scholar] [CrossRef]
- Fletcher, A.; Shepherd, R. Use of (+)-Mefloquine for the Treatment of Malaria, WO1998039003A1. 6 March 1998. Available online: https://patentimages.storage.googleapis.com/4c/8a/4d/c470c01e488865/WO1998039003A1.pdf (accessed on 28 October 2024).
- Dow, G.S.; Heady, T.N.; Bhattacharjee, A.K.; Caridha, D.; Gerena, L.; Gettayacamin, M.; Lanteri, C.A.; Obaldia, N., 3rd; Roncal, N.; Shearer, T.; et al. Utility of Alkylaminoquinolinyl Methanols as New Antimalarial Drugs. Antimicrob. Agents Chemother. 2006, 50, 4132–4143. [Google Scholar] [CrossRef]
- Mullié, C.; Taudon, N.; Degrouas, C.; Jonet, A.; Pascual, A.; Agnamey, P.; Sonnet, P. Enantiomerically pure amino-alcohol quinolines: In vitro anti-malarial activity in combination with dihydroartemisinin, cytotoxicity and in vivo efficacy in a Plasmodium berghei mouse model. Malar. J. 2014, 13, 407. [Google Scholar] [CrossRef]
- Bentzinger G, Sonnet P, Dassonville-Klimpt A, Mullié Demailly C, Agnamey P. Novel aminopyridinemethanol compounds and their use. WO2019086614A1. 5 September 2019. Available online: https://patentimages.storage.googleapis.com/c3/41/16/d407e74fa01cb4/WO2019086614A1.pdf (accessed on 28 October 2024).
- Jonet, A.; Dassonville-Klimpt, A.; Da Nascimento, S.; Leger, J.M.; Guillon, J.; Sonnet, P. First enantioselective synthesis of 4-aminoalcohol quinoline derivatives through a regioselective SN2 epoxide opening mechanism. Tetrahedron Asymmetry 2011, 22, 138–148. [Google Scholar] [CrossRef]
- Desjardins, R.E.; Canfield, C.J.; Haynes, J.D.; Chulay, J.D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob. Agents Chemother. 1979, 16, 710–718. [Google Scholar] [CrossRef]
- Bennett, T.N.; Paguio, M.; Gligorijevic, B.; Seudie, C.; Kosa, A.D.; Davidson, E.; Roepe, P.D. Novel, Rapid, and Inexpensive Cell-Based Quantification of Antimalarial Drug Efficacy. Antimicrob. Agents Chemother. 2004, 48, 1807–1810. [Google Scholar] [CrossRef] [PubMed]
- Bacon, D.J.; Latour, C.; Lucas, C.; Colina, O.; Ringwald, P.; Picot, S. Comparison of a SYBR Green I-Based Assay with a Histidine- Rich Protein II Enzyme-Linked Immunosorbent Assay for In Vitro Antimalarial Drug Efficacy Testing and Application to Clinical Isolates. Antimicrob. Agents Chemother. 2007, 51, 1172–1178. [Google Scholar] [CrossRef] [PubMed]
- Kaddouri, H.; Nakache, S.; Houzé, S.; Mentré, F.; Le Bras, J. Assessment of the Drug Susceptibility of Plasmodium falciparum Clinical Isolates from Africa by Using a Plasmodium Lactate Dehydrogenase Immunodetection Assay and an Inhibitory Maximum Effect Model for Precise Measurement of the 50-Percent Inhibitory Concentration. Antimicrob. Agents Chemother. 2006, 50, 3343–3349. [Google Scholar] [PubMed]
- Dassonville-Klimpt, A.; Schneider, J.; Damiani, C.; Tisnerat, C.; Cohen, A.; Azas, N.; Marchivie, M.; Guillon, J.; Mullié, C.; Agnamey, P.; et al. Design, synthesis, and characterization of novel aminoalcohol quinolines with strong in vitro antimalarial activity. Eur. J. Med. Chem. 2022, 228, 113981. [Google Scholar] [CrossRef]
- Albenque-Rubio, S.; Guillon, J.; Agnamey, P.; Damiani, C.; Savrimoutou, S.; Mustière, R.; Pinaud, N.; Moreau, S.; Mergny, J.-L.; Ronga, L.; et al. Design, Synthesis, and In Vitro Antimalarial Evaluation of New 1,3,5-Tris[(4-(Substituted-Aminomethyl) Phenoxy)Methyl]Benzenes. Drugs Drug Candidates 2024, 3, 615–637. [Google Scholar] [CrossRef]
- Egan, T.J.; Ross, D.C.; Adams, P.A. Quinoline anti-malarial drugs inhibit spontaneous formation of beta-haematin (malaria pigment). FEBS Lett. 1994, 352, 54–57. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Price, R.N.; Uhlemann, A.C.; Brockman, A.; McGready, R.; Ashley, E.; Phaipun, L.; Patel, R.; Laing, K.; Looareesuwan, S.; White, N.J.; et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 2004, 364, 438–447. [Google Scholar] [CrossRef]
- Sidhu, A.B.; Uhlemann, A.C.; Valderramos, S.G.; Valderramos, J.C.; Krishna, S.; Fidock, D.A. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect. Dis. 2006, 194, 528–535. [Google Scholar] [CrossRef]
- Sanchez, C.P.; Dave, A.; Stein, W.D.; Lanzer, M. Transporters as mediators of drug resistance in Plasmodium falciparum. Int. J. Parasitol. 2010, 40, 1109–1118. [Google Scholar] [CrossRef]
Compound | Config. | IC50 (nM) a,b | Eudysmic Ratio c | |||
---|---|---|---|---|---|---|
PfW2 d | Pf3D7 e | PfW2 | Pf3D7 | |||
Chloroquine | 198.8 ± 27.0 | 75.9 ± 3.0 | NA | NA | ||
Mefloquine | 31.8 ± 1.0 | 79.7 ± 8.5 | NA | NA | ||
Enpiroline | 11.5 ± 2.3 | 21.6 ± 1.4 | NA | NA | ||
1 | 1a | 5.0 ± 0.3 | 15.1 ± 3.3 | 1.46 (S) | 1 | |
1b | 7.3 ± 0.9 | 15.1 ± 3.4 | ||||
2 | 2a | 9.0 ± 0.4 | 45.8 ± 2.3 | 1.1 (S) | 1.2 (S) | |
2b | 10.0 ± 0.7 | 56.7 ± 4.8 | ||||
3 | 3a | 131.7 ± 10.3 | 479.0 ± 38.2 | 4.0 (S) | 2.9 (S) | |
3b | 522.8 ± 95.8 | 1379.7 ± 992.8 |
Inhibition of β-Hematin Formation | Cytotoxicity Results Against HepG2 | ||||
---|---|---|---|---|---|
Compound | Config. | Inhibition (%) a at 2 mM | IC50 (mM) a | CC50 (µM) on HepG2 a | Selectivity Index b HepG2/3D7 |
Chloroquine | 86.9 ± 4.8 | 1.13 ± 0.20 | 24.1 ± 0.8 | 317 | |
Mefloquine | 61.3 ± 8.5 | 1.79 ± 0.09 | 8.6 ± 2.6 | 108 | |
Enpiroline | 20.3 ± ND c | >2 | 4.4 ± 0.6 | 204 | |
1 | 1a | 81.8 ± 8.4 | 1.17 ± 0.32 | 25.6 ± 2.7 | 1695 |
1b | 71.3 ± 10.3 | 1.31 ± 0.54 | 37.8 ± 1.9 | 2503 | |
2 | 2a | 73.5 ± 18.0 | 1.45 ± 0.30 | 4.0 ± 0.9 | 87 |
2b | 54.0 ± 22.7 | 1.77 ± 0.22 | 4.0 ± 0.7 | 70 | |
3 | 3a | 48.3 ± ND c | >2 | 11.6 ± 0.7 | 24 |
3b | 40.6 ± 28.3 | >2 | >100 | >72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damiani, C.; Soler, F.; Le Govic, Y.; Totet, A.; Bentzinger, G.; Bouchut, A.; Mustière, R.; Agnamey, P.; Dassonville-Klimpt, A.; Sonnet, P. Evaluation of In Vitro Inhibition of β-Hematin Formation: A Step Towards a Comprehensive Understanding of the Mechanism of Action of New Arylamino Alcohols. Microorganisms 2024, 12, 2524. https://doi.org/10.3390/microorganisms12122524
Damiani C, Soler F, Le Govic Y, Totet A, Bentzinger G, Bouchut A, Mustière R, Agnamey P, Dassonville-Klimpt A, Sonnet P. Evaluation of In Vitro Inhibition of β-Hematin Formation: A Step Towards a Comprehensive Understanding of the Mechanism of Action of New Arylamino Alcohols. Microorganisms. 2024; 12(12):2524. https://doi.org/10.3390/microorganisms12122524
Chicago/Turabian StyleDamiani, Céline, Floriane Soler, Yohann Le Govic, Anne Totet, Guillaume Bentzinger, Anne Bouchut, Romain Mustière, Patrice Agnamey, Alexandra Dassonville-Klimpt, and Pascal Sonnet. 2024. "Evaluation of In Vitro Inhibition of β-Hematin Formation: A Step Towards a Comprehensive Understanding of the Mechanism of Action of New Arylamino Alcohols" Microorganisms 12, no. 12: 2524. https://doi.org/10.3390/microorganisms12122524
APA StyleDamiani, C., Soler, F., Le Govic, Y., Totet, A., Bentzinger, G., Bouchut, A., Mustière, R., Agnamey, P., Dassonville-Klimpt, A., & Sonnet, P. (2024). Evaluation of In Vitro Inhibition of β-Hematin Formation: A Step Towards a Comprehensive Understanding of the Mechanism of Action of New Arylamino Alcohols. Microorganisms, 12(12), 2524. https://doi.org/10.3390/microorganisms12122524