In Vitro Synergistic Effect of Lefamulin with Doxycycline, Rifampin, and Quinupristin/Dalfopristin Against Enterococci
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Antibiotics
2.2. Determination of Minimum Inhibitory Concentration (MIC)
2.3. Determination of Fractional Inhibitory Concentration Index (FICI)
2.4. Time-Kill Assay
3. Results
3.1. Susceptibility
3.2. FICI Determination
3.3. Time-Kill Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Higuita, N.I.A.; Huycke, M.M. Enterococcal disease, epidemiology, and implications for treatment. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Kristich, C.J.; Rice, L.B.; Arias, C.A. Enterococcal infection—Treatment and antibiotic resistance. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Hollenbeck, B.L.; Rice, L.B. Intrinsic and acquired resistance mechanism in enterococcus. Virulence 2012, 3, 421–569. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. CLSI M100: Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Veve, M.P.; Wagner, J.L. Lefamulin: Review of a promising novel pleuromutilin antibiotic. Pharmacother. J. Hum. Pharmacol. Drug. Ther. 2018, 38, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Lehár, J.; Krueger, A.S.; Avery, W.; Heilbut, A.M.; Johansen, L.M.; Price, E.R.; Rickles, R.J.; Short III, G.F.; Staunton, J.E.; Jin, X.; et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 2009, 27, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Bollenbach, T. Antimicrobial interactions: Mechanisms and implications for drug discovery and resistance evolution. Curr. Opin. Microbiol. 2015, 27, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Michel, J.B.; Yeh, P.J.; Chait, R.; Moellering, R.C.; Kishony, R. Drug interactions modulate the potential for evolution of resistance. Proc. Natl. Acad. Sci. USA 2008, 105, 14918–14923. [Google Scholar] [CrossRef]
- Munck, C.; Gumpert, H.K.; Wallin, A.I.N.; Wang, H.H.; Sommer, M.O. Prediction of resistance development against drug combinations by collateral responses to component drugs. Sci. Transl. Med. 2014, 6, 262ra156. [Google Scholar] [CrossRef]
- Davis, H.; Ashcraft, D.S.; Pankey, G.A. In vitro interaction of lefamulin, a pleuromutilin antibiotic, and doxycycline against linezolid-and vancomycin-resistant Enterococcus faecium. J. Investig. Med. 2022, 70, 720–721. [Google Scholar]
- Paukner, S.; Stoneburner, A.; Ivezic-Schoenfeld, Z.; Pillar, C. In vitro synergy/antagonism of the pleuromutilin BC-3781 with selected antibiotics against gram-positive and gram-negative bacteria. In Proceedings of the 53th Interscience Conference on Antimicrobial Agents and Chemotherapy, Denver, CO, USA, 10–13 September 2013. [Google Scholar]
- Gargvanshi, S.; Gutheil, W.G. Library screening for synergistic combinations of FDA-approved drugs and metabolites with vancomycin against VanA-type vancomycin-resistant Enterococcus faecium. Microbiol. Spectr. 2022, 10, e0141222. [Google Scholar] [CrossRef]
- Dong, C.L.; Li, L.X.; Cui, Z.H.; Chen, S.W.; Xiong, Y.Q.; Lu, J.Q.; Liao, X.P.; Gao, Y.; Sun, J.; Liu, Y.H. Synergistic effect of pleuromutilins with other antimicrobial agents against Staphylococcus aureus in vitro and in an experimental Galleria mellonella model. Front. Pharmacol. 2017, 8, 553. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Ma, L.; Zhang, G.; Li, Y.; Zeng, X.; Li, Y.; Dong, N. Valnemulin restores colistin sensitivity against multidrug-resistant gram-negative pathogens. Commun. Biol. 2024, 7, 1122. [Google Scholar] [CrossRef]
- Yu, Y.; Fang, J.T.; Zheng, M.; Zhang, Q.; Walsh, T.R.; Liao, X.P.; Sun, J.; Liu, Y.H. Combination therapy strategies against multiple-resistant Streptococcus Suis. Front. Pharmacol. 2018, 9, 489. [Google Scholar] [CrossRef] [PubMed]
- Siricilla, S.; Mitachi, K.; Yang, J.S.; Eslamimehr, S.; Lemieux, M.R.; Meibohm, B.; Ji, Y.; Kurosu, M. A new combination of a pleuromutilin derivative and doxycycline for treatment of multidrug-resistant Acinetobacter baumannii. J. Med. Chem. 2017, 60, 2869–2878. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wei, M.C.; Luo, Y.D.; Jin, Z.; Tang, Y.Z. Synergistic effect of a pleuromutilin derivative with tetracycline against Streptococcus suis in vitro and in the neutropenic thigh infection model. Molecules 2020, 25, 3522. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. M07: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Park, B.; Min, Y.H. In vitro synergistic effect of retapamulin with erythromycin and quinupristin against Enterococcus faecalis. J. Antibiot. 2020, 73, 630–635. [Google Scholar] [CrossRef]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef]
- Pillai, S.K.; Moellering, R.C.J.; Eliopoulos, G.M. Antimicrobial combinations. In Antibiotics in Laboratory Medicine, 5th ed.; Lorian, V., Ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2005; pp. 365–405. ISBN 978-0781749831. [Google Scholar]
- Terbtothakun, P.; Nwabor, O.F.; Siriyong, T.; Voravuthikunchai, S.P.; Chusri, S. Synergistic antibacterial effects of meropenem in combination with aminoglycosides against carbapenem-resistant Escherichia coli harboring blaNDM-1 and blaNDM-5. Antibiotics 2021, 10, 1023. [Google Scholar] [CrossRef]
- Paukner, S.; Sader, H.S.; Ivezic-Schoenfeld, Z.; Jones, R.N. Antimicrobial activity of the pleuromutilin antibiotic BC-3781 against bacterial pathogens isolated in the SENTRY antimicrobial surveillance program in 2010. Antimicrob. Agents Chemother. 2013, 57, 4489–4495. [Google Scholar] [CrossRef]
- Sader, H.S.; Biedenbach, D.J.; Paukner, S.; Ivezic-Schoenfeld, Z.; Jones, R.N. Antimicrobial activity of the investigational pleuromutilin compound BC-3781 tested against Gram-positive organisms commonly associated with acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother. 2012, 56, 1619–1623. [Google Scholar] [CrossRef]
- Xenleta—Summary of Product Characteristics. Available online: https://ec.europa.eu/health/documents/community-register/2022/20220708156315/anx_156315_en.pdf (accessed on 11 October 2024).
- Adhikary, S.; Duggal, M.K.; Nagendran, S.; Chintamaneni, M.; Tuli, H.S.; Kaur, G. Lefamulin: A new hope in the field of community-acquired bacterial pneumonia. Curr. Pharmacol. Rep. 2022, 8, 418–426. [Google Scholar] [CrossRef]
- Eyal, Z.; Matzov, D.; Krupkin, M.; Paukner, S.; Riedl, R.; Rozenberg, H.; Zimmerman, E.; Bashan, A.; Yonath, A. A novel pleuromutilin antibacterial compound, its binding mode and selectivity mechanism. Sci. Rep. 2016, 6, 39004. [Google Scholar] [CrossRef]
- Chukwudi, C.U. rRNA binding sites and the molecular mechanism of action of the tetracyclines. Antimicrob. Agents Chemother. 2016, 60, 4433–4441. [Google Scholar] [CrossRef] [PubMed]
- Yeh, P.J.; Hegreness, M.J.; Aiden, A.P.; Kishony, R. Drug interactions and the evolution of antibiotic resistance. Nat. Rev. Microbiol. 2009, 7, 460–466. [Google Scholar] [CrossRef]
- Sullivan, G.J.; Delgado, N.N.; Maharjan, R.; Cain, A.K. How antibiotics work together: Molecular mechanisms behind combination therapy. Curr. Opin. Microbiol. 2020, 57, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Shen, J.; Kadlec, K.; Wang, Y.; Brenner Michael, G.; Feßler, A.T.; Vester, B. Lincosamides, streptogramins, phenicols, and pleuromutilins: Mode of action and mechanisms of resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a027037. [Google Scholar] [CrossRef]
- Harms, J.M.; Schlunzen, F.; Fucini, P.; Bartels, H.; Yonath, A. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol. 2004, 2, 4. [Google Scholar] [CrossRef]
- Hamouche, L.; Poljak, L.; Carpousis, A.J. Ribosomal RNA degradation induced by the bacterial RNA polymerase inhibitor rifampicin. RNA 2021, 27, 946–958. [Google Scholar] [CrossRef] [PubMed]
Strains a | MIC (μg/mL) Alone | LEF + DOX | LEF + RIF | ||||
---|---|---|---|---|---|---|---|
LEF | DOX | RIF | MIC in Combination | FICI b | MIC in Combination | FICI b | |
ATCC | 0.063 | 0.25 | 16 | 0.016/0.063 | 0.5 | 0.016/1 | 0.313 |
3 | 0.25 | 0.25 | 8 | 0.063/0.063 | 0.5 | 0.031/0.5 | 0.188 |
4 | 0.125 | 8 | 8 | 0.031/1 | 0.375 | 0.016/0.5 | 0.188 |
5 | 0.063 | 0.25 | 2 | 0.031/0.063 | 0.75 | 0.008/0.25 | 0.25 |
20 | 0.125 | 0.25 | 16 | 0.016/0.063 | 0.375 | 0.016/1 | 0.188 |
26 | 0.063 | 8 | 4 | 0.016/2 | 0.5 | 0.016/0.25 | 0.313 |
36 | 0.063 | 0.063 | 0.5 | 0.031/0.008 | 0.625 | 0.016/0.063 | 0.375 |
37 | 32 | 0.25 | 0.063 | 1/0.063 | 0.281 | 1/0.008 | 0.156 |
44 | 0.125 | 0.125 | 8 | 0.031/0.031 | 0.5 | 0.016/1 | 0.25 |
57 | 64 | 0.25 | 8 | 4/0.063 | 0.313 | 0.25/1 | 0.129 |
58 | 0.125 | 0.125 | 8 | 0.031/0.016 | 0.375 | 0.016/1 | 0.25 |
59 | 0.125 | 0.25 | 8 | 0.031/0.031 | 0.375 | 0.016/1 | 0.25 |
60 | 0.125 | 0.125 | 16 | 0.063/0.016 | 0.625 | 0.016/0.5 | 0.156 |
61 | 0.125 | 0.125 | 8 | 0.016/0.031 | 0.375 | 0.016/0.5 | 0.188 |
93 | 0.125 | 0.25 | 8 | 0.031/0.031 | 0.375 | 0.016/1 | 0.25 |
95 | 64 | 32 | 4 | 8/16 | 0.625 | 0.5/1 | 0.258 |
VRE31 | 0.125 | 0.125 | 8 | 0.031/0.031 | 0.5 | 0.016/0.5 | 0.188 |
VRE36 | 0.063 | 2 | 2 | 0.016/0.25 | 0.375 | 0.016/0.125 | 0.313 |
VRE40 | 0.063 | 2 | 8 | 0.016/0.25 | 0.375 | 0.008/1 | 0.25 |
VRE19 | 0.125 | 0.25 | 8 | 0.031/0.031 | 0.375 | 0.016/1 | 0.25 |
VRE34 | 0.063 | 0.125 | 4 | 0.016/0.031 | 0.5 | 0.008/0.5 | 0.25 |
VRE35 | 0.125 | 0.063 | 1 | 0.031/0.016 | 0.5 | 0.031/0.063 | 0.313 |
VRE41 | 0.125 | 0.25 | 1 | 0.063/0.031 | 0.625 | 0.031/0.063 | 0.313 |
VRE42 | 0.063 | 0.25 | 2 | 0.016/0.031 | 0.375 | 0.016/0.125 | 0.313 |
VRE43 | 0.063 | 0.063 | 1 | 0.016/0.016 | 0.5 | 0.016/0.063 | 0.313 |
VRE46 | 0.125 | 0.125 | 4 | 0.031/0.031 | 0.5 | 0.016/0.5 | 0.25 |
VRE48 | 0.063 | 0.063 | 1 | 0.016/0.016 | 0.5 | 0.008/0.125 | 0.25 |
VRE75 | 0.063 | 0.063 | 8 | 0.016/0.016 | 0.5 | 0.016/0.5 | 0.313 |
VRE80 | 0.063 | 0.125 | 2 | 0.016/0.031 | 0.5 | 0.008/0.25 | 0.25 |
VRE99 | 0.125 | 16 | 8 | 0.016/2 | 0.25 | 0.008/0.5 | 0.125 |
VRE84 | 0.25 | 0.125 | 16 | 0.063/0.016 | 0.375 | 0.031/1 | 0.188 |
VRE96 | 0.125 | 0.125 | 16 | 0.031/0.016 | 0.375 | 0.063/0.25 | 0.516 |
VRE97 | 0.125 | 0.25 | 16 | 0.016/0.063 | 0.375 | 0.031/1 | 0.313 |
VRE98 | 0.125 | 0.25 | 16 | 0.031/0.063 | 0.5 | 0.008/1 | 0.125 |
Strains a | MIC (μg/mL) Alone | LEF + DOX | LEF + RIF | LEF + Q/D | ||||||
---|---|---|---|---|---|---|---|---|---|---|
LEF | DOX | RIF | Q/D | MIC in Combination | FICI b | MIC in Combination | FICI b | MIC in Combination | FICI b | |
ATCC | 32 | 4 | 1 | 4 | 1/1 | 0.281 | 4/0.25 | 0.375 | 4/1 | 0.375 |
951 | 128 | 8 | 4 | 16 | 8/2 | 0.313 | 32/2 | 0.75 | 8/4 | 0.313 |
573 | 32 | 16 | 4 | 8 | 2/4 | 0.313 | 1/1 | 0.281 | 4/2 | 0.375 |
23 | 64 | 0.5 | 0.031 | 8 | 1/0.125 | 0.266 | 1/0.016 | 0.516 | 4/2 | 0.313 |
24 | 128 | 0.5 | 16 | 8 | 1/0.125 | 0.258 | 1/4 | 0.258 | 4/2 | 0.281 |
114 | 128 | 0.5 | 4 | 4 | 1/0.125 | 0.258 | 2/1 | 0.266 | 4/1 | 0.281 |
154 | 32 | 16 | 2 | 4 | 2/4 | 0.313 | 2/1 | 0.563 | 4/1 | 0.375 |
940 | 64 | 16 | 16 | 4 | 1/4 | 0.266 | 1/8 | 0.516 | 8/0.5 | 0.25 |
196 | 64 | 16 | 4 | 4 | 1/4 | 0.266 | 1/0.5 | 0.141 | 2/1 | 0.281 |
507 | 64 | 0.5 | 4 | 4 | 2/0.125 | 0.281 | 1/2 | 0.516 | 8/1 | 0.375 |
846 | 64 | 16 | 2 | 4 | 2/4 | 0.281 | 8/0.5 | 0.375 | 4/1 | 0.313 |
509 | 32 | 16 | 8 | 4 | 1/4 | 0.281 | 1/2 | 0.281 | 8/0.5 | 0.375 |
365 | 64 | 32 | 2 | 4 | 8/8 | 0.375 | 4/1 | 0.563 | 16/0.25 | 0.313 |
293 | 128 | 32 | 2 | 8 | 1/16 | 0.508 | 1/1 | 0.508 | 4/2 | 0.281 |
536 | 64 | 0.5 | 16 | 8 | 1/0.125 | 0.266 | 1/4 | 0.266 | 4/2 | 0.313 |
709 | 64 | 32 | 16 | 8 | 1/8 | 0.266 | 1/4 | 0.266 | 4/2 | 0.313 |
269 | 64 | 16 | 4 | 4 | 16/4 | 0.5 | 4/1 | 0.313 | 8/1 | 0.375 |
232 | 64 | 0.5 | 4 | 8 | 2/0.125 | 0.281 | 16/1 | 0.5 | 4/2 | 0.313 |
60 | 64 | 0.5 | 32 | 4 | 1/0.125 | 0.266 | 2/4 | 0.156 | 8/1 | 0.375 |
508 | 64 | 32 | 4 | 4 | 2/4 | 0.156 | 4/1 | 0.313 | 4/1 | 0.313 |
103 | 128 | 32 | 8 | 16 | 16/8 | 0.375 | 4/2 | 0.281 | 32/4 | 0.5 |
225 | 64 | 16 | 4 | 16 | 1/4 | 0.266 | 1/1 | 0.266 | 4/2 | 0.188 |
861 | 128 | 16 | 4 | 16 | 32/8 | 0.75 | 4/2 | 0.531 | 32/2 | 0.375 |
105 | 128 | 8 | 2 | 32 | 32/2 | 0.5 | 64/1 | 1 | 32/16 | 0.75 |
720 | 128 | 32 | 4 | 16 | 4/8 | 0.281 | 16/2 | 0.625 | 64/8 | 1 |
7 | 64 | 8 | 1 | 8 | 4/2 | 0.313 | 2/0.5 | 0.531 | 4/2 | 0.313 |
466 | 64 | 16 | 8 | 8 | 1/4 | 0.266 | 32/4 | 1 | 4/1 | 0.188 |
907 | 128 | 32 | 8 | 16 | 2/8 | 0.266 | 32/2 | 0.5 | 32/8 | 0.75 |
800 | 128 | 16 | 4 | 16 | 32/4 | 0.5 | 32/1 | 0.5 | 16/8 | 0.625 |
188 | 128 | 16 | 16 | 16 | 32/4 | 0.5 | 2/4 | 0.266 | 32/8 | 0.75 |
110 | 128 | 16 | 16 | 16 | 8/4 | 0.313 | 1/4 | 0.258 | 32/8 | 0.75 |
665 | 64 | 0.25 | 0.008 | 8 | 8/0.06 | 0.375 | 8/0.004 | 0.625 | 8/1 | 0.25 |
564 | 128 | 8 | 4 | 64 | 2/2 | 0.266 | 4/1 | 0.281 | 4/32 | 0.531 |
Strains | Antibiotics | log10CFU/mL | Changes vs. Most Active Antibiotic |
---|---|---|---|
E. faecium ATCC 19434 | - | 8.50 ± 0.20 ab | |
LEF | 8.49 ± 0.11 ab | ||
DOX | 8.62 ± 0.19 a | ||
RIF | 8.13 ± 0.16 b | ||
LEF + DOX | 6.15 ± 0.18 c | −2.33 | |
LEF + RIF | 5.74 ± 0.24 c | −2.39 | |
E. faecium VRE19 | - | 9.04 ± 0.03 a | |
LEF | 8.42 ± 0.01 ab | ||
DOX | 8.31 ± 0.32 ab | ||
RIF | 8.04 ± 0.06 b | ||
LEF + DOX | 5.58 ± 0.26 c | −2.72 | |
LEF + RIF | 5.17 ± 0.24 c | −2.87 | |
E. faecium VRE42 | - | 8.84 ± 0.03 a | |
LEF | 8.52 ± 0.01 a | ||
DOX | 8.37 ± 0.20 a | ||
RIF | 8.35 ± 0.04 a | ||
LEF + DOX | 5.79 ± 0.02 b | −2.59 | |
LEF + RIF | 5.49 ± 0.26 b | −2.86 | |
E. faecalis ATCC 29212 | - | 8.70 ± 0.22 a | |
LEF | 9.02 ± 0.02 a | ||
DOX | 8.61 ± 0.22 a | ||
RIF | 8.57 ± 0.30 a | ||
Q/D | 8.79 ± 0.27 a | ||
LEF + DOX | 5.48 ± 0.38 b | −3.12 | |
LEF + RIF | 6.01 ± 0.27 b | −2.56 | |
LEF + Q/D | 5.57 ± 0.38 b | −3.22 | |
E. faecalis 24 | - | 8.89 ± 0.22 a | |
LEF | 8.87 ± 0.07 a | ||
DOX | 9.06 ± 0.02 a | ||
RIF | 7.94 ± 0.14 b | ||
Q/D | 8.81 ± 0.24 a | ||
LEF + DOX | 5.30 ± 0.12 c | −3.57 | |
LEF + RIF | 5.81 ± 0.10 c | −2.13 | |
LEF + Q/D | 5.59 ± 0.36 c | −3.21 | |
E. faecalis 225 | - | 8.94 ± 0.16 a | |
LEF | 8.97 ± 0.17 a | ||
DOX | 9.30 ± 0.06 a | ||
RIF | 8.11 ± 0.33 b | ||
Q/D | 8.84 ± 0.31 a | ||
LEF + DOX | 5.02 ± 0.06 d | −3.94 | |
LEF + RIF | 5.89 ± 0.12 c | −2.22 | |
LEF + Q/D | 5.04 ± 0.12 d | −3.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, Y.-H.; Kim, Y.-u.; Park, M.C. In Vitro Synergistic Effect of Lefamulin with Doxycycline, Rifampin, and Quinupristin/Dalfopristin Against Enterococci. Microorganisms 2024, 12, 2515. https://doi.org/10.3390/microorganisms12122515
Min Y-H, Kim Y-u, Park MC. In Vitro Synergistic Effect of Lefamulin with Doxycycline, Rifampin, and Quinupristin/Dalfopristin Against Enterococci. Microorganisms. 2024; 12(12):2515. https://doi.org/10.3390/microorganisms12122515
Chicago/Turabian StyleMin, Yu-Hong, Yong-ung Kim, and Min Chul Park. 2024. "In Vitro Synergistic Effect of Lefamulin with Doxycycline, Rifampin, and Quinupristin/Dalfopristin Against Enterococci" Microorganisms 12, no. 12: 2515. https://doi.org/10.3390/microorganisms12122515
APA StyleMin, Y.-H., Kim, Y.-u., & Park, M. C. (2024). In Vitro Synergistic Effect of Lefamulin with Doxycycline, Rifampin, and Quinupristin/Dalfopristin Against Enterococci. Microorganisms, 12(12), 2515. https://doi.org/10.3390/microorganisms12122515