Recoverability of Microcystis aeruginosa and Pseudanabaena foetida Exposed to a Year-Long Dark Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Cyanobacteria Strains and Cultivation
2.2. Experimental Design
2.3. OD730 and Cell Counts Analysis
2.4. Chlorophyll Fluorescence Analysis
2.5. Hydrogen Peroxide Concentration Analysis
2.6. Chlorophyll-a, Carotenoid, and Total Protein Content Analysis
2.7. Phenotype Observation
2.8. Supplementary Experimental
2.9. Data Analysis
3. Results
3.1. Cell Growth and Chlorophyll Fluorescence Change
3.2. H2O2 Concentration, Chl-a Content, and Carotenoid Content
3.3. Correlation Analysis
3.4. Supplementary Experiment
3.5. Phenotype Observation
4. Discussions
4.1. Recovery from Prolonged Darkness Is Time-Dependent
4.2. Recovery Is Affected by the Darkness Duration
4.3. M. aeruginosa Received a Greater Influence from Darkness Than P. foetida
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Soo, R.M.; Hemp, J.; Parks, D.H.; Fischer, W.W.; Hugenholtz, P. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 2017, 355, 1436–1440. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Baracaldo, P.; Cardona, T. On the origin of oxygenic photosynthesis and Cyanobacteria. New Phytol. 2020, 225, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Kulasooriya, S.A. Cyanobacteria: Pioneers of Planet Earth. Ceylon J. Sci. 2011, 40, 71–88. [Google Scholar] [CrossRef]
- Kvíderová, J.; Elster, J.; Komárek, J. Chapter 14—Ecophysiology of Cyanobacteria in the Polar Regions. In Cyanobacteria; Mishra, A.K., Tiwari, D.N., Rai, A.N., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 277–302. [Google Scholar] [CrossRef]
- De la Rosa, F.; De Troch, M.; Gabriela, M.; Marcelo, H. Physiological responses and specific fatty acids composition of Microcystis aeruginosa exposed to total solar radiation and increased temperature. Photochem. Photobiol. Sci. 2021, 20, 805–821. [Google Scholar] [CrossRef] [PubMed]
- Otogo, R.A.; Chia, M.A.; Uyovbisere, E.E.; Iortsuun, D.N.; Bittencourt-Oliveira, M.D.C. Effect of ultraviolet radiation (type B) and titanium dioxide nanoparticles on the interspecific interaction between Microcystis flos-aquae and Pseudokirchneriella subcapitata. Sci. Total. Environ. 2021, 779, 146561. [Google Scholar] [CrossRef] [PubMed]
- Rzymski, P.; Poniedziałek, B.; Hippmann, N.; Kaczmarek, Ł. Screening the Survival of Cyanobacteria Under Perchlorate Stress. Potential Implications for Mars in situ Resource Utilization. Astrobiology 2022, 22, 672–684. [Google Scholar] [CrossRef] [PubMed]
- Murukesan, G.; Leino, H.; Mäenpää, P.; Ståhle, K.; Raksajit, W.; Lehto, H.J.; Allahverdiyeva-Rinne, Y.; Lehto, K. Pressurized Martian-Like Pure CO2 Atmosphere Supports Strong Growth of Cyanobacteria, and Causes Significant Changes in their Metabolism. Orig. Life Evol. Biosph. 2016, 46, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Muhetaer, G.; Jayasanka, S.M.D.H.; Fujino, T. Oxidative Stress and Antioxidant Responses of Phormidium ambiguum and Microcystis aeruginosa Under Diurnally Varying Light Conditions. Microorganisms 2020, 8, 890. [Google Scholar] [CrossRef]
- Latifi, A.; Ruiz, M.; Zhang, C.-C. Oxidative stress in cyanobacteria. FEMS Microbiol. Rev. 2009, 33, 258–278. [Google Scholar] [CrossRef]
- Rai, R.; Singh, S.; Rai, K.K.; Raj, A.; Sriwastaw, S.; Rai, L.C. Regulation of antioxidant defense and glyoxalase systems in cyanobacteria. Plant Physiol. Biochem. 2021, 168, 353–372. [Google Scholar] [CrossRef]
- Román, J.R.; Chilton, A.M.; Cantón, Y.; Muñoz-Rojas, M. Assessing the viability of cyanobacteria pellets for application in arid land restoration. J. Environ. Manag. 2020, 270, 110795. [Google Scholar] [CrossRef] [PubMed]
- Saulters, A.; Graham, J.L.; Loftin, K.A. Guidelines for Design and Sampling for Cyanobacterial Toxin and Taste-And-Odor Studies in Lakes and Reservoirs; Usgs Scientific Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2011. [Google Scholar]
- Shen, Q.; Wang, Q.; Miao, H.; Shimada, M.; Utsumi, M.; Lei, Z.; Zhang, Z.; Nishimura, O.; Asada, Y.; Fujimoto, N.; et al. Temperature affects growth, geosmin/2-methylisoborneol production, and gene expression in two cyanobacterial species. Environ. Sci. Pollut. Res. 2022, 29, 12017–12026. [Google Scholar] [CrossRef]
- Drábková, M.; Admiraal, W.; Maršálek, B. Combined exposure to hydrogen peroxide and light—Selective effects on cyanobacteria, green algae, and diatoms. Environ. Sci. Technol. 2007, 41, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Senavirathna, M.D.H.J.; Muhetaer, G.; Yan, H.; Aihemaiti, B.; Fujino, T. Stress and Recovery Responses of Microcystis aeruginosa Exposed to Extreme Light for Different Durations. Water Air Soil Pollut. 2021, 232, 229. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y.; Chen, G.; Li, P.; Shen, Y.; Davis, T.W. The secretion of organics by living Microcystis under the dark/anoxic condition and its enhancing effect on nitrate removal. Chemosphere 2018, 196, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Hood, R.D.; Higgins, S.A.; Flamholz, A.; Nichols, R.J.; Savage, D.F. The stringent response regulates adaptation to darkness in the cyanobacterium Synechococcus elongatus. Proc. Natl. Acad. Sci. USA 2016, 113, E4867–E4876. [Google Scholar] [CrossRef]
- Zhang, M.; Kong, F.; Shi, X.; Xing, P.; Tan, X. Differences in Responses to Darkness between Microcystis aeruginosa and Chlorella pyrenoidosa. J. Freshw. Ecol. 2007, 22, 93–99. [Google Scholar] [CrossRef]
- Macário, I.P.E.; Veloso, T.; Frankenbach, S.; Serôdio, J.; Passos, H.; Sousa, C.; Gonçalves, F.J.M.; Ventura, S.P.M.; Pereira, J.L. Cyanobacteria as Candidates to Support Mars Colonization: Growth and Biofertilization Potential Using Mars Regolith as a Resource. Front. Microbiol. 2022, 13, 840098. [Google Scholar] [CrossRef]
- Ming, H.; Yan, G.; Zhang, X.; Pei, X.; Fu, L.; Zhou, D. Harsh temperature induces Microcystis aeruginosa growth enhancement and water deterioration during vernalization. Water Res. 2022, 223, 118956. [Google Scholar] [CrossRef]
- Wu, Z.; Song, L.; Li, R. Different tolerances and responses to low temperature and darkness between waterbloom forming cyanobacterium Microcystis and a green alga Scenedesmus. Hydrobiologia 2008, 596, 47–55. [Google Scholar] [CrossRef]
- Foy, R.H.; Gibson, C.E.; Smith, R.V. The influence of daylength, light intensity and temperature on the growth rates of planktonic blue-green algae. Br. Phycol. J. 1976, 11, 151–163. [Google Scholar] [CrossRef]
- Patterson, B.D.; MacRae, E.A.; Ferguson, I.B. Estimation of hydrogen peroxide in plant extracts using titanium(IV). Anal. Biochem. 1984, 139, 487–492. [Google Scholar] [CrossRef] [PubMed]
- ISO 10260:1992(en); Water Quality—Measurement of Biochemical Parameters—Spectrometric Determination of the Chlorophyll-a Concentration. Beuth Verlag GmbH: Berlin, Germany; Vienna, Austria; Zürich, Switzerland. Available online: https://www.iso.org/obp/ui/#iso:std:iso:10260:ed-1:v1:en (accessed on 21 November 2022).
- Lichtenthaler, H.K. [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar] [CrossRef]
- Ea, N. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 1980, 14, 14–36. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Santabarbara, S.; Villafiorita Monteleone, F.; Remelli, W.; Rizzo, F.; Menin, B.; Casazza, A.P. Comparative excitation-emission dependence of the FV/FM ratio in model green algae and cyanobacterial strains. Physiol. Plant. 2019, 166, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Gan, N.; Liu, J.; Zheng, L.; Li, L.; Song, L. Survival, recovery and microcystin release of Microcystis aeruginosa in cold or dark condition. Chin. J. Oceanol. Limnol. 2017, 35, 313–323. [Google Scholar] [CrossRef]
- Bouchard, J.N.; Purdie, D.A. Effect of Elevated Temperature, Darkness, and Hydrogen Peroxide Treatment on Oxidative Stress and Cell Death in the Bloom-Forming Toxic Cyanobacterium Microcystis Aeruginosa1. J. Phycol. 2011, 47, 1316–1325. [Google Scholar] [CrossRef]
- Cozzi, R.; Ricordy, R.; Aglitti, T.; Gatta, V.; Perticone, P.; De Salvia, R. Ascorbic acid and beta-carotene as modulators of oxidative damage. Carcinogenesis 1997, 18, 223–228. [Google Scholar] [CrossRef][Green Version]
- Liu, M.; Shi, X.; Chen, C.; Yu, L.; Sun, C. Responses of Microcystis Colonies of Different Sizes to Hydrogen Peroxide Stress. Toxins 2017, 9, 306. [Google Scholar] [CrossRef]
- Mikula, P.; Zezulka, S.; Jancula, D.; Marsalek, B. Metabolic activity and membrane integrity changes in Microcystis aeruginosa—New findings on hydrogen peroxide toxicity in cyanobacteria. Eur. J. Phycol. 2012, 47, 195–206. [Google Scholar] [CrossRef]
- Drábková, M.; Matthijs, H.C.P.; Admiraal, W.; Maršálek, B. Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica 2007, 45, 348–354. [Google Scholar] [CrossRef]
- Papadimitriou, T.; Katsiapi, M.; Stefanidou, N.; Paxinou, A.; Poulimenakou, V.; Laspidou, C.S.; Moustaka-Gouni, M.; Kormas, K.A. Differential Effect of Hydroxen Peroxide οn Toxic Cyanobacteria of Hypertrophic Mediterranean Waterbodies. Sustainability 2022, 14, 123. [Google Scholar] [CrossRef]
- Agusti, S.; Phlips, E.J. Light absorption by cyanobacteria: Implications of the colonial growth form. Limnol. Oceanogr. 1992, 37, 434–441. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, X.; Yu, Y.; Kong, F. The Acclimative Changes in Photochemistry After Colony Formation of the Cyanobacteria Microcystis Aeruginosa1. J. Phycol. 2011, 47, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Li, M.; Reynolds, C.S. Colony formation in the cyanobacterium Microcystis. Biol. Rev. 2018, 93, 1399–1420. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Brookes, J.D.; Qin, B.; Paerl, H.W.; Gao, G.; Wu, P.; Zhang, W.; Deng, J.; Zhu, G.; Zhang, Y.; et al. Environmental factors controlling colony formation in blooms of the cyanobacteria Microcystis spp. in Lake Taihu, China. Harmful Algae 2014, 31, 136–142. [Google Scholar] [CrossRef]
- Mulo, P.; Sakurai, I.; Aro, E.-M. Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: From transcription to PSII repair. Biochim. Biophys. Acta (BBA) Bioenerg. 2012, 1817, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Yang, L.; Niu, X.; Xiao, L.; Kong, Z.; Qin, B.; Gao, G. Intracellular phosphorus metabolism of Microcystis aeruginosa under various redox potential in darkness. Microbiol. Res. 2003, 158, 345–352. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Jayasanka Senavirathna, M.D.H. Recoverability of Microcystis aeruginosa and Pseudanabaena foetida Exposed to a Year-Long Dark Treatment. Microorganisms 2023, 11, 2760. https://doi.org/10.3390/microorganisms11112760
Yan H, Jayasanka Senavirathna MDH. Recoverability of Microcystis aeruginosa and Pseudanabaena foetida Exposed to a Year-Long Dark Treatment. Microorganisms. 2023; 11(11):2760. https://doi.org/10.3390/microorganisms11112760
Chicago/Turabian StyleYan, Hongyu, and Mudalige Don Hiranya Jayasanka Senavirathna. 2023. "Recoverability of Microcystis aeruginosa and Pseudanabaena foetida Exposed to a Year-Long Dark Treatment" Microorganisms 11, no. 11: 2760. https://doi.org/10.3390/microorganisms11112760
APA StyleYan, H., & Jayasanka Senavirathna, M. D. H. (2023). Recoverability of Microcystis aeruginosa and Pseudanabaena foetida Exposed to a Year-Long Dark Treatment. Microorganisms, 11(11), 2760. https://doi.org/10.3390/microorganisms11112760