A 3D-Printed Bent–Twisted Waveguide Filter Using Mixed TE101 and TE102 Mode Resonators
Abstract
1. Introduction
2. Analysis of the Resonator
3. Design of the Filter
4. Fabrication, Measurement, and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miao, Z. Compact and Wide-Stopband Bandpass Filter Using Hybrid Shielded EMCSIW and CSRR Resonators with a Mixed Electromagnetic Coupling Scheme. Micromachines 2024, 15, 1426. [Google Scholar] [CrossRef] [PubMed]
- Muchhal, N.; Kumar, A.; Tewari, N.; Kalia, S.; Srivastava, S. Design of a Half-Mode Substrate-Integrated Waveguide (HMSIW) Multimode Resonator Bandpass Filter Using the Minkowski Fractal for C-Band Applications. Micromachines 2024, 15, 1440. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, N.C.; Koziel, S.; Barik, R.K.; Pietrenko-Dabrowska, A.; Karthikeyan, S.S. Miniaturized Dual-Band SIW-Based Bandpass Filters Using Open-Loop Ring Resonators. Electronics 2023, 12, 3974. [Google Scholar] [CrossRef]
- Zhan, Y.; Wu, Y.; Ma, K.; Yeo, K.S. Miniaturized Multiband Substrate-Integrated Waveguide Bandpass Filters with Multi-Layer Configuration and High In-Band Isolation. Electronics 2024, 13, 3834. [Google Scholar] [CrossRef]
- Li, S.; Yao, Y.; Cheng, X.; Yu, J. Design of a Dual-Band Filter Based on the Band Gap Waveguide. Electronics 2024, 13, 3982. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, G.; Yang, Y.; Zhou, X.; Hong, J. 3-D Printed Multiband Filtering Crossovers Based on Mixed Spherical Cavity Resonators. IEEE Microw. Wirel. Technol. Lett. 2024, 34, 903–906. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, G.; Hong, J.; Sun, Z.; Yang, J.; Tang, W.; Feng, C. 3-D Printed Dual-Band Filter Based on Spherical Dual-Mode Cavity. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 1047–1050. [Google Scholar] [CrossRef]
- Qian, L.; Wang, Y.; Li, S.; Mohamed, A.A.; Attallah, M.M.; Skaik, T.; Booth, P.; Pambaguian, L.; España, C.M.; Martín-Iglesias, P. A Narrowband 3-D Printed Invar Spherical Dual-Mode Filter with High Thermal Stability for OMUXs. IEEE Trans. Microw. Theory Tech. 2022, 70, 2165–2173. [Google Scholar] [CrossRef]
- López-Oliver, E.; Tomassoni, C. Stereolithography Additive Manufacturing of Overmoded Spherical Filters. In Proceedings of the 2022 Microwave Mediterranean Symposium (MMS 2022), Pizzo Calabro, Italy, 9–13 May 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Liu, J.; Psychogiou, D. Dual-Band Bandpass Filters Using 3D Printed Dual-Mode Nested Spherical Resonators. IEEE Access 2024, 12, 64439–64445. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, K.; Psychogiou, D. Miniaturized Monolithic 3-D Printed Bandpass Filters Using Nested Spherical Resonators. IEEE Trans. Compon. Packag. Manuf. Technol. 2023, 13, 1461–1470. [Google Scholar] [CrossRef]
- Li, J.; Guo, C.; Mao, L.; Xiang, J.; Huang, G.; Yuan, T. Monolithically 3-D Printed Hemispherical Resonator Waveguide Filters with Improved Out-of-Band Rejections. IEEE Access 2018, 6, 57030–57048. [Google Scholar] [CrossRef]
- Li, J.; Hong, K.; Yuan, T. Slotted Hemispherical Resonators for 3-D Printed Waveguide Filters with Extended Spurious-Free Stopbands. IEEE Access 2019, 7, 130221–130235. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Xu, J.; Shang, X. Three-dimensional printed X-band waveguide variable bends with integrated filters. Microw. Opt. Technol. Lett. 2024, 66, e34248. [Google Scholar] [CrossRef]
- Peverini, O.A.; Lumia, M.; Addamo, G.; Paonessa, F.; Virone, G.; Tascone, R.; Calignano, F.; Cattano, G.; Manfredi, D. Integration of an H-Plane Bend, a Twist, and a Filter in Ku/K-Band Through Additive Manufacturing. IEEE Trans. Microw. Theory Tech. 2018, 66, 2010–2019. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, F.; Gao, Y.; Xu, J.; Guo, C.; Shang, X. 3D printed waveguide step-twist with bandpass filtering functionality. Electron. Lett. 2020, 56, 527–528. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Zhang, F.; He, X.; Li, X.; Sun, Y.; Xu, S. A 3-D Printed Ka-band Twisted Waveguide Filter with Filtering and Polarization Rotation. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 1701–1702. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Zhang, F.; Xu, J. A 3D Printed Waveguide Hybrid Bandpass Filter Integrated with Twisting and Bending Functionalities. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 10–15 July 2022; pp. 2000–2001. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, J.; Sun, D. Slow-Wave Groove Gap Waveguide Bandpass Filter. IEEE Access 2019, 7, 52581–52588. [Google Scholar] [CrossRef]
- Máximo-Gutierrez, C.; Hinojosa, J.; Abad-López, J.; Urbina-Yeregui, A.; Alvarez-Melcon, A. Compact Wideband Groove Gap Waveguide Bandpass Filters Manufactured with 3D Printing and CNC Milling Techniques. Sensors 2023, 23, 6234. [Google Scholar] [CrossRef] [PubMed]
- Bastioli, S.; Snyder, R.V.; Tomassoni, C.; de la Rubia, V. Direct-Coupled TE–TM Waveguide Filters. IEEE Trans. Microw. Theory Tech. 2024, 72, 696–709. [Google Scholar] [CrossRef]
- Kim, P.; Jeong, Y. Compact and Wide Stopband Substrate Integrated Waveguide Bandpass Filter Using Mixed Quarter- and One-Eighth Modes Cavities. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 16–19. [Google Scholar] [CrossRef]
- Ding, J.; Nie, R.; Zhao, Y.; Jiang, J.; Huang, K.; Li, S. W-band Dual-band Filter and Diplexer Based on Mixed TE301- and TE102-Mode Cavities. J. Infrared Millim. Terahertz Waves 2024, 45, 556–573. [Google Scholar] [CrossRef]
- Shi, Z.; Wei, F.; Yang, L.; Gómez-García, R. High-Selectivity Inverted Microstrip Gap Waveguide Bandpass Filter Using Hybrid Cavity and Stub-Loaded Ring Resonant Modes. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 146–150. [Google Scholar] [CrossRef]
- Xiang, K.; Chen, F.; Chu, Q.; Xue, Q. High Selectivity Waveguide Filtering Antennas Using Mixed-Mode Cavity Resonator. IEEE Trans. Microw. Theory Tech. 2022, 70, 4297–4307. [Google Scholar] [CrossRef]
- Zhang, G.; Zhou, X.; Xu, K.; Yang, J.; Sun, X.; Xun, B.; Tam, K.; Feng, S.; Tang, W.; Hong, J. Design of Wide-Stopband and Dual-Band Filtering Crossovers Based on Mixed Substrate Integrated Waveguide Cavities. IEEE Trans. Microw. Theory Tech. 2023, 71, 5346–5357. [Google Scholar] [CrossRef]
- Hong, J.; Lancaster, M.J. Microstrip Filters for RF/microwave Applications; John Wiley & Sons, Inc.: New York, NY, USA, 2001. [Google Scholar]
Parameters | Values (mm) | Parameters | Values (°) |
---|---|---|---|
a | 10.668 | θS | 4.368 |
b | 4.318 | θ1 | 26.823 |
wS1 | 7.877 | θ2 | 13.986 |
w12 | 5.841 | θ3 | 14.823 |
w23 | 4.962 | θ4 | 14.823 |
w34 | 4.859 | θ5 | 13.986 |
w45 | 4.962 | θ6 | 26.823 |
w56 | 5.841 | θL | 4.368 |
w6L | 7.877 |
Ref. | Tech. | Clad Layer | f0 (GHz) | FBW (%) | Resonator Shape | Mode | Rotation of Polarization (°) | Waveguide Bending (°) | IL (dB) | Shape Factor |
---|---|---|---|---|---|---|---|---|---|---|
[16] | SLA | 1 μm Silver and 10 μm Copper | 32 | 3.125 | Rectangular | TE101 | 90 | None | 0.84 on average | ~0.31 |
[17] | SLA | 1 μm Silver and 10 μm Copper | 34 | 2.9 | Rectangular | TE102 | 90 | None | 0.81 on average | ~0.32 |
[18] | SLA | 10 μm Copper | 15 | 4 | Rectangular | TE101 | 90 | 90 | 0.85 on average | ~0.33 |
This work | SLA | 10 μm Copper | 20.4 | 7.84 | Rectangular | TE101 and TE102 | 90 | 120 | 0.46 on average | ~0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Bai, M.; Xu, J. A 3D-Printed Bent–Twisted Waveguide Filter Using Mixed TE101 and TE102 Mode Resonators. Micromachines 2025, 16, 247. https://doi.org/10.3390/mi16030247
Wang L, Bai M, Xu J. A 3D-Printed Bent–Twisted Waveguide Filter Using Mixed TE101 and TE102 Mode Resonators. Micromachines. 2025; 16(3):247. https://doi.org/10.3390/mi16030247
Chicago/Turabian StyleWang, Lei, Mengke Bai, and Jun Xu. 2025. "A 3D-Printed Bent–Twisted Waveguide Filter Using Mixed TE101 and TE102 Mode Resonators" Micromachines 16, no. 3: 247. https://doi.org/10.3390/mi16030247
APA StyleWang, L., Bai, M., & Xu, J. (2025). A 3D-Printed Bent–Twisted Waveguide Filter Using Mixed TE101 and TE102 Mode Resonators. Micromachines, 16(3), 247. https://doi.org/10.3390/mi16030247