Preparation, Characterization, and Application of AlN/ScAlN Composite Thin Films
Abstract
1. Introduction
2. Modelling and Calculation
3. Preparation and Characterization
4. Fabrication and Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bi, F.Z.; Barber, B.P. Bulk acoustic wave RF technology. IEEE Microw. Mag. 2008, 9, 65–80. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Y.; Zhang, Y.; Tovstopyat, A.; Liu, S.; Sun, C. Materials, design, and characteristics of bulk acoustic wave resonator: A review. Micromachines 2020, 11, 630. [Google Scholar] [CrossRef] [PubMed]
- Mandal, D.; Banerjee, S. Surface acoustic wave (SAW) sensors: Physics, materials, and applications. Sensors 2022, 22, 820. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.; Johannessen, A.; Rooth, S.; Hanke, U. A Design Approach for High-Q FBARs with a Dual Step Frame. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Ansari, A. Epitaxial Al0.77Sc0.23N SAW and Lamb wave resonators. In Proceedings of the IEEE 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF), Keystone, CO, USA, 19–23 July 2020; pp. 1–3. [Google Scholar]
- Zhu, Y.; Wang, N.; Chua, G.; Sun, C.; Singh, N.; Gu, Y. ScAlN-based LCAT mode resonators above 2 GHz with high FOM and reduced fabrication complexity. IEEE Electron Device Lett. 2017, 38, 1481–1484. [Google Scholar] [CrossRef]
- Iriarte, G.F.; Rodríguez, J.G.; Calle, F. Synthesis of c -axis oriented AlN thin films on different substrates: A review. Mater. Res. Bull. 2010, 45, 1039–1045. [Google Scholar] [CrossRef]
- Ababneh, A.; Schmid, U.; Hernando, J.; Sánchez-Rojas, J.L.; Seidel, H. The influence of sputter deposition parameters on piezoelectric and mechanical properties of AlN thin films. Mater. Sci. Eng. B 2010, 172, 253–258. [Google Scholar] [CrossRef]
- Assouar, M.B.; Hakiki, M.E.; Elmazria, O.; Alnot, P.; Tiusan, C. Synthesis and microstructural characterisation of reactive RF magnetron sputtering AlN films for surface acoustic wave filters. Diam. Relat. Mater. 2004, 13, 1111–1115. [Google Scholar] [CrossRef]
- Yokoyama, T.; Iwazaki, Y.; Onda, Y.; Nishihara, T.; Sasajima, Y.; Ueda, M. Highly piezoelectric co-doped AlN thin films for wideband FBAR applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1007. [Google Scholar] [CrossRef] [PubMed]
- Caro, M.A.; Zhang, S.; Riekkinen, T.; Ylilammi, M.; Moram, M.A.; Lopez-Acevedo, O.; Molarius, J.; Laurila, T. Piezoelectric coefficients and spontaneous polarization of ScAlN. J. Phys. Condens. Matter 2015, 27, 245901. [Google Scholar] [CrossRef] [PubMed]
- Umeda, K.; Kawai, H.; Honda, A.; Akiyama, M.; Fukura, T. Piezoelectric properties of ScAlN thin films for piezo-MEMS devices. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, Taipei, Taiwan, 20–24 January 2013. [Google Scholar]
- Fichtner, S.; Reimer, T.; Chemnitz, S.; Lofink, F.; Wagner, B. Stress controlled pulsed direct current co-sputtered Al1− xScxN as piezoelectric phase for micromechanical sensor applications. APL Mater. 2015, 3, 116102. [Google Scholar] [CrossRef]
- Henry, M.D.; Young, T.R.; Douglas, E.A.; Griffin, B.A. Reactive sputter deposition of piezoelectric Sc0.12Al0.88N for contour mode resonators. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2018, 36, 03E104. [Google Scholar]
- Esteves, G.; Berg, M.; Wrasman, K.D.; Henry, M.D.; Griffin, B.A.; Douglas, E.A. CMOS compatible metal stacks for suppression of secondary grains in Sc0. 125Al0. 875N. J. Vac. Sci. Technol. A Vac. Surf. Film. 2019, 37, 021511. [Google Scholar] [CrossRef]
- Sandu, C.S.; Parsapour, F.; Xiao, D.; Nigon, R.; Riemer, L.M.; LaGrange, T.; Muralt, P. Impact of negative bias on the piezoelectric properties through the incidence of abnormal oriented grains in Al0. 62Sc0. 38N thin films. Thin Solid Film. 2020, 697, 137819. [Google Scholar] [CrossRef]
- Li, M.; Xie, J.; Chen, B.; Wang, N.; Zhu, Y. Microstructural evolution of the abnormal crystallite grains in sputtered ScAlN film for piezo-MEMS applications. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 1124–1126. [Google Scholar]
- Reuss, A. Zeitschrift für Angewandte Mathematik und Mechanic; Verlag des Vereines Deutscher Ingenieure: Berlin, Germany, 1929. [Google Scholar]
- Dunn, M.L.; Taya, M. Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 1993, 30, 161–175. [Google Scholar] [CrossRef]
- Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- Zou, J.; Lin, C.-M.; Gao, A.; Pisano, A.P. The multi-mode resonance in AlN Lamb wave resonators. J. Microelectromech. Syst. 2018, 27, 973–984. [Google Scholar] [CrossRef]
- Colombo, L.; Kochhar, A.; Xu, C.; Piazza, G.; Mishin, S.; Oshmyansky, Y. Investigation of 20% scandium-doped aluminum nitride films for MEMS laterally vibrating resonators. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; pp. 1–4. [Google Scholar]
- Konno, A.; Sumisaka, M.; Teshigahara, A.; Kano, K.; Hashimo, K.-y.; Hirano, H.; Esachi, M.; Kadota, M.; Tanaka, S. ScAlN Lamb wave resonator in GHz range released by XeF 2 etching. In Proceedings of the 2013 IEEE International Ultrasonics Symposium (IUS), Prague, Czech Republic, 21–25 July 2013; pp. 1378–1381. [Google Scholar]
Material | AlN | Sc0.1Al0.9N | Sc0.2Al0.8N |
---|---|---|---|
Target power (kW) | 6 | 10 | 10 |
Pulsing frequency (kHz) | 100 | 100 | 100 |
Temperature (°C) | 200 | 200 | 200 |
Ar flow (sccm) | 25 | 23 | 19 |
N2 flow (sccm) | 155 | 120 | 105 |
Base pressure (Torr) | <5 × 10−8 | <9 × 10−8 | <2 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nian, L.; Qu, Y.; Gu, X.; Luo, T.; Xie, Y.; Wei, M.; Cai, Y.; Liu, Y.; Sun, C. Preparation, Characterization, and Application of AlN/ScAlN Composite Thin Films. Micromachines 2023, 14, 557. https://doi.org/10.3390/mi14030557
Nian L, Qu Y, Gu X, Luo T, Xie Y, Wei M, Cai Y, Liu Y, Sun C. Preparation, Characterization, and Application of AlN/ScAlN Composite Thin Films. Micromachines. 2023; 14(3):557. https://doi.org/10.3390/mi14030557
Chicago/Turabian StyleNian, Laixia, Yuanhang Qu, Xiyu Gu, Tiancheng Luo, Ying Xie, Min Wei, Yao Cai, Yan Liu, and Chengliang Sun. 2023. "Preparation, Characterization, and Application of AlN/ScAlN Composite Thin Films" Micromachines 14, no. 3: 557. https://doi.org/10.3390/mi14030557
APA StyleNian, L., Qu, Y., Gu, X., Luo, T., Xie, Y., Wei, M., Cai, Y., Liu, Y., & Sun, C. (2023). Preparation, Characterization, and Application of AlN/ScAlN Composite Thin Films. Micromachines, 14(3), 557. https://doi.org/10.3390/mi14030557