Improvement of Gait after Robotic-Assisted Training in Children with Cerebral Palsy: Are We Heading in the Right Direction?
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Jacobsson, B. A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. Suppl. 2007, 49, 8–14. [Google Scholar]
- Eunson, P. Aetiology and epidemiology of cerebral palsy. Paediatr. Child Health 2012, 22, 361–366. [Google Scholar] [CrossRef]
- Himmelmann, K.; Uvebrant, P. The panorama of cerebral palsy in Sweden part XII shows that patterns changed in the birth years 2007–2010. Acta Paediatr. 2018, 107, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson, A.-C.; et al. Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment [published correction appears in JAMA Pediatr]. JAMA Pediatr. 2017, 171, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Oskoui, M.; Coutinho, F.; Dykeman, J.; Jetté, N.; Pringsheim, T. An update on the prevalence of cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2013, 55, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Sadowska, M.; Sarecka-Hujar, B.; Kopyta, I. Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatr. Dis. Treat. 2020, 16, 1505–1518. [Google Scholar] [CrossRef] [PubMed]
- Bax, M.; Goldstein, M.; Rosenbaum, P.; Levition, A.; Paneth, N.; Dan, B.; Jacobssom, B.; Damiano, D. Proposed definition and classification of cerebral palsy, April 2005. Dev. Med. Child Neurol. 2005, 47, 571–576. [Google Scholar] [CrossRef]
- Bjornson, K.F.; Zhou, C.; Stevenson, R.; Christakis, D.; Song, K. Walking activity patterns in youth with cerebral palsy and youth developing typically. Disabil. Rehabil. 2014, 36, 1279–1284. [Google Scholar] [CrossRef]
- Gorter, H.; Holty, L.; Rameckers, E.E.; Elvers, H.J.; Oostendorp, R.A. Changes in Endurance and Walking Ability Through Functional Physical Training in Children with Cerebral Palsy. Pediatr. Phys. Ther. 2009, 21, 31–37. [Google Scholar] [CrossRef]
- Ammann-Reiffer, C.; Graser, J.V. Walking activities beyond gait training: Priorities in everyday life for parents and adolescents in pediatric neurorehabilitation. J. Pediatr. Rehabil. Med. 2022, 10, 1–11. [Google Scholar] [CrossRef]
- Weinberger, R.; Warken, B.; König, H.; Vill, K.; Gerstl, L.; Borggraefe, I.; Heinen, F.; von Kries, R.; Schroeder, A.S. Three by three weeks of robot-enhanced repetitive gait therapy within a global rehabilitation plan improves gross motor development in children with cerebral palsy—A retrospective cohort study. Eur. J. Paediatr. Neurol. 2019, 23, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Chin, E.M.; Gwynn, H.E.; Robinson, S.; Hoon, A.H., Jr. Principles of Medical and Surgical Treatment of Cerebral Palsy. Neurol. Clin. 2020, 38, 397–416. [Google Scholar] [CrossRef] [PubMed]
- Boel, L.; Pernet, K.; Toussaint, M.; Ides, K.; Leemans, G.; Haan, J.; Van Hoorenbeeck, K.; Verhulst, S. Respiratory morbidity in children with cerebral palsy: An overview. Dev. Med. Child Neurol. 2019, 61, 646–653. [Google Scholar] [CrossRef]
- Koenig, A.; Wellner, M.; Köneke, S.; Meyer-Heim, A.; Lünenburger, L.; Riener, R. Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis. Stud. Health Technol. Inform. 2008, 132, 204–209. [Google Scholar]
- Cherni, Y.; Girardin-Vignola, G.; Ballaz, L.; Begon, M. Reliability of maximum isometric hip and knee torque measurements in children with cerebral palsy using a paediatric exoskeleton—Lokomat. Neurophysiol. Clin. 2019, 49, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Van Kammen, K.; Reinders-Messelink, H.A.; Elsinghorst, A.L.; Wesselink, C.F.; Meeuwisse-de Vries, B.; van der Woude, L.H.; Boonstra, A.M.; den Otter, R. Amplitude and stride-to-stride variability of muscle activity during Lokomat guided walking and treadmill walking in children with cerebral palsy. Eur. J. Paediatr. Neurol. 2020, 29, 108–117. [Google Scholar] [CrossRef]
- Conner, B.C.; Remec, N.M.; Lerner, Z.F. Is robotic gait training effective for individuals with cerebral palsy? A systematic review and meta-analysis of randomized controlled trials. Clin. Rehabil. 2022, 36, 873–882. [Google Scholar] [CrossRef]
- Te Velde, A.; Morgan, C. Gross Motor Function Measure (GMFM-66 & GMFM-88) User’s Manual, 3rd Edition, Book Review. Pediatr. Phys Ther. 2022, 34, 88–89. [Google Scholar] [CrossRef]
- Beckers, L.W.; Bastiaenen, C.H. Application of the Gross Motor Function Measure-66 (GMFM-66) in Dutch clinical practice: A survey study. BMC Pediatr. 2015, 15, 146. [Google Scholar] [CrossRef]
- Davis, E.; Mackinnon, A.; Waters, E. Parent-proxy reported quality of life for children with cerebral palsy: Is it related to parental psychosocial distress? Child Care Health Dev. 2011, 38, 553–560. [Google Scholar] [CrossRef]
- R Core Team. R: A language and environment for statistical computing. In R Foundation for Statistical Computing; R Core Team: Vienna, Austria; Available online: https://www.R-project.org/ (accessed on 15 April 2022).
- Drużbicki, M.; Rusek, W.; Snela, S.; Dudek, J.; Szczepanik, M.; Zak, E.; Durmala, J.; Czernuszenko, A.; Bonikowski, M.; Sobota, G. Functional effects of robotic-assisted locomotor treadmill thearapy in children with cerebral palsy. J. Rehabil. Med. 2013, 45, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Wallard, L.; Dietrich, G.; Kerlirzin, Y.; Bredin, J. Robotic-assisted gait training improves walking abilities in diplegic children with cerebral palsy. Eur. J. Paediatr. Neurol. 2017, 21, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Wallard, L.; Dietrich, G.; Kerlirzin, Y.; Bredin, J. Effect of robotic-assisted gait rehabilitation on dynamic equilibrium control in the gait of children with cerebral palsy. Gait Posture 2018, 60, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, R.S.; Naro, A.; Russo, M.; Leo, A.; De Luca, R.; Balletta, T.; Buda, A.; Rosa, G.L.; Bramanti, A.; Bramanti, P. The role of virtual reality in improving motor performance as revealed by EEG: A randomized clinical trial. J. Neuroeng. Rehabil. 2017, 14, 1–16. [Google Scholar] [CrossRef]
- Calabrò, R.S.; Naro, A.; Russo, M.; Bramanti, P.; Carioti, L.; Balletta, T.; Buda, A.; Manuli, A.; Filoni, S.; Bramati, A. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: A randomized clinical trial. J. Neuroeng. Rehabil. 2018, 15, 35. [Google Scholar] [CrossRef]
- Baronchelli, F.; Zucchella, C.; Serrao, M.; Intiso, D.; Bartolo, M. The Effect of Robotic Assisted Gait Training With Lokomat® on Balance Control After Stroke: Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 661815. [Google Scholar] [CrossRef]
- Marchal-Crespo, L.; Reinkensmeyer, D.J. Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 2009, 6, 20. [Google Scholar] [CrossRef]
- Calabrò, R.S.; Cacciola, A.; Bertè, F.; Manuli, A.; Leo, A.; Bramanti, A.; Naro, A.; Milardi, D.; Bramanti, P. Robotic gait rehabilitation and substitution devices in neurological disorders: Where are we now? Neurol. Sci. 2016, 37, 503–514. [Google Scholar] [CrossRef]
- Van Hedel, H.; Severini, G.; Scarton, A.; O’Brien, A.; Reed, T.; Gaebler-Spira, D.; Egan, T.; Meyer-Heim, A.; Graser, J.; Chua, K.; et al. Advanced Robotic Therapy Integrated Centers (ARTIC): An international collaboration facilitating the application of rehabilitation technologies. J. Neuroeng. Rehabil. 2018, 15, 30. [Google Scholar] [CrossRef]
- Calabrò, R.S.; Reitano, S.; Leo, A.; De Luca, R.; Melegari, C.; Bramanti, P. Can robot-assisted movement training (Lokomat) improve functional recovery and psychological well-being in chronic stroke? Promising findings from a case study. Funct. Neurol. 2014, 29, 139–141. [Google Scholar]
- Calabrò, R.S.; De Cola, M.C.; Leo, A.; Reitano, S.; Balletta, T.; Trombetta, G.; Naro, A.; Russo, M.; Bertè, F.; De Luca, R.; et al. Robotic neurorehabilitation in patients with chronic stroke: Psychological well-being beyond motor improvement. International journal of rehabilitation research. Internationale Zeitschrift fur Rehabilitationsforschung. Rev. Int. De Rech. De Readapt. 2015, 38, 219–225. [Google Scholar] [CrossRef]
- Tornberg, Å.B.; Lauruschkus, K. Non-ambulatory children with cerebral palsy: Effects of four months of static and dynamic standing exercise on passive range of motion and spasticity in the hip. PeerJ 2020, 8, e8561. [Google Scholar] [CrossRef] [PubMed]
- Llamas-Ramos, R.; Sánchez-González, J.L.; Llamas-Ramos, I. Robotic Systems for the Physiotherapy Treatment of Children with Cerebral Palsy: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 5116. [Google Scholar] [CrossRef]
- Morone, G.; Bragoni, M.; Iosa, M.; De Angelis, D.; Venturiero, V.; Coiro, P.; Pratesi, L.; Paolucci, S. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabilit. Neural Repair 2011, 25, 636–644. [Google Scholar] [CrossRef]
- Dierick, F.; Dehas, M.; Isambert, J.-L.; Injeyan, S.; Bouché, A.-F.; Bleyenheuft, Y.; Portnoy, S. Hemorrhagic versus ischemic stroke: Who can best benefit from blended conventional physiotherapy with robotic-assisted gait therapy? PLoS ONE 2017, 12, e0178636. [Google Scholar] [CrossRef] [PubMed]
- Van Hedel, H.J.; Meyer-Heim, A.; Rüsch-Bohtz, C. Robot-assisted gait training might be beneficial for more severely affected children with cerebral palsy. Dev. Neurorehabilit. 2016, 19, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, A.S.; Von Kries, R.; Riedel, C.; Homburg, M.; Auffermann, H.; Blaschek, A.; Jahn, K.; Heinen, F.; Borggraefe, I.; Berweck, S. Patient-specific determinants of responsiveness to robot-enhanced treadmill therapy in children and adolescents with cerebral palsy. Dev. Med. Child Neurol. 2014, 56, 1172–1179. [Google Scholar] [CrossRef]
- Klobucká, S.; Klobucký, R.; Kollár, B. The effect of patient-specific factors on responsiveness to robot-assisted gait training in patients with bilateral spastic cerebral palsy. NeuroRehabilitation 2021, 49, 375–389. [Google Scholar] [CrossRef]
- Alcobendas-Maestro, M.; Esclarín-Ruz, A.; Casado-López, R. Lokomat training, cervical versus thoracic spinal cord injuries: Comparative study. In Biosystems and Biorobotics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 229–231. [Google Scholar]
- Portaro, S.; Russo, M.; Bramanti, A.; Leo, A.; Billeri, L.; Manuli, A.; Rosa, G.L.; Naro, A.; Calabrò, R.S. The role of robotic gait training and tDCS in Friedrich ataxia rehabilitation: A case report. Medicine 2019, 98, e14447. [Google Scholar] [CrossRef]
GMFM Dimension’s Questionnaire | Means | Standard Deviation | Median | p-Value * | ES | |||
---|---|---|---|---|---|---|---|---|
T0 | T1 | T0 | T1 | T0 | T1 | |||
Total score | 56.58 | 59.31 | 28.74 | 27.02 | 58.25 | 59 | <0.001 | 0.09 |
A. Lying and rolling Lying | 89.42 | 92.35 | 22.38 | 14.64 | 100 | 100 | 0.37 | 0.13 |
60.71 | 60.87 | 6.72 | 6.24 | 60 | 61 | 0.37 | 0.02 | |
Rolling | 35.5 | 39.28 | 12.38 | 6.72 | 37.5 | 40 | 1 | 0.30 |
B. Sitting | 75 | 78.17 | 32.19 | 28.84 | 87.5 | 88.35 | <0.03 | 0.09 |
C. Crawling/kneeling | 51.9 | 55.96 | 44.9 | 41.15 | 58.35 | 60.7 | 0.10 | 0.09 |
D. Standing | 37.7 | 39.49 | 32.39 | 34.40 | 39.75 | 39.75 | 0.097 | 0.07 |
E. Walking, running and jumping | 28.85 | 31.09 | 28.32 | 29.52 | 23.45 | 24.3 | <0.03 | 0.07 |
Walking | 11 | 26.66 | 19.05 | 46.18 | 0 | 0 | <0.03 | 0.82 |
Running | 0 | 0.33 | 1 | 0 | 0 | 0 | NA | NA |
Jumping | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA |
CP QOL | 40 | 52.1 | 10.54 | 11.23 | 45 | 55 | <0.005 | 1.14 |
T0 score | T1 score | Percentage of improvement | ||||||
35 | 40 | 5% | ||||||
25 | 35 | 10% | ||||||
45 | 55 | 5% | ||||||
25 | 40 | 15% | ||||||
55 | 60 | 5% | ||||||
45 | 55 | 10% | ||||||
30 | 45 | 15% | ||||||
45 | 66 | 21% | ||||||
45 | 60 | 15% | ||||||
50 | 60 | 10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Luca, R.; Bonanno, M.; Settimo, C.; Muratore, R.; Calabrò, R.S. Improvement of Gait after Robotic-Assisted Training in Children with Cerebral Palsy: Are We Heading in the Right Direction? Med. Sci. 2022, 10, 59. https://doi.org/10.3390/medsci10040059
De Luca R, Bonanno M, Settimo C, Muratore R, Calabrò RS. Improvement of Gait after Robotic-Assisted Training in Children with Cerebral Palsy: Are We Heading in the Right Direction? Medical Sciences. 2022; 10(4):59. https://doi.org/10.3390/medsci10040059
Chicago/Turabian StyleDe Luca, Rosaria, Mirjam Bonanno, Carmela Settimo, Rosalia Muratore, and Rocco Salvatore Calabrò. 2022. "Improvement of Gait after Robotic-Assisted Training in Children with Cerebral Palsy: Are We Heading in the Right Direction?" Medical Sciences 10, no. 4: 59. https://doi.org/10.3390/medsci10040059
APA StyleDe Luca, R., Bonanno, M., Settimo, C., Muratore, R., & Calabrò, R. S. (2022). Improvement of Gait after Robotic-Assisted Training in Children with Cerebral Palsy: Are We Heading in the Right Direction? Medical Sciences, 10(4), 59. https://doi.org/10.3390/medsci10040059