Anion Exchange Ionomer Binders for Alkaline Fuel Cells
Abstract
1. Introduction
2. Design of Ionomers for Stability and Performance
Polymer Backbone | Benefits | Challenges |
---|---|---|
poly(phenylene oxide) | Alkaline stability when quaternized [63] Versatile backbone for functionalization [64] Rigid polyaromatic backbone [41] | Prone to degradation via cleavage at the aryl ether [41,63,64,65] Degradation in AEMFC conditions when below critical hydration [66] |
poly(ethylene-co-tetrafluoroethylene) | Chemical, thermal, mechanical stability [67] Produces free radicals for grafting [67] | Mechanically weakens and material degrades in long-term aqueous alkaline media [68,69] Concerns of fluorine safety [44] High water uptake leads to excessive swelling in CL [36,70] |
poly(aryl ether sulfone) | Thermal and chemical stability [43,71,72] Phase separation improves with quaternization on pendant groups [71] | Prone to degradation via cleavage at the aryl ether under AEMFC operating conditions [43,44,63,71,72,73,74] |
poly(aryl piperidinium) | Functional group embedded in backbone [75] Chemically stable [53] | Vulnerable to ring nucleophilic attack and Hofmann elimination in highly alkaline environments [75] Dimensional stability decreases at high IEC [53] |
PiperION® | Cationic piperidinium groups can inhibit phenyl adsorption [24] Suitable as an AEI for high current density [76] | Hydrophilicity impairs gas diffusion and performance, as swelling can block pathways [24] |
poly(phenylene) | Alkaline-stable [17,63] Aromatic backbones have good mechanical properties, conductivity, low water uptake [44] | Prone to phenyl adsorption [77] Hydroxide-conducting polymers often require complex synthesis (Diels–Adler) [17] |
Fumion® | Low-cost, easily accessible, and used widely in studies [78] Suitable as an AEI for low-current-density operation [76] | Poor physicochemical stability [79] and electrochemical performance (at high current density) [76,79] Low room-temperature ionic conductivity [76] |
poly(fluorene) | Non-rotating phenyl groups prevent adsorption [24,49,77] Tunable hydrophobicity [49] Long-term alkaline stability [35,48,49] | Concerns related to fluorine safety have led to preference for fluorine-free ionomers [44] |
poly(styrene) | Aryl-ether free backbone, durable in alkaline environment [80] In a copolymer, provides mechanical and chemical stability to hydrophilic monomers [81] | Brittle and requires copolymerization or functionalization for flexibility [41] |
polynorbornene | Minimal-to-no phenyl adsorption [24] Durable and alkaline-stable [36] High performance as an AEI [24,36] | Traditionally synthesized via Diels–Adler, which requires harsh reaction conditions [82] |
poly(benzimidazolium) | Chemical resistance, mechanical and thermal stability [17,83] Durability via substitution of C2 aromatic ring [84] | Imidazolium is susceptible to ring degradation in alkaline devices [17,84,85] Synthesis is challenging due to rigid structure [83] |
Aemion®, Aemion+® | High chemical stability in alkaline environment [38,86] Good conductivity and mechanical properties [86] | Iodide counter ion difficult to exchange [87] and challenging to make ink solution [88] Swelling in OH− form can block gas (i.e., H2, O2) transport [87] |
Sustainion® | High conductivity (dependent on hydration, temperature, and counter-ion) [89] Alkaline-stable [90] | Material more optimized for CO2 electrolysis [90,91] Polymer is less studied or understood compared to other commercial materials [89,92] Low water adsorption compared to Fumion® and PiperION® (as an AEI) [76] |
2.1. Ionomer Durability Challenges
2.1.1. Phenyl Adsorption
2.1.2. Degradation Reactions
2.2. Modifications to Ionomer Structure and Copolymerization for Improved Performance
2.2.1. Conformational Changes to Polymer Backbone
2.2.2. High-Performing Poly(fluorenes) and Piperidinium Copolymer
2.2.3. Alkyl Spacers and Sidechains
2.2.4. Ionomer Microphase Separation
2.2.5. Further Modifications for Phenyl Adsorption Decreases
2.2.6. Functionalized Polystyrenes
2.2.7. Poly(Ionic Liquids)
3. Fabrication of AEMFC Catalyst Layer, Ionomer Catalyst Binders
3.1. Impacts of Alterating Parameters on Performance with Fumion®
3.2. Influence of Backbone Conformational Changes on Catalyst Binding
3.3. Polymer Development and Modifications for Optimizing the Catalyst Layer
3.4. Influence of Ink Dispersion Solvent on CL Morphology
4. Current Progress in Water Management for Improved Performance
5. Future Outlooks and Conclusions
- Molecular Design for Balanced Transport and Durability
- 2.
- Morphological Engineering via Polymer Architecture
- 3.
- Electrode Configuration Tailored to AEI Function
- 4.
- Processing–Structure–Performance Integration
- 5.
- Compatibility with Non-PGM Catalysts
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AEI | Anion exchange ionomer |
AEM | Anion exchange membrane |
AEMFC | Anion exchange membrane fuel cell |
CL | Catalyst layer |
DMSO | Dimethyl sulfoxide |
ECSA | Electrochemical surface area or electrochemically active site |
FLN | polyfluorene |
GDE | Gas diffusion electrode |
GDL | Gas diffusion layer |
HER | Hydrogen evolution reaction |
HOR | Hydrogen oxidation reaction |
IEC | Ion exchange capacity |
IL | Ionic liquid |
IPA | Isopropanol |
MEA | Membrane electrode assembly |
MeOH | Methanol |
ORR | Oxygen reduction reaction |
PIL | Poly(ionic liquid) |
PPD | Peak power density |
QA | Quaternary ammonium |
RH | Relative humidity |
SR | Swelling ratio |
WU | Water uptake |
References
- Rothenberg, G. A Realistic Look at CO2 Emissions, Climate Change and the Role of Sustainable Chemistry. Sustain. Chem. Clim. Action 2023, 2, 100012. [Google Scholar] [CrossRef]
- Paris Agreement to the United Nations Framework Convention on Climate Change. 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 18 July 2025).
- United Nations. Net Zero Coalition. Available online: https://www.un.org/en/climatechange/net-zero-coalition (accessed on 18 July 2025).
- Government of Canada. 2030 Emissions Reduction Plan—Sector-by-Sector Overview. Available online: https://www.canada.ca/en/services/environment/weather/climatechange/climate-plan/climate-plan-overview/emissions-reduction-2030/sector-overview.html (accessed on 18 July 2025).
- European Environment Agency. European Union 8th Environment Action Programme: Monitoring Report on Progress Towards the 8th EAP Objectives: 2024 Edition; Publications Office of the European Union: Luxembourg, 2025. [Google Scholar]
- SIDS Lighthouses Initiative: Progress and Way Forward; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2025.
- The Big Switch-Powering Canada’s Net Zero Future; Canadian Climate Institute: Ottawa, ON, Canada, 2022.
- Net Zero by 2050; IEA: Paris, France, 2021.
- Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A Comprehensive Review on PEM Water Electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Shiva Kumar, S.; Lim, H. An Overview of Water Electrolysis Technologies for Green Hydrogen Production. Energy Rep. 2022, 8, 13793–13813. [Google Scholar] [CrossRef]
- Kourougianni, F.; Arsalis, A.; Olympios, A.V.; Yiasoumas, G.; Konstantinou, C.; Papanastasiou, P.; Georghiou, G.E. A Comprehensive Review of Green Hydrogen Energy Systems. Renew. Energy 2024, 231, 120911. [Google Scholar] [CrossRef]
- Boettcher, S.W. Introduction to Green Hydrogen. Chem. Rev. 2024, 124, 13095–13098. [Google Scholar] [CrossRef]
- Nayebossadri, S.; Walsh, M.; Smailes, M. An Overview of the Green Hydrogen Value Chain Technologies and Their Challenges for a Net-Zero Future. Hydrogen 2025, 6, 26. [Google Scholar] [CrossRef]
- Hren, M.; Božič, M.; Fakin, D.; Kleinschek, K.S.; Gorgieva, S. Alkaline Membrane Fuel Cells: Anion Exchange Membranes and Fuels. Sustain. Energy Fuels 2021, 5, 604–637. [Google Scholar] [CrossRef]
- Favero, S.; Stephens, I.E.L.; Titirci, M. Anion Exchange Ionomers: Design Considerations and Recent Advances—An Electrochemical Perspective. Adv. Mater. 2024, 36, 2308238. [Google Scholar] [CrossRef]
- Sun, X.; Cao, D.; Liu, M.; Liu, D.; Song, D.; Pan, L.; Li, N.; Li, Y. Poly(Norbornane-Co-Aryl Piperidinium) Membranes and Ionomers for Anion Exchange Membrane Fuel Cells. J. Membr. Sci. 2025, 717, 123639. [Google Scholar] [CrossRef]
- Chen, N.; Lee, Y.M. Anion Exchange Polyelectrolytes for Membranes and Ionomers. Prog. Polym. Sci. 2021, 113, 101345. [Google Scholar] [CrossRef]
- Ferriday, T.B.; Middleton, P.H. Alkaline Fuel Cell Technology—A Review. Int. J. Hydrogen Energy 2021, 46, 18489–18510. [Google Scholar] [CrossRef]
- Dekel, D.R. Review of Cell Performance in Anion Exchange Membrane Fuel Cells. J. Power Sources 2018, 375, 158–169. [Google Scholar] [CrossRef]
- Chae, J.E.; Choi, J.; Lee, S.; Park, C.; Kim, S. Effects of Fabrication Parameters of Membrane–Electrode Assembly for High-Performance Anion Exchange Membrane Fuel Cells. J. Ind. Eng. Chem. 2024, 133, 255–262. [Google Scholar] [CrossRef]
- Favero, S.; Li, A.; Wang, M.; Uddin, F.; Kuzuoglu, B.; Georgeson, A.; Stephens, I.E.L.; Titirici, M.M. Poly(Ionic Liquid) Ionomers Help Prevent Active Site Aggregation, in Single-Site Oxygen Reduction Catalysts. ACS Catal. 2024, 14, 7937–7948. [Google Scholar] [CrossRef]
- Mustain, W.E.; Chatenet, M.; Page, M.; Kim, Y.S. Durability Challenges of Anion Exchange Membrane Fuel Cells. Energy Environ. Sci. 2020, 13, 2805–2838. [Google Scholar] [CrossRef]
- Zheng, C.; Xiao, D.; Zhang, J.; Pei, Y.; Wang, L.; Liu, X.; Yin, Y.; Guiver, M.D.; Li, X. Conformational Distortion of the Ionomer Backbone for Reinforcing the Catalyst Layer under Dynamic Operation. J. Mater. Chem. A 2023, 11, 17542–17549. [Google Scholar] [CrossRef]
- Leonard, D.P.; Lehmann, M.; Klein, J.M.; Matanovic, I.; Fujimoto, C.; Saito, T.; Kim, Y.S. Phenyl-Free Polynorbornenes for Potential Anion Exchange Ionomers for Fuel Cells and Electrolyzers. Adv. Energy Mater. 2023, 13, 2203488. [Google Scholar] [CrossRef]
- Cao, H.; Pan, J.; Zhu, H.; Sun, Z.; Wang, B.; Zhao, J.; Yan, F. Interaction Regulation Between Ionomer Binder and Catalyst: Active Triple-Phase Boundary and High Performance Catalyst Layer for Anion Exchange Membrane Fuel Cells. Adv. Sci. 2021, 8, 2101744. [Google Scholar] [CrossRef]
- Dong, D.; Zhang, W.; van Duin, A.C.T.; Bedrov, D. Grotthuss versus Vehicular Transport of Hydroxide in Anion-Exchange Membranes: Insight from Combined Reactive and Nonreactive Molecular Simulations. J. Phys. Chem. Lett. 2018, 9, 825–829. [Google Scholar] [CrossRef]
- Ludueña, G.A.; Kühne, T.D.; Sebastiani, D. Mixed Grotthuss and Vehicle Transport Mechanism in Proton Conducting Polymers from Ab Initio Molecular Dynamics Simulations. Chem. Mater. 2011, 23, 1424–1429. [Google Scholar] [CrossRef]
- Hyun, J.; Lee, H.; Doo, G.; Lee, D.W.; Oh, E.; Park, J.; Seok, K.; Kim, J.H.; Bae, C.; Kim, H.-T. Improving Anion Exchange Membrane Fuel Cell Performance via Enhanced Ionomer–Carbon Interaction in Cathode Catalyst Layers with Carbon-Supported Pt Catalyst Using a Pyrene Carboxyl Acid Coating. Appl. Catal. B Environ. Energy 2024, 357, 124322. [Google Scholar] [CrossRef]
- Jinnouchi, R.; Kudo, K.; Kodama, K.; Kitano, N.; Suzuki, T.; Minami, S.; Shinozaki, K.; Hasegawa, N.; Shinohara, A. The Role of Oxygen-Permeable Ionomer for Polymer Electrolyte Fuel Cells. Nat. Commun. 2021, 12, 4956. [Google Scholar] [CrossRef]
- Han, C.; Shi, W.; Huang, M.; Wang, Q.; Yang, J.; Chen, J.; Ding, R.; Yin, X. Solvent Effects on the Catalyst Ink and Layer Microstructure for Anion Exchange Membrane Fuel Cells. ACS Appl. Mater. Interfaces 2024, 16, 4550–4560. [Google Scholar] [CrossRef]
- Omasta, T.J.; Park, A.M.; LaManna, J.M.; Zhang, Y.; Peng, X.; Wang, L.; Jacobson, D.L.; Varcoe, J.R.; Hussey, D.S.; Pivovar, B.S.; et al. Beyond Catalysis and Membranes: Visualizing and Solving the Challenge of Electrode Water Accumulation and Flooding in AEMFCs. Energy Environ. Sci. 2018, 11, 551–558. [Google Scholar] [CrossRef]
- Cui, Y.; Van Gorp, R.; Bastos, T.; Al Murisi, M.; Hassan, N.U.; Lateef, S.; Jang, Y.; Varcoe, J.R.; Shao, M.; Forner-Cuenca, A.; et al. Electrode-Level Water Management Strategies for Anion Exchange Membrane Fuel Cells. Electrochim. Acta 2025, 512, 145538. [Google Scholar] [CrossRef]
- Huo, S.; Deng, H.; Chang, Y.; Jiao, K. Water Management in Alkaline Anion Exchange Membrane Fuel Cell Anode. Int. J. Hydrogen Energy 2012, 37, 18389–18402. [Google Scholar] [CrossRef]
- Omasta, T.J.; Wang, L.; Peng, X.; Lewis, C.A.; Varcoe, J.R.; Mustain, W.E. Importance of Balancing Membrane and Electrode Water in Anion Exchange Membrane Fuel Cells. J. Power Sources 2018, 375, 205–213. [Google Scholar] [CrossRef]
- Leonard, D.P.; Maurya, S.; Park, E.J.; Delfin Manriquez, L.; Noh, S.; Wang, X.; Bae, C.; Baca, E.D.; Fujimoto, C.; Kim, Y.S. Asymmetric Electrode Ionomer for Low Relative Humidity Operation of Anion Exchange Membrane Fuel Cells. J. Mater. Chem. A 2020, 8, 14135–14144. [Google Scholar] [CrossRef]
- Ul Hassan, N.; Mandal, M.; Huang, G.; Firouzjaie, H.A.; Kohl, P.A.; Mustain, W.E. Achieving High-Performance and 2000 h Stability in Anion Exchange Membrane Fuel Cells by Manipulating Ionomer Properties and Electrode Optimization. Adv. Energy Mater. 2020, 10, 2001986. [Google Scholar] [CrossRef]
- Yassin, K.; Rasin, I.G.; Brandon, S.; Dekel, D.R. Elucidating the Role of Anion-Exchange Ionomer Conductivity within the Cathode Catalytic Layer of Anion-Exchange Membrane Fuel Cells. J. Power Sources 2022, 524, 231083. [Google Scholar] [CrossRef]
- Wei, Q.; Cao, X.; Veh, P.; Konovalova, A.; Mardle, P.; Overton, P.; Cassegrain, S.; Vierrath, S.; Breitwieser, M.; Holdcroft, S. On the Stability of Anion Exchange Membrane Fuel Cells Incorporating Polyimidazolium Ionene (Aemion+®) Membranes and Ionomers. Sustain. Energy Fuels 2022, 6, 3551–3564. [Google Scholar] [CrossRef]
- Lu, X.; You, W.; Peltier, C.R.; Coates, G.W.; Abruña, H.D. Influence of Ion-Exchange Capacity on the Solubility, Mechanical Properties, and Mass Transport of Anion-Exchange Ionomers for Alkaline Fuel Cells. ACS Appl. Energy Mater. 2023, 6, 876–884. [Google Scholar] [CrossRef]
- Adhikari, S.; Pagels, M.K.; Jeon, J.Y.; Bae, C. Ionomers for Electrochemical Energy Conversion & Storage Technologies. Polymer 2020, 211, 123080. [Google Scholar] [CrossRef]
- Gottesfeld, S.; Dekel, D.R.; Page, M.; Bae, C.; Yan, Y.; Zelenay, P.; Kim, Y.S. Anion Exchange Membrane Fuel Cells: Current Status and Remaining Challenges. J. Power Sources 2018, 375, 170–184. [Google Scholar] [CrossRef]
- Park, E.J.; Jannasch, P.; Miyatake, K.; Bae, C.; Noonan, K.; Fujimoto, C.; Holdcroft, S.; Varcoe, J.R.; Henkensmeier, D.; Guiver, M.D.; et al. Aryl Ether-Free Polymer Electrolytes for Electrochemical and Energy Devices. Chem. Soc. Rev. 2024, 53, 5704–5780. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Choi, J.-H.; Nguyen, P.K.T.; Kim, D.-J.; Yoon, Y.S. Anion Exchange Membranes for Fuel Cell Application: A Review. Polymers 2022, 14, 1197. [Google Scholar] [CrossRef]
- Kim, Y.S. Hydrocarbon Ionomeric Binders for Fuel Cells and Electrolyzers. Adv. Sci. 2023, 10, 2303914. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Ding, J.; Lin, B. Current Challenges on the Alkaline Stability of Anion Exchange Membranes for Fuel Cells. ChemElectroChem 2023, 10, e202300445. [Google Scholar] [CrossRef]
- Noh, S.; Jeon, J.Y.; Adhikari, S.; Kim, Y.S.; Bae, C. Molecular Engineering of Hydroxide Conducting Polymers for Anion Exchange Membranes in Electrochemical Energy Conversion Technology. Acc. Chem. Res. 2019, 52, 2745–2755. [Google Scholar] [CrossRef]
- Park, E.J.; Kim, Y.S. Quaternized Aryl Ether-Free Polyaromatics for Alkaline Membrane Fuel Cells: Synthesis, Properties, and Performance—A Topical Review. J. Mater. Chem. A 2018, 6, 15456–15477. [Google Scholar] [CrossRef]
- Lee, W.-H.; Mohanty, A.D.; Bae, C. Fluorene-Based Hydroxide Ion Conducting Polymers for Chemically Stable Anion Exchange Membrane Fuel Cells. ACS Macro Lett. 2015, 4, 453–457. [Google Scholar] [CrossRef]
- Adhikari, S.; Leonard, D.P.; Lim, K.H.; Park, E.J.; Fujimoto, C.; Morales-Collazo, O.; Brennecke, J.F.; Hu, Z.; Jia, H.; Kim, Y.S. Hydrophobic Quaternized Poly(Fluorene) Ionomers for Emerging Fuel Cells. ACS Appl. Energy Mater. 2022, 5, 2663–2668. [Google Scholar] [CrossRef]
- Li, X.; Yang, K.; Li, Z.; Guo, J.; Zheng, J.; Li, S.; Zhang, S.; Sherazi, T.A. The Effect of Side Chain Length on the Morphology and Transport Properties of Fluorene-Based Anion Exchange Membranes. Int. J. Hydrogen Energy 2022, 47, 15044–15055. [Google Scholar] [CrossRef]
- Koronka, D.; Matsumoto, A.; Otsuji, K.; Miyatake, K. Partially Fluorinated Copolymers Containing Pendant Piperidinium Head Groups as Anion Exchange Membranes for Alkaline Fuel Cells. RSC Adv. 2019, 9, 37391–37402. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Park, J.H.; Hu, C.; Wang, H.H.; Kim, H.M.; Kang, N.Y.; Lee, Y.M. Di-Piperidinium-Crosslinked Poly(Fluorenyl- Co. -Terphenyl Piperidinium)s for High-Performance Alkaline Exchange Membrane Fuel Cells. J. Mater. Chem. A 2022, 10, 3678–3687. [Google Scholar] [CrossRef]
- Wu, X.; Chen, N.; Hu, C.; Klok, H.; Lee, Y.M.; Hu, X. Fluorinated Poly(Aryl Piperidinium) Membranes for Anion Exchange Membrane Fuel Cells. Adv. Mater. 2023, 35, 2210432. [Google Scholar] [CrossRef]
- Chen, N.; Wang, H.H.; Kim, S.P.; Kim, H.M.; Lee, W.H.; Hu, C.; Bae, J.Y.; Sim, E.S.; Chung, Y.-C.; Jang, J.-H.; et al. Poly(Fluorenyl Aryl Piperidinium) Membranes and Ionomers for Anion Exchange Membrane Fuel Cells. Nat. Commun. 2021, 12, 2367. [Google Scholar] [CrossRef]
- Chen, N.; Hu, C.; Wang, H.H.; Kim, S.P.; Kim, H.M.; Lee, W.H.; Bae, J.Y.; Park, J.H.; Lee, Y.M. Poly(Alkyl-Terphenyl Piperidinium) Ionomers and Membranes with an Outstanding Alkaline-Membrane Fuel-Cell Performance of 2.58 W cm−2. Angew. Chem. Int. Ed. 2021, 60, 7710–7718. [Google Scholar] [CrossRef]
- Du, X.; Zhang, H.; Yuan, Y.; Wang, Z. Constructing Micro-Phase Separation Structure to Improve the Performance of Anion-Exchange Membrane Based on Poly(Aryl Piperidinium) Cross-Linked Membranes. J. Power Sources 2021, 487, 229429. [Google Scholar] [CrossRef]
- Lehmann, M.; Leonard, D.; Zheng, J.; He, L.; Tang, X.; Chen, X.C.; Lim, K.H.; Maurya, S.; Kim, Y.S.; Saito, T. Quaternized Polynorbornene Random Copolymers for Fuel Cell Devices. ACS Appl. Energy Mater. 2023, 6, 1822–1833. [Google Scholar] [CrossRef]
- Huang, G.; Mandal, M.; Peng, X.; Yang-Neyerlin, A.C.; Pivovar, B.S.; Mustain, W.E.; Kohl, P.A. Composite Poly(Norbornene) Anion Conducting Membranes for Achieving Durability, Water Management and High Power (3.4 W/cm2) in Hydrogen/Oxygen Alkaline Fuel Cells. J. Electrochem. Soc. 2019, 166, F637–F644. [Google Scholar] [CrossRef]
- Durga, G.; Kalra, P.; Kumar Verma, V.; Wangdi, K.; Mishra, A. Ionic Liquids: From a Solvent for Polymeric Reactions to the Monomers for Poly(Ionic Liquids). J. Mol. Liq. 2021, 335, 116540. [Google Scholar] [CrossRef]
- Tiruye, G.A.; Marcilla, R. Ionic Liquids and Polymers in Energy. In Applications of Ionic Liquids in Polymer Science and Technology; Mecerreyes, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-662-44902-8. [Google Scholar]
- Meek, K.M.; Elabd, Y.A. Polymerized Ionic Liquid Block Copolymers for Electrochemical Energy. J. Mater. Chem. A 2015, 3, 24187–24194. [Google Scholar] [CrossRef]
- Yuan, J.; Mecerreyes, D.; Antonietti, M. Poly(Ionic Liquid)s: An Update. Prog. Polym. Sci. 2013, 38, 1009–1036. [Google Scholar] [CrossRef]
- Maurya, S.; Noh, S.; Matanovic, I.; Park, E.J.; Narvaez Villarrubia, C.; Martinez, U.; Han, J.; Bae, C.; Kim, Y.S. Rational Design of Polyaromatic Ionomers for Alkaline Membrane Fuel Cells with >1 W cm−2 Power Density. Energy Environ. Sci. 2018, 11, 3283–3291. [Google Scholar] [CrossRef]
- Becerra-Arciniegas, R.-A.; Narducci, R.; Ercolani, G.; Antonaroli, S.; Sgreccia, E.; Pasquini, L.; Knauth, P.; Di Vona, M.L. Alkaline Stability of Model Anion Exchange Membranes Based on Poly(Phenylene Oxide) (PPO) with Grafted Quaternary Ammonium Groups: Influence of the Functionalization Route. Polymer 2019, 185, 121931. [Google Scholar] [CrossRef]
- Amel, A.; Yitzhack, N.; Beylin, A.; Pan, J.; Hickner, M.A.; Ein-Eli, Y. Chemical and Thermal Stability of Poly(Phenylene Oxide)-Based Anion Exchange Membranes Containing Alkyl Side Chains. J. Electrochem. Soc. 2018, 165, F1133. [Google Scholar] [CrossRef]
- Willdorf-Cohen, S.; Mondal, A.N.; Dekel, D.R.; Diesendruck, C.E. Chemical Stability of Poly(Phenylene Oxide)-Based Ionomers in an Anion Exchange-Membrane Fuel Cell Environment. J. Mater. Chem. A 2018, 6, 22234–22239. [Google Scholar] [CrossRef]
- Santos, B.P.S.; Barbosa, A.S.; Kodama, Y.; de Queiroz, T.B.; Santiago, E.I. Tailoring Highly Stable Anion Exchange Membranes with Graft Molecular Structure Ordering Using Reversible Addition-Fragmentation Chain Transfer Polymerization for Alkaline Fuel Cells. J. Membr. Sci. 2023, 687, 122071. [Google Scholar] [CrossRef]
- Willdorf-Cohen, S.; Zhegur-Khais, A.; Ponce-González, J.; Bsoul-Haj, S.; Varcoe, J.R.; Diesendruck, C.E.; Dekel, D.R. Alkaline Stability of Anion-Exchange Membranes. ACS Appl. Energy Mater. 2023, 6, 1085–1092. [Google Scholar] [CrossRef]
- Wang, L.; Brink, J.J.; Liu, Y.; Herring, A.M.; Ponce-González, J.; Whelligan, D.K.; Varcoe, J.R. Non-Fluorinated Pre-Irradiation-Grafted (Peroxidated) LDPE-Based Anion-Exchange Membranes with High Performance and Stability. Energy Environ. Sci. 2017, 10, 2154–2167. [Google Scholar] [CrossRef]
- Peng, X.; Kulkarni, D.; Huang, Y.; Omasta, T.J.; Ng, B.; Zheng, Y.; Wang, L.; LaManna, J.M.; Hussey, D.S.; Varcoe, J.R.; et al. Using Operando Techniques to Understand and Design High Performance and Stable Alkaline Membrane Fuel Cells. Nat. Commun. 2020, 11, 3561. [Google Scholar] [CrossRef]
- Han, J.; Liu, Q.; Li, X.; Pan, J.; Wei, L.; Wu, Y.; Peng, H.; Wang, Y.; Li, G.; Chen, C.; et al. An Effective Approach for Alleviating Cation-Induced Backbone Degradation in Aromatic Ether-Based Alkaline Polymer Electrolytes. ACS Appl. Mater. Interfaces 2015, 7, 2809–2816. [Google Scholar] [CrossRef]
- Miyanishi, S.; Yamaguchi, T. Ether Cleavage-Triggered Degradation of Benzyl Alkylammonium Cations for Polyethersulfone Anion Exchange Membranes. Phys. Chem. Chem. Phys. 2016, 18, 12009–12023. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Peng, H.; Pan, J.; Wei, L.; Li, G.; Chen, C.; Xiao, L.; Lu, J.; Zhuang, L. Highly Stable Alkaline Polymer Electrolyte Based on a Poly(Ether Ether Ketone) Backbone. ACS Appl. Mater. Interfaces 2013, 5, 13405–13411. [Google Scholar] [CrossRef]
- Fujimoto, C.; Kim, D.-S.; Hibbs, M.; Wrobleski, D.; Kim, Y.S. Backbone Stability of Quaternized Polyaromatics for Alkaline Membrane Fuel Cells. J. Membr. Sci. 2012, 423–424, 438–449. [Google Scholar] [CrossRef]
- Gokulapriyan, R.; Kim, B.H.; Vijayapradeep, S.; Manigandan, S.; Arunkumar, I.; Yoo, D.J. Synthesis of Poly N-Aryl Piperidinium Membrane and Ionomer for Anion Exchange Membrane Fuel Cell Applications. J. Membr. Sci. 2024, 700, 122692. [Google Scholar] [CrossRef]
- Kellner, S.; Liu, Z.; D’Acierno, F.; Pedersen, A.; Barrio, J.; Heutz, S.; Stephens, I.E.L.; Favero, S.; Titirici, M.-M. Influence of Commercial Ionomers and Membranes on a PGM-Free Catalyst in the Alkaline Oxygen Reduction. ACS Appl. Energy Mater. 2025, 8, 3470–3480. [Google Scholar] [CrossRef]
- Matanovic, I.; Maurya, S.; Park, E.J.; Jeon, J.Y.; Bae, C.; Kim, Y.S. Adsorption of Polyaromatic Backbone Impacts the Performance of Anion Exchange Membrane Fuel Cells. Chem. Mater. 2019, 31, 4195–4204. [Google Scholar] [CrossRef]
- Ng, W.K.; Wong, W.Y.; Rosli, N.A.H.; Loh, K.S. Commercial Anion Exchange Membranes (AEMs) for Fuel Cell and Water Electrolyzer Applications: Performance, Durability, and Materials Advancement. Separations 2023, 10, 424. [Google Scholar] [CrossRef]
- Arunkumar, I.; Kim, A.R.; Lee, S.H.; Yoo, D.J. Enhanced Fumion Nanocomposite Membranes Embedded with Graphene Oxide as a Promising Anion Exchange Membrane for Fuel Cell Application. Int. J. Hydrogen Energy 2024, 52, 139–153. [Google Scholar] [CrossRef]
- Chae, J.E.; Lee, S.Y.; Yoo, S.J.; Kim, J.Y.; Jang, J.H.; Park, H.-Y.; Park, H.S.; Seo, B.; Henkensmeier, D.; Song, K.H.; et al. Polystyrene-Based Hydroxide-Ion-Conducting Ionomer: Binder Characteristics and Performance in Anion-Exchange Membrane Fuel Cells. Polymers 2021, 13, 690. [Google Scholar] [CrossRef]
- Cotanda, P.; Petzetakis, N.; Jiang, X.; Stone, G.; Balsara, N.P. Hydroxide-Ion Transport and Stability of Diblock Copolymers with a Polydiallyldimethyl Ammonium Hydroxide Block. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 2243–2248. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, G.; Tang, H.; Wang, G.; Xiao, L.; Zhuang, L. An Efficient Approach towards Highly Chemically Stable Poly(Norbornene) Membrane for Alkaline Polyelectrolyte Fuel Cells. J. Membr. Sci. 2024, 709, 123057. [Google Scholar] [CrossRef]
- Li, T.; Yang, J.; Chen, Q.; Zhang, H.; Wang, P.; Hu, W.; Liu, B. Construction of Highly Conductive Cross-Linked Polybenzimidazole-Based Networks for High-Temperature Proton Exchange Membrane Fuel Cells. Materials 2023, 16, 1932. [Google Scholar] [CrossRef]
- Fraser, K.; Dosaev, K.; Savinova, E.; Holdcroft, S.; Asset, T. Assessing Electrocatalyst-Ionomer Interactions: HOR/HER Activity of Pt/C Catalyst Layers Incorporating Poly(Imidazolium)s. ChemCatChem 2024, 16, e202301304. [Google Scholar] [CrossRef]
- Tipp, F.P.; Fraser, K.; Eslamibidgoli, M.J.; Malek, K.; Holdcroft, S.; Eikerling, M.H. Stability Descriptors for (Benz)Imidazolium-Based Anion Exchange Membranes. Macromolecules 2024, 57, 1734–1743. [Google Scholar] [CrossRef]
- Wright, A.G.; Fan, J.; Britton, B.; Weissbach, T.; Lee, H.-F.; Kitching, E.A.; Peckham, T.J.; Holdcroft, S. Hexamethyl-p-Terphenyl Poly(Benzimidazolium): A Universal Hydroxide-Conducting Polymer for Energy Conversion Devices. Energy Environ. Sci. 2016, 9, 2130–2142. [Google Scholar] [CrossRef]
- Turtayeva, Z.; Xu, F.; Dillet, J.; Mozet, K.; Peignier, R.; Celzard, A.; Maranzana, G. Investigation of Membranes-Electrodes Assemblies in Anion Exchange Membrane Fuel Cells (AEMFCs): Influence of Ionomer Ratio in Catalyst Layers. Heliyon 2024, 10, e29622. [Google Scholar] [CrossRef] [PubMed]
- Cossar, E.; Murphy, F.; Walia, J.; Weck, A.; Baranova, E.A. Role of Ionomers in Anion Exchange Membrane Water Electrolysis: Is Aemion the Answer for Nickel-Based Anodes? ACS Appl. Energy Mater. 2022, 5, 9938–9951. [Google Scholar] [CrossRef]
- Luo, X.; Kushner, D.I.; Kusoglu, A. Anion Exchange Membranes: The Effect of Reinforcement in Water and Electrolyte. J. Membr. Sci. 2023, 685, 121945. [Google Scholar] [CrossRef]
- Kaczur, J.J.; Yang, H.; Liu, Z.; Sajjad, S.D.; Masel, R.I. Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes. Front. Chem. 2018, 6, 263. [Google Scholar] [CrossRef]
- Kutz, R.B.; Chen, Q.; Yang, H.; Sajjad, S.D.; Liu, Z.; Masel, I.R. Sustainion Imidazolium-Functionalized Polymers for Carbon Dioxide Electrolysis. Energy Technol. 2017, 5, 929–936. [Google Scholar] [CrossRef]
- Chakraborti, T.; Sharma, R.; Krishnamoorthy, A.N.; Chaudhari, H.; Mamtani, K.; Singh, J.K. Unravelling the Effect of Molecular Interactions on Macroscale Properties in Sustainion Anion Exchange Membrane (AEM) under Hydrated Conditions Using MD Simulations. J. Membr. Sci. 2024, 705, 122887. [Google Scholar] [CrossRef]
- Maurya, S.; Dumont, J.H.; Villarrubia, C.N.; Matanovic, I.; Li, D.; Kim, Y.S.; Noh, S.; Han, J.; Bae, C.; Miller, H.A.; et al. Surface Adsorption Affects the Performance of Alkaline Anion-Exchange Membrane Fuel Cells. ACS Catal. 2018, 8, 9429–9439. [Google Scholar] [CrossRef]
- Maurya, S.; Lee, A.S.; Li, D.; Park, E.J.; Leonard, D.P.; Noh, S.; Bae, C.; Kim, Y.S. On the Origin of Permanent Performance Loss of Anion Exchange Membrane Fuel Cells: Electrochemical Oxidation of Phenyl Group. J. Power Sources 2019, 436, 226866. [Google Scholar] [CrossRef]
- Maurya, S.; Fujimoto, C.H.; Hibbs, M.R.; Narvaez Villarrubia, C.; Kim, Y.S. Toward Improved Alkaline Membrane Fuel Cell Performance Using Quaternized Aryl-Ether Free Polyaromatics. Chem. Mater. 2018, 30, 2188–2192. [Google Scholar] [CrossRef]
- Matanovic, I.; Chung, H.T.; Kim, Y.S. Benzene Adsorption: A Significant Inhibitor for the Hydrogen Oxidation Reaction in Alkaline Conditions. J. Phys. Chem. Lett. 2017, 8, 4918–4924. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Hu, M.; Ge, C.; Yang, Y.; Xiao, L.; Zhuang, L.; Abruña, H.D. Ionomer Degradation in Catalyst Layers of Anion Exchange Membrane Fuel Cells. Chem. Sci. 2023, 14, 10429–10434. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, W.; Huang, T.; Zheng, C.; Pei, Y.; Shen, G.; Nie, Z.; Xiao, D.; Yin, Y.; Guiver, M.D. Recent Insights on Catalyst Layers for Anion Exchange Membrane Fuel Cells. Adv. Sci. 2021, 8, 2100284. [Google Scholar] [CrossRef]
- Mohanty, A.D.; Tignor, S.E.; Sturgeon, M.R.; Long, H.; Pivovar, B.S.; Bae, C. Thermochemical Stability Study of Alkyl-Tethered Quaternary Ammonium Cations for Anion Exchange Membrane Fuel Cells. J. Electrochem. Soc. 2017, 164, F1279–F1285. [Google Scholar] [CrossRef]
- Ul Hassan, N.; Zachman, M.J.; Mandal, M.; Adabi Firouzjaie, H.; Kohl, P.A.; Cullen, D.A.; Mustain, W.E. Understanding Recoverable vs Unrecoverable Voltage Losses and Long-Term Degradation Mechanisms in Anion Exchange Membrane Fuel Cells. ACS Catal. 2022, 12, 8116–8126. [Google Scholar] [CrossRef]
- Sun, R.; Elabd, Y.A. Synthesis and High Alkaline Chemical Stability of Polyionic Liquids with Methylpyrrolidinium, Methylpiperidinium, Methylazepanium, Methylazocanium, and Methylazonanium Cations. ACS Macro Lett. 2019, 8, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-H.; Park, E.J.; Han, J.; Shin, D.W.; Kim, Y.S.; Bae, C. Poly(Terphenylene) Anion Exchange Membranes: The Effect of Backbone Structure on Morphology and Membrane Property. ACS Macro Lett. 2017, 6, 566–570. [Google Scholar] [CrossRef]
- Hyun, J.; Jeon, J.Y.; Doo, G.; Jung, J.; Choi, S.; Lee, D.W.; Kwen, J.; Jo, W.; Bae, C.; Kim, H.-T. Tailoring Catalyst Layer Structures for Anion Exchange Membrane Fuel Cells by Controlling the Size of Ionomer Aggreates in Dispersion. Chem. Eng. J. 2022, 427, 131737. [Google Scholar] [CrossRef]
- Chen, N.; Kim, S.P.; Hu, C.; Wang, H.H.; Park, J.H.; Kim, H.M.; Lee, Y.M. High-Performance Poly(Fluorenyl Aryl Piperidinium)-Based Anion Exchange Membrane Fuel Cells with Realistic Hydrogen Supply. J. Power Sources 2021, 512, 230474. [Google Scholar] [CrossRef]
- Ono, H.; Kimura, T.; Takano, A.; Asazawa, K.; Miyake, J.; Inukai, J.; Miyatake, K. Robust Anion Conductive Polymers Containing Perfluoroalkylene and Pendant Ammonium Groups for High Performance Fuel Cells. J. Mater. Chem. A 2017, 5, 24804–24812. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Setzler, B.P.; Rojas-Carbonell, S.; Chaya, B.Y.; Alina, A.; Page, M.; Wang, L.; Keda, H.; Shi, L.; et al. Poly(Aryl Piperidinium) Membranes and Ionomers for Hydroxide Exchange Membrane Fuel Cells. Nat. Energy 2019, 4, 392–398. [Google Scholar] [CrossRef]
- Ziv, N.; Mustain, W.E.; Dekel, D.R. The Effect of Ambient Carbon Dioxide on Anion-Exchange Membrane Fuel Cells. ChemSusChem 2018, 11, 1136–1150. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Hu, C.; Wang, H.H.; Park, J.H.; Chen, N.; Lee, Y.M. Impact of Side-Chains in Poly(Dibenzyl-Co-Terphenyl Piperidinium) Copolymers for Anion Exchange Membrane Fuel Cells. J. Membr. Sci. 2022, 644, 120109. [Google Scholar] [CrossRef]
- Park, E.J.; Capuano, C.B.; Ayers, K.E.; Bae, C. Chemically Durable Polymer Electrolytes for Solid-State Alkaline Water Electrolysis. J. Power Sources 2018, 375, 367–372. [Google Scholar] [CrossRef]
- Chen, N.; Jiang, Q.; Song, F.; Hu, X. Robust Piperidinium-Enriched Polystyrene Ionomers for Anion Exchange Membrane Fuel Cells and Water Electrolyzers. ACS Energy Lett. 2023, 8, 4043–4051. [Google Scholar] [CrossRef]
- Omasta, T.J.; Zhang, Y.; Park, A.M.; Peng, X.; Pivovar, B.; Varcoe, J.R.; Mustain, W.E. Strategies for Reducing the PGM Loading in High Power AEMFC Anodes. J. Electrochem. Soc. 2018, 165, F710–F717. [Google Scholar] [CrossRef]
- Poynton, S.D.; Slade, R.C.T.; Omasta, T.J.; Mustain, W.E.; Escudero-Cid, R.; Ocón, P.; Varcoe, J.R. Preparation of Radiation-Grafted Powders for Use as Anion Exchange Ionomers in Alkaline Polymer Electrolyte Fuel Cells. J. Mater. Chem. A 2014, 2, 5124–5130. [Google Scholar] [CrossRef]
- Yang-Neyerlin, A.C.; Medina, S.; Meek, K.M.; Strasser, D.J.; He, C.; Knauss, D.M.; Mustain, W.E.; Pylypenko, S.; Pivovar, B.S. Editors’ Choice—Examining Performance and Durability of Anion Exchange Membrane Fuel Cells with Novel Spirocyclic Anion Exchange Membranes. J. Electrochem. Soc. 2021, 168, 044525. [Google Scholar] [CrossRef]
- Nykaza, J.R.; Ye, Y.; Nelson, R.L.; Jackson, A.C.; Beyer, F.L.; Davis, E.M.; Page, K.; Sharick, S.; Winey, K.I.; Elabd, Y.A. Polymerized Ionic Liquid Diblock Copolymers: Impact of Water/Ion Clustering on Ion Conductivity. Soft Matter 2016, 12, 1133–1144. [Google Scholar] [CrossRef]
- Mecerreyes, D. Polymeric Ionic Liquids: Broadening the Properties and Applications of Polyelectrolytes. Prog. Polym. Sci. 2011, 36, 1629–1648. [Google Scholar] [CrossRef]
- Elabd, Y.A.; Hickner, M.A. Block Copolymers for Fuel Cells. Macromolecules 2011, 44, 1–11. [Google Scholar] [CrossRef]
- Nykaza, J.R.; Benjamin, R.; Meek, K.M.; Elabd, Y.A. Polymerized Ionic Liquid Diblock Copolymer as an Ionomer and Anion Exchange Membrane for Alkaline Fuel Cells. Chem. Eng. Sci. 2016, 154, 119–127. [Google Scholar] [CrossRef]
- Shubair, A.; Gowling, A.C.; Sundari Babu, V.; Meek, K.M. Asymmetric Electrode Ionomers Based on Polydiallyldimethylammonium Block Copolymers for Enhanced Performance in Anion Exchange Membrane Fuel Cells. J. Electrochem. Soc. 2025, 172, 024503. [Google Scholar] [CrossRef]
- Ye, Y.; Choi, J.-H.; Winey, K.I.; Elabd, Y.A. Polymerized Ionic Liquid Block and Random Copolymers: Effect of Weak Microphase Separation on Ion Transport. Macromolecules 2012, 45, 7027–7035. [Google Scholar] [CrossRef]
- Gokulapriyan, R.; Karthikeyan, S.C.; Yoo, D.J. Synthesis and Characterization of Ionic Liquid Incorporated Quaternized Poly(2,6-Dimethyl-1,4-Phenylene Oxide) and NiO/IrO2 Electrocatalyst for Anion Exchange Membrane Fuel Cell Applications. J. Mater. Chem. A 2024, 12, 23880–23896. [Google Scholar] [CrossRef]
- Liu, J.; Secanell, M. Exploring the Impact of Ionomer Content and Distribution on Inkjet Printed Cathodes for Anion Exchange Membrane Fuel Cells. Electrochim. Acta 2025, 509, 145293. [Google Scholar] [CrossRef]
- Saidin, N.U.; Jehan, O.S.; Leong, K.S.; Choo, T.F.; Wong, W.Y.; Loh, K.S.; Yunus, R.M. Influence of Ionomer Concentration and Membrane Thickness on Membrane Electrode Assembly in Alkaline Fuel Cell Performance. Asia-Pac. J. Chem. Eng. 2024, 19, e3024. [Google Scholar] [CrossRef]
- Liu, C.; Ding, R.; Yin, X. Comprehensive Study on the Electrochemical Evolution, Reaction Kinetics, and Mass Transport at the Anion Exchange Ionomer–Pt Interface for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2024, 16, 51660–51668. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, H.; Xie, F.; Zhao, Y.; Sun, X.; Yao, D.; Jiang, G.; Geng, J.; Shao, Z. Improving Cell Performance for Anion Exchange Membrane Fuel Cells with FeNC Cathode by Optimizing Ionomer Content. Int. J. Hydrogen Energy 2023, 48, 5266–5275. [Google Scholar] [CrossRef]
- Yu, W.; Xu, Y.; Shen, X.; Yang, X.; Liu, Z.; Wang, H.; Liang, X.; Ge, X.; Guiver, M.D.; Wu, L.; et al. Ionomer Boosts Catalyst Layer Oxygen Transport and Membrane Ion Conduction for Fuel Cells. Next Energy 2024, 3, 100104. [Google Scholar] [CrossRef]
- Park, H.J.; Chu, X.; Kim, S.P.; Choi, D.; Jung, J.W.; Woo, J.; Baek, S.Y.; Yoo, S.J.; Chung, Y.-C.; Seong, J.G.; et al. Effect of N-Cyclic Cationic Groups in Poly(Phenylene Oxide)-Based Catalyst Ionomer Membranes for Anion Exchange Membrane Fuel Cells. J. Membr. Sci. 2020, 608, 118183. [Google Scholar] [CrossRef]
- Ashdot, A.; Kattan, M.; Kitayev, A.; Tal-Gutelmacher, E.; Amel, A.; Page, M. Design Strategies for Alkaline Exchange Membrane–Electrode Assemblies: Optimization for Fuel Cells and Electrolyzers. Membranes 2021, 11, 686. [Google Scholar] [CrossRef]
- Shahgaldi, S.; Alaefour, I.; Li, X. Impact of Manufacturing Processes on Proton Exchange Membrane Fuel Cell Performance. Appl. Energy 2018, 225, 1022–1032. [Google Scholar] [CrossRef]
- Park, I.-S.; Li, W.; Manthiram, A. Fabrication of Catalyst-Coated Membrane-Electrode Assemblies by Doctor Blade Method and Their Performance in Fuel Cells. J. Power Sources 2010, 195, 7078–7082. [Google Scholar] [CrossRef]
- Bender, G.; Zawodzinski, T.A.; Saab, A.P. Fabrication of High Precision PEFC Membrane Electrode Assemblies. J. Power Sources 2003, 124, 114–117. [Google Scholar] [CrossRef]
- Wang, W.; Chen, S.; Li, J.; Wang, W. Fabrication of Catalyst Coated Membrane with Screen Printing Method in a Proton Exchange Membrane Fuel Cell. Int. J. Hydrogen Energy 2015, 40, 4649–4658. [Google Scholar] [CrossRef]
- Sebastián, D.; Lemes, G.; Luque-Centeno, J.M.; Martínez-Huerta, M.V.; Pardo, J.I.; Lázaro, M.J. Optimization of the Catalytic Layer for Alkaline Fuel Cells Based on Fumatech Membranes and Ionomer. Catalysts 2020, 10, 1353. [Google Scholar] [CrossRef]
- Hernández-Flores, A.; Salazar-Gastélum, M.I.; Pérez-Sicairos, S.; Romero-Castañón, T.; Flores-Hernández, J.R. Preparation of Membrane-Electrode Assemblies for Alkaline Fuel Cells: Effect of the Ionomeric Solution. Mater. Lett. 2021, 303, 130494. [Google Scholar] [CrossRef]
- Hyun, J.; Kim, H.-T. Powering the Hydrogen Future: Current Status and Challenges of Anion Exchange Membrane Fuel Cells. Energy Environ. Sci. 2023, 16, 5633–5662. [Google Scholar] [CrossRef]
- Peng, H.; Li, Q.; Hu, M.; Xiao, L.; Lu, J.; Zhuang, L. Alkaline Polymer Electrolyte Fuel Cells Stably Working at 80 °C. J. Power Sources 2018, 390, 165–167. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, J.; Huang, D.-M.; Liang, X.; Zhang, K.; Xu, Y.; Zhang, H.; Ye, B.; Ge, X.; Xu, T.; et al. Molecular-Level Control over Oxygen Transport and Catalyst–Ionomer Interaction by Designing Cis–Trans Isomeric Ionomers. ACS Energy Lett. 2023, 8, 790–799. [Google Scholar] [CrossRef]
- Li, D.; Matanovic, I.; Lee, A.S.; Park, E.J.; Fujimoto, C.; Chung, H.T.; Kim, Y.S. Phenyl Oxidation Impacts the Durability of Alkaline Membrane Water Electrolyzer. ACS Appl. Mater. Interfaces 2019, 11, 9696–9701. [Google Scholar] [CrossRef]
- Matanovic, I.; Kim, Y.S. Electrochemical Phenyl Oxidation: A Limiting Factor of Oxygen Evolution Reaction in Water Electrolysis. Curr. Opin. Electrochem. 2023, 38, 101218. [Google Scholar] [CrossRef]
- Ren, R.; Wang, X.; Chen, H.; Miller, H.A.; Salam, I.; Varcoe, J.R.; Wu, L.; Chen, Y.; Liao, H.-G.; Liu, E.; et al. Reshaping the Cathodic Catalyst Layer for Anion Exchange Membrane Fuel Cells: From Heterogeneous Catalysis to Homogeneous Catalysis. Angew. Chem. 2021, 133, 4095–4100. [Google Scholar] [CrossRef]
- Gutru, R.; Turtayeva, Z.; Xu, F.; Maranzana, G.; Vigolo, B.; Desforges, A. A Comprehensive Review on Water Management Strategies and Developments in Anion Exchange Membrane Fuel Cells. Int. J. Hydrogen Energy 2020, 45, 19642–19663. [Google Scholar] [CrossRef]
- Kim, Y.S. Polymer Electrolytes with High Ionic Concentration for Fuel Cells and Electrolyzers. ACS Appl. Polym. Mater. 2021, 3, 1250–1270. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, Z.; Xiao, C.; Liu, J.; Li, Z.; Jiang, Y.; Wei, L.; Zhao, T.; Ciucci, F.; Zeng, L. Water Management Fault Diagnosis by Operando Distribution of Relaxation Times Analysis for Anion Exchange Membrane Fuel Cells. Adv. Sci. 2025, 12, 2505304. [Google Scholar] [CrossRef]
- Xiao, C.; Huang, H.; Zhang, Z.; Jiang, Y.; Wang, G.; Liu, H.; Liu, Y.; Xing, L.; Zeng, L. Optimizing Catalyst Layer Structure Design for Improved Water Management of Anion Exchange Membrane Fuel Cells. J. Power Sources 2024, 606, 234509. [Google Scholar] [CrossRef]
- Gasteiger, H.A.; Panels, J.E.; Yan, S.G. Dependence of PEM Fuel Cell Performance on Catalyst Loading. J. Power Sources 2004, 127, 162–171. [Google Scholar] [CrossRef]
- Sarker, M.; Mora, J.M.; Mojica, F.; Yang-Neyerlin, A.C.; Pivovar, B.; Hussey, D.S.; Jacobson, D.L.; LaManna, J.M.; Chuang, P.-Y.A. Sensitivity Study of Operating Conditions and Liquid Water Transport Behavior in an Anion Exchange Membrane Fuel Cell Aided by Modeling and Neutron Radiography. Energy Convers. Manag. 2025, 333, 119750. [Google Scholar] [CrossRef]
- Park, A.M.; Owczarczyk, Z.R.; Garner, L.E.; Yang-Neyerlin, A.C.; Long, H.; Antunes, C.M.; Sturgeon, M.R.; Lindell, M.J.; Hamrock, S.J.; Yandrasits, M.; et al. Synthesis and Characterization of Perfluorinated Anion Exchange Membranes. ECS Trans. 2017, 80, 957. [Google Scholar] [CrossRef]
- Hu, C.; Kang, H.W.; Jung, S.W.; Zhang, X.; Lee, Y.J.; Kang, N.Y.; Park, C.H.; Lee, Y.M. Stabilizing the Catalyst Layer for Durable and High Performance Alkaline Membrane Fuel Cells and Water Electrolyzers. ACS Cent. Sci. 2024, 10, 603–614. [Google Scholar] [CrossRef] [PubMed]
AEI a | Performance | Ref. |
---|---|---|
Poly(fluorene-co-biphenyl N,N′-dimethylpiperidinium) (PFBP) | IEC c: 3.23 PPD: 2.34 W cm−2 AEMFC Conditions: 80 °C A/C Ionomer: PFBP-14/PFBP-14 A/C Catalyst (loading mg cm−2): PtRu (0.42)/Pt (0.33) Inlet A/C Fuel
| [54] Also in: [55,104] |
QPAF-4 | IEC: 2.2 PPD: 0.226 W cm−2 AEMFC Conditions: 60 °C A/C Ionomer: QPAF4-C6-TMA/QPAF4-C6-TMA A/C Catalyst (loading mg cm−2): Pt (0.2)/Pt (0.2) Inlet A/C Fuel
| [51,105] |
Poly(aryl piperidinium) based on biphenyl (PAP-BP-x) | IEC b,d: 2.02 (x = 60), 2.38 (x = 70) PPD: 0.92 W cm−2 AEMFC Conditions: 95 °C A/C Ionomer: PAP-BP-100/PAP-BP-100 A/C Catalyst (loading mg cm−2): Pt (<0.15)/Ag-based (1) Inlet A/C Fuel Conditions:
| [106] |
Quaternized poly(fluorenes) (FLN) | IEC c: 2.5 (FLN55), 3.5 (FLN100) PPD: ~1 W cm−2 AEMFC Conditions: 80 °C A/C Ionomer: FLN-55/FLN-100 A/C Catalyst (loading mg cm−2): PtRu (0.75)/Pt (0.6) Inlet A/C Fuel Conditions:
| [35] Also in: [48,49,63,94] |
AEIs a | Properties | Ref. |
---|---|---|
Poly(diphenylethane-co-terphenyl piperidinium) (PDTP) | IEC: 3.1 PPD: 2.08 W cm−2 AEMFC Conditions: 80 °C A/C Ionomer: PFBP-14/PDTP-75 A/C Catalyst (loading mg cm−2): PtRu(0.26)/Hispec Pt (0.26) Inlet A/C Fuel Conditions:
| [55] Also in: [108] |
HTMA + PDTP (s-PDTP-x) | (For s-PDTP-65) WU: 178% (at 25 °C) SR: 54% (at 25 °C) IEC: 3.0 σ: 72 mS cm−1 (at 30 °C, −OH form) PPD:1.47 W cm−2 AEMFC Conditions: 80 °C A/C Ionomer: s-PDTP-65/s-PDTP-65 A/C Catalyst (loading mg cm−2): Pt (0.5 or 0.6)/Pt (0.5 or 0.6) Inlet A/C Fuel Conditions:
| [108] |
PPO-7Py7 | IEC b: 1.65 PPD: 0.261 W cm−2 AEMFC Conditions: 60 °C A/C Ionomer: PPO-7Py7/PPO-7Py7 A/C Catalyst (loading mg cm−2): Pt (0.5)/Pt (0.5) Inlet A/C Fuel Conditions:
| [25] |
AEI a | Performance | Ref. |
---|---|---|
poly(norbornane-co-aryl piperidinium) (PDPN-n) | IEC c: 2.54 PPD: 0.97 W cm−2 WU: 227.7% (at 30 °C, PDPN-26) SR: 61.8% (at 30 °C, PDPN-26) AEMFC Conditions: 80 °C A/C Ionomer: PDPN-26/PDPN-26 A/C Catalyst (loading mg cm−2): PtRu (0.5)/Pt (0.5) Inlet A/C Fuel Conditions:
| [16] |
poly N-aryl piperidinium (PNAP-2) | IEC d: 2.95 PPD: 2.07 W cm−2 WU: 73% (at 80 °C) SR: 30% (at 80 °C) ORR (Tafel): 65 mV dec−1 AEMFC Conditions: 80 °C A/C Ionomer: Synthesized PNAP ionomer A/C Catalyst: Pt (0.7 ± 0.1)/Pt (0.7 ± 0.1) Inlet A/C Fuel Conditions:
| [75] |
Meta-terphenyl (meta-TPN1) | IEC c: 2.15 PPD: ~0.6 AEMFC Conditions: 80 °C A/C Ionomer: meta-TPN1/meta-TPN1 A/C Catalyst (loading mg cm−2): PtRu (0.2 ± 0.01)/Pt (0.2 ± 0.01) Inlet A/C Fuel Conditions:
| [103] Also in: [24,28,77,102,109] |
Quaternized polynorbornene(QP-NB) | IEC d: 2.5 PPD: 1.41 W cm−2 AEMFC Conditions: 80 °C A/C Ionomer: QP-NB/QP-NB A/C Catalyst (loading mg cm−2): PtRu (0.5)/Pt (0.6) Inlet A/C Fuel Conditions:
| [24] Also in: [36,57] |
AEI a | Properties | Ref. |
---|---|---|
Amine piperidinium polystyrene (P-AP) m = 100, n = 0 | IEC b: 3.4 PPD: 1.35 W cm−2 WU: ~500% AEMFC Conditions: 80 °C A/C Ionomer: P-AP/P-AP A/C Catalyst (loading mg cm−2): PtRu (0.6 ± 0.1)/Co-Mn (1.2) Inlet A/C Fuel Conditions:
| [110] |
Functionalized bromoalkylated PS(SxxQAmm-Cn) | For S29QA30-C6: IEC c: 1.47 PPD: 0.407 W cm−2 AEMFC Conditions: 60 °C A/C Ionomer: S29QA30-C6/S29QA30-C6 A/C Catalyst (loading mg cm−2): Pt (0.4)/Pt (0.4) Inlet A/C Fuel Conditions:
| [80] |
ETFE-g-poly(vinylbenzyltrimethylammonium chloride) [ET-FE-g-poly(VBTMAC)] | IEC b: 1.24 ± 0.06 mmol g−1 PPD: 1.48 W cm−2 WU: 155.4 ± 1.8% AEMFC Conditions: 60 °C A/C Ionomer: ETFE-g-poly(VBTMAC)]/ETFE-g-poly(VBTMAC)] A/C Catalyst (loading mg cm−2): PtRu (0.8)/Pt (0.55) Inlet A/C Fuel Conditions:
| [113] Also in: [58,69,111,112] |
AEIs a | Properties | Ref. |
---|---|---|
PolyDADMAC-b-Polystyrene | IEC b: 1.03–3.4 PPD: 0.14 W cm−2 WU: 330% (3.4 IEC), 140% (1.03 IEC) AEMFC Conditions: 80 °C A/C Ionomer: PolyDADMAC-b-Polystyrene (IEC 1.03/IEC 3.40) A/C Catalyst (loading mg cm−2): PtRu (0.6 ± 0.07)/Pt (0.4 ± 0.03) Inlet A/C Fuel Conditions:
| [118] Also in: [81] |
poly(MMA-b-MUBIm-HCO3) | IEC b: 1.44 PPD: 0.0293 W cm−2 AEMFC Conditions: A/C Ionomer: poly(MMA-b-MUBIm-HCO3) A/C Catalyst (loading mg cm−2): PtRu (0.4)/Pt (0.4) Inlet A/C Fuel Conditions:
| [114,117] |
+ Quaternized poly(2,6-dimethyl-1,4-phenylene oxide) (QPPO) (top), ionic liquid (bottom) (QIL composite) | IEC c: 3.3 (QIL-8) WU: 57–82% (at 80 °C) SR: 14.4–24.6% (at 80 °C) OH Conductivity: 135 mS cm−1 (at 90 °C, QIL-8) ORR Performance (Tafel): 58 mV dec−1 (QIL-8 with NIF-based catalyst) | [120] |
Fabrication Method | Description | Aspects to Consider |
---|---|---|
CCM | Catalyst ink solution is applied directly to the membrane to create catalyst layer [127] | Less contact resistance; however, the AEM must have mechanical properties to withstand ink solution application [20,127] |
CCS or GDE | Catalyst ink solution is applied to the GDL to create the catalyst layer [127] | Large active area and beneficial for low catalyst loading; however, prone to contact and transfer resistances [20,128] |
Spray-coated | Spray-coating tool (e.g., airbrush, ultrasonic spray) is used to apply catalyst ink onto the AEM or GDL [117] | Need to ensure consistent flow for even coating Rapid solvent evaporation between coats [30] Helps form triple-phase boundary [117] |
Hand-painted | Brush or applicator is used to coat the AEM or GDL [117] | Must wait a long time to dry between successive CL coats Requires even strokes to ensure uniform CL Helps form triple-phase boundary [117] Previously shown to be a better method with PIL AEIs [117] |
Decal transfer | CL is coated onto a decal; once dried, the CL is then transferred from the decal to the AEM or GDL through methods such as hot pressing [117] | Heat pressing temperature and pressure can have negative impact on the MEA properties [117] |
Screen printing | Utilize screen printing kits to deposit a catalyst ink paste to form the CL [131] | Consider solvent selection and its effects on viscosity and the AEM [131] |
Blade coating | Utilizes a doctor blade apparatus that spreads a drop of ink solution on the material substrate until coating desired area [130] | AEM swelling if coating directly onto it [129] Can be used on a transfer decal and is more uniform than hand-painted [129] |
Inkjet printing | Inkjet printer and cartridges used to deposit CL ink [121] | Can offer higher accuracy and create a graded ionomer content within the CL [121] Procedure includes extensive analysis during preparation steps to ensure ink is suitable for printer [121] |
Solvent a | AEI/Catalyst Ratio | A/C Catalyst (Loading mg cm−2) | AEMFC Performance (PPD W cm−2) | ECSA (m2 g−1) | AEM | Ref. |
---|---|---|---|---|---|---|
IPA + H2O | 1:1 | PtRu/Pt (0.4) | 0.41 | 36.43 | FAA-3-30 c,d | [20] |
1.5:1 | 0.26 b | 27.38 | ||||
IPA + H2O | 0.5:0.5 | Pt/Pt (0.5) | 0.067 | 69 | FAA-3-PK-75 c,d | [122] |
0.6:0.4 | 0.050 | 46 | ||||
IPA + H2O | 1:1 | PtRu/Pt (0.4) | 0.84 | 35.95 | FAA-3-30 c,e | [20] |
1.5:1 | 0.48 b | 24.76 |
AEI | Material Properties | Electrochemical Performance | CL Morphology Impacts | Ref. |
---|---|---|---|---|
CH3 Ionomer | IEC: 2.0 WU: ~50% −OH Conductivity: 114 mS cm−1 (at 80 °C) | HFR: 14.9 mΩ PPD: 1.0 W cm−2 AEMFC Setup:
|
| [125] |
CF3 Ionomer | IEC: 1.9 WU: ~30% −OH Conductivity: 155 mS cm−1 (at 80 °C) | HFR: 11.6 mΩ PPD: 1.7 W cm−2 AEMFC Setup:
|
| [125] |
meta-QAPPT | IEC: 2.03 WU: 22.9 wt% −OH Conductivity: 101.18 mS cm−1 (at 80 °C) | PPD: 0.995 W cm−2 AEMFC Setup:
|
| [23] |
para-QAPPT | IEC: 2.05 WU: 35.91 wt% −OH Conductivity: 112.70 mS cm−1 (at 80 °C) | PPD: 1.092 W cm−2 AEMFC Setup:
|
| [23] |
trans-SB-DB | WU: 14.5% (at ~100%RH) Oxygen permeability: 4.62 (Barrer) | PPD: 0.64 W cm−2 AEMFC Setup:
|
| [136] |
cis-SB-DB | WU: 21.5% (at ~100%RH) Oxygen permeability: 7.98 (Barrer) | PPD: 1 W cm−2 AEMFC Setup:
|
| [136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gowling, A.C.; Meek, K.M. Anion Exchange Ionomer Binders for Alkaline Fuel Cells. Materials 2025, 18, 4354. https://doi.org/10.3390/ma18184354
Gowling AC, Meek KM. Anion Exchange Ionomer Binders for Alkaline Fuel Cells. Materials. 2025; 18(18):4354. https://doi.org/10.3390/ma18184354
Chicago/Turabian StyleGowling, Alannah C., and Kelly M. Meek. 2025. "Anion Exchange Ionomer Binders for Alkaline Fuel Cells" Materials 18, no. 18: 4354. https://doi.org/10.3390/ma18184354
APA StyleGowling, A. C., & Meek, K. M. (2025). Anion Exchange Ionomer Binders for Alkaline Fuel Cells. Materials, 18(18), 4354. https://doi.org/10.3390/ma18184354