One-Step LCVD Fabrication of Binder-Free Porous Graphene@SiC Heterostructures for Lithium-Ion Battery Anodes
Abstract
1. Introduction
2. Experimental Section
2.1. Growth of Graphene@SiC Composite Films
2.2. Characterizations and Electrochemical Measurements
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef]
- Wu, P.; Shi, B.; Tu, H.; Guo, C.; Liu, A.; Yan, G.; Yu, Z. Pomegranate-type Si/C anode with SiC taped, well-dispersed tiny Si particles for lithium-ion batteries. J. Adv. Ceram. 2021, 10, 1129–1139. [Google Scholar] [CrossRef]
- Saleem, M.; Lassi, U.; Srivastava, V.; Tuomikoski, S. A review of silicon-carbon anode materials: The role of precursor and its effect on lithium-ion battery performance. J. Power Sources 2025, 641, 236879. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.; Liu, L.; Zhao, J.; Zhang, W.; Bao, R.; Wang, L.; Yang, J.; Li, Y.; Jing, Z. Strategies, perspectives, and challenges of improving the initial coulombic efficiency and tap density of Sn-based anode materials for lithium-ion batteries. Chem. Eng. J. 2024, 495, 152444. [Google Scholar] [CrossRef]
- Qingyi, G.; Hua, L.; Fengyang, C.; Ruilin, Z.; Huizhe, L.; Ni, Y.; Yanqing, H.; Gang, X. Construction and modification of germanium-based anode materials in lithium-ion batteries. J. Alloys Compd. 2025, 1013, 178520. [Google Scholar] [CrossRef]
- He, Z.; Liu, J.; Wei, Y.; Song, Y.; Yang, W.; Yang, A.; Wang, Y.; Li, B. Polypyrrole-coated triple-layer yolk-shell Fe2O3 anode materials with their superior overall performance in lithium-ion batteries. Int. J. Miner. Metall. Mater. 2024, 31, 2737–2748. [Google Scholar] [CrossRef]
- Liang, S.; Wang, X.; Qi, R.; Cheng, Y.-J.; Xia, Y.; Müller-Buschbaum, P.; Hu, X. Bronze-Phase TiO2 as Anode Materials in Lithium and Sodium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2201675. [Google Scholar] [CrossRef]
- Sun, C.; Wang, Y.-J.; Gu, H.; Fan, H.; Yang, G.; Ignaszak, A.; Tang, X.; Liu, D.; Zhang, J. Interfacial coupled design of epitaxial Graphene@SiC Schottky junction with built-in electric field for high-performance anodes of lithium ion batteries. Nano Energy 2020, 77, 105092. [Google Scholar] [CrossRef]
- Li, H.; Yu, H.; Zhang, X.; Guo, G.; Hu, J.; Dong, A.; Yang, D. Bowl-like 3C-SiC nanoshells encapsulated in hollow graphitic carbon spheres for high-rate lithium-ion batteries. Chem. Mater. 2016, 28, 1179–1186. [Google Scholar] [CrossRef]
- Du, J.; Zhu, R.; Chen, Q.; Xie, J.; Xian, H.; Zhang, J.; Zhu, J. In situ synthesis of stable silicon carbide-reinforced silicon nanosheets from organoclay for high-performance lithium-ion battery anodes. Appl. Surf. Sci. 2023, 617, 156566. [Google Scholar] [CrossRef]
- Bijoy, T.K.; Murugan, P. Lithiation of the two-dimensional silicon carbide–graphene van der Waals heterostructure: A first principles study. J. Phys. Chem. C 2019, 123, 10738–10745. [Google Scholar] [CrossRef]
- Fiori, S.; Murata, Y.; Veronesi, S.; Rossi, A.; Coletti, C.; Heun, S. Li-intercalated graphene on SiC(0001): An STM study. Phys. Rev. B 2017, 96, 125429. [Google Scholar] [CrossRef]
- Sri Devi Kumari, T.; Jeyakumar, D.; Prem Kumar, T. Nano silicon carbide: A new lithium-insertion anode material on the horizon. RSC Adv. 2013, 3, 15028–15034. [Google Scholar] [CrossRef]
- Chen, H.; Hua, Y.; Luo, N.; He, X.; Li, Y.; Zhang, Y.; Chen, W.; Huang, S. Lithiation abilities of SiC bulks and surfaces: A first-principles study. J. Phys. Chem. C 2020, 124, 7031–7038. [Google Scholar] [CrossRef]
- Fatima, A.; Majid, A.; Haider, S.; Akhtar, M.S.; Alkhedher, M. First principles study of layered silicon carbide as anode in lithium ion battery. Int. J. Quantum Chem. 2022, 122, e26895. [Google Scholar] [CrossRef]
- Tang, X.; Yan, W.; Gao, T.; Wang, J.; Liu, Y.; Qin, X. A theoretical study of surface lithium effects on the [111] SiC nanowires as anode materials. J. Mol. Model. 2024, 30, 251. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Chen, X.; Xiao, Z.; Lei, C.; Zhang, C.; Lin, X.; Shen, B.; Zhang, R.; Wei, F. Silicon carbide as a protective layer to stabilize si-based anodes by inhibiting chemical reactions. Nano Lett. 2019, 19, 5124–5132. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, J.; Qin, C.; Li, Y.; Yang, Y. Synthesis of free-standing N-doping Si/SiC/C composite nanofiber film as superior lithium-ion batteries anode. Mater. Lett. 2022, 306, 130895. [Google Scholar] [CrossRef]
- Jeon, B.J.; Lee, J.K. Electrochemical characteristics of nc-Si/SiC composite for anode electrode of lithium ion batteries. J. Alloys Compd. 2014, 590, 254–259. [Google Scholar] [CrossRef]
- Nandan, R.; Takamori, N.; Higashimine, K.; Badam, R.; Matsumi, N. Zinc blende inspired rational design of a β-SiC based resilient anode material for lithium-ion batteries. J. Mater. Chem. A 2022, 10, 5230–5243. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, X.; Zhang, X.; Wan, N.; Pan, D.; Li, X.; Bai, Y.; Zhang, W. Bead-curtain shaped SiC@SiO2 core-shell nanowires with superior electrochemical properties for lithium-ion batteries. Electrochim. Acta 2016, 190, 33–39. [Google Scholar] [CrossRef]
- Huang, X.D.; Zhang, F.; Gan, X.F.; Huang, Q.A.; Yang, J.Z.; Lai, P.T.; Tang, W.M. Electrochemical characteristics of amorphous silicon carbide film as a lithium-ion battery anode. RSC Adv. 2018, 8, 5189–5196. [Google Scholar] [CrossRef]
- Leonova, A.M.; Bashirov, O.A.; Leonova, N.M.; Lebedev, A.S.; Trofimov, A.A.; Suzdaltsev, A.V. Synthesis of C/SiC mixtures for composite anodes of lithium-ion power sources. Appl. Sci. 2023, 13, 901. [Google Scholar] [CrossRef]
- Sun, C.; Xu, X.; Gui, C.; Chen, F.; Wang, Y.; Chen, S.; Shao, M.; Wang, J. High-quality epitaxial N doped graphene on SiC with tunable interfacial interactions via electron/ion bridges for stable lithium-ion storage. Nanomicro Lett. 2023, 15, 202. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Zhang, F.; Li, B.; Yang, Y.; Li, Y. Fabrication of C/SiC/Si composite fibers from helical mesoporous silica and application as lithium ion battery anode. J. Taiwan Inst. Chem. Eng. 2019, 97, 489–495. [Google Scholar] [CrossRef]
- Zhou, W.; Lian, Q.; Huang, X.; Ding, W.; Jiang, C.; Zou, Z.; Su, X. Introducing SiC/C dual-interface on porous silicon anode by a conventional exothermic displacement reaction for improved cycle performance. J. Power Sources 2021, 508, 230326. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H. Nanocrystalline silicon carbide thin film electrodes for lithium-ion batteries. Solid State Ion. 2014, 263, 23–26. [Google Scholar] [CrossRef]
- Xu, Q.; Deng, Z.; Sun, Q.; Tu, R.; Zhang, S.; Yang, M.; Li, Q.; Zhang, L.; Goto, T.; Ohmori, H. Electrically conducting graphene/SiC(111) composite coatings by laser chemical vapor deposition. Carbon 2018, 139, 76–84. [Google Scholar] [CrossRef]
- Cai, L.; Xu, Q.; Lu, W.; Tu, R.; Goto, T.; Zhang, S. Growth mechanism of porous 3C–SiC films prepared via laser chemical vapor deposition. Ceram. Int. 2020, 46, 16518–16523. [Google Scholar] [CrossRef]
- Sun, Q.; Tu, R.; Xu, Q.; Zhang, C.; Li, J.; Ohmori, H.; Kosinova, M.; Basu, B.; Yan, J.; Li, S.; et al. Nanoforest of 3C–SiC/graphene by laser chemical vapor deposition with high electrochemical performance. J. Power Sources 2019, 444, 227308. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, M.; Wang, C.; Lu, P.; Guo, B.; Li, B.-W.; Tu, R.; Xu, Q.; Wang, C.; Zhang, L. Graphene/SiC composite porous electrodes for high-performance micro-supercapacitors. J. Power Sources 2023, 581, 233463. [Google Scholar] [CrossRef]
- Liu, Z.; Cai, Y.; Tu, R.; Xu, Q.; Hu, M.; Wang, C.; Sun, Q.; Li, B.-W.; Zhang, S.; Wang, C.; et al. Laser CVD growth of graphene/SiC/Si nano-matrix heterostructure with improved electrochemical capacitance and cycle stability. Carbon 2021, 175, 377–386. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Hu, J.; Zhu, T.; Peng, J.; Tu, R.; Wang, C.; Zhang, L. First-principles study on CVD growth mechanism of 2D NbC on Cu(111) surface. Appl. Surf. Sci. 2023, 613, 156086. [Google Scholar] [CrossRef]
- Luo, Q.; Yin, S.; Sun, X.; Tang, Y.; Feng, Z.; Dai, X. SiC2/BP5: A pentagonal van der Waals heterostructure with tunable optoelectronic and mechanical properties. Appl. Surf. Sci. 2022, 606, 154857. [Google Scholar] [CrossRef]
- Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
- Sun, X.; Shao, C.; Zhang, F.; Li, Y.; Wu, Q.H.; Yang, Y. SiC nanofibers as long-life lithium-ion battery anode materials. Front. Chem. 2018, 6, 166. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, K.; Zhou, Y.; Xia, Y.; Yu, N.; Wu, G.; Zhu, Y.; Wu, Y.; Huang, H. A facile, one-step synthesis of silicon/silicon carbide/carbon nanotube nanocomposite as a cycling-stable anode for lithium ion batteries. Nanomaterials 2019, 9, 1624. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Gu, L.; Lu, R.; Qian, H.; Peng, X.; Sha, J. SiC@Si core–shell nanowires on carbon paper as a hybrid anode for lithium-ion batteries. J. Power Sources 2015, 293, 492–497. [Google Scholar] [CrossRef]
- Zhang, F.; Cao, Y.Z.; He, X.X.; Li, F.; Shi, J.J.; Huang, Q.A.; Huang, X.D. Effects of annealing temperatures on the electrochemical properties of silicon carbide anode film for lithium ion battery. In Proceedings of the 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Xi’an, China, 12–14 June 2019; pp. 1–3. [Google Scholar]
- Yi, X.; Zhang, Y.; He, W.; Zhang, X.; Yang, G.; Wang, Z.; Wang, Y.; Cheng, Q. Low-temperature synthesis of graphene/SiC nanocomposite anodes with super-long cycling stability. ChemElectroChem 2017, 4, 1320–1326. [Google Scholar] [CrossRef]
- Sun, Q.; Zhu, P.; Xu, Q.; Tu, R.; Zhang, S.; Shi, J.; Li, H.; Zhang, L.; Goto, T.; Yan, J.; et al. High-speed heteroepitaxial growth of 3C-SiC (111) thick films on Si (110) by laser chemical vapor deposition. J. Am. Ceram. Soc. 2017, 101, 1048–1057. [Google Scholar] [CrossRef]
- Deus, D.P.d.A.; Lopes, J.M.J.; Miwa, R.H. Stacking order effects on the energetics and electronic properties of n-doped graphene/h-BN van der Waals heterostructures on SiC(0001). Carbon 2023, 213, 118244. [Google Scholar] [CrossRef]
- Brozzesi, S.; Gori, P.; Koda, D.S.; Bechstedt, F.; Pulci, O. Thermodynamics and electronic structure of adsorbed and intercalated plumbene in graphene/hexagonal SiC heterostructures. Sci. Rep. 2024, 14, 2947. [Google Scholar] [CrossRef]
- Lee, D.S.; Riedl, C.; Krauss, B.; von Klitzing, K.; Starke, U.; Smet, J.H. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2. Nano Lett. 2008, 8, 4320–4325. [Google Scholar] [CrossRef]
- Bijoy, T.K.; Karthikeyan, J.; Murugan, P. Exploring the mechanism of spontaneous and lithium-assisted graphitic phase formation in SiC nanocrystallites of a high capacity li-ion battery anode. J. Phys. Chem. C 2017, 121, 15106–15113. [Google Scholar] [CrossRef]
- Ngo, D.T.; Le, H.T.T.; Pham, X.M.; Park, C.N.; Park, C.J. Facile synthesis of Si@SiC composite as an anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 32790–32800. [Google Scholar] [CrossRef]
- Zhao, Z.; Zou, Y.; Liu, P.; Lai, Z.; Wen, L.; Jin, Y. EIS equivalent circuit model prediction using interpretable machine learning and parameter identification using global optimization algorithms. Electrochim. Acta 2022, 418, 140350. [Google Scholar] [CrossRef]
- Guo, J.; Sun, A.; Chen, X.; Wang, C.; Manivannan, A. Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochim. Acta 2011, 56, 3981–3987. [Google Scholar] [CrossRef]
- Chae, S.; Choi, S.H.; Kim, N.; Sung, J.; Cho, J. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 2020, 59, 110–135. [Google Scholar] [CrossRef]
- Briggs, N.; Gebeyehu, Z.M.; Vera, A.; Zhao, T.; Wang, K.; De La Fuente Duran, A.; Bersch, B.; Bowen, T.; Knappenberger, K.L.; Robinson, J.A. Epitaxial graphene/silicon carbide intercalation: A minireview on graphene modulation and unique 2D materials. Nanoscale 2019, 11, 15440–15447. [Google Scholar] [CrossRef]
- Sun, C.; Wang, Y.-J.; Liu, D.; Fang, B.; Yan, W.; Zhang, J. Tailoring interfacial interaction in GaN@NG heterojunction via electron/ion bridges for enhanced lithium-ion storage performance. Chem. Eng. J. 2023, 453, 139603. [Google Scholar] [CrossRef]
- Lipson, A.L.; Chattopadhyay, S.; Karmel, H.J.; Fister, T.T.; Emery, J.D.; Dravid, V.P.; Thackeray, M.M.; Fenter, P.A.; Bedzyk, M.J.; Hersam, M.C. Enhanced lithiation of doped 6H silicon carbide (0001) via high temperature vacuum growth of epitaxial graphene. J. Phys. Chem. C 2012, 116, 20949–20957. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071. [Google Scholar] [CrossRef]
- He, X.; Tang, A.; Li, Y.; Zhang, Y.; Chen, W.; Huang, S. Theoretical studies of SiC van der Waals heterostructures as anodes of Li-ion batteries. Appl. Surf. Sci. 2021, 563, 150269. [Google Scholar] [CrossRef]
- Manju, M.S.; Thomas, S.; Lee, S.U.; Kulangara Madam, A. Mechanically robust, self-healing graphene like defective SiC: A prospective anode of Li-ion batteries. Appl. Surf. Sci. 2021, 541, 148417. [Google Scholar] [CrossRef]
- Pradeepkumar, A.; Gaskill, D.K.; Iacopi, F. Electronic and transport properties of epitaxial graphene on sic and 3c-SiC/Si: A review. Appl. Sci. 2020, 10, 4350. [Google Scholar] [CrossRef]
Elastic Constant (N/m) | Young’s Modulus (N/m) | Shear Modulus (N/m) | Poisson’s Ratio | Electronic Energy (eV) | ||
---|---|---|---|---|---|---|
C11 | C12 | |||||
T1 | 172.25 | 53.02 | 155.93 | 59.62 | 0.308 | −56.78 |
T2 | 117.11 | 96.15 | 38.17 | 10.48 | 0.821 | −57.05 |
B | 152.12 | 38.91 | 142.16 | 56.6 | 0.256 | −57.28 |
C | 129.47 | 42.35 | 115.62 | 43.56 | 0.327 | −57.34 |
Pristine SiC | 181.52 | 55.61 | 164.48 | 62.96 | 0.306 | −56.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Ji, F.; Huang, W.; Zhang, C.; Wang, C.; Li, C.; Xu, Q.; Tu, R. One-Step LCVD Fabrication of Binder-Free Porous Graphene@SiC Heterostructures for Lithium-Ion Battery Anodes. Materials 2025, 18, 4341. https://doi.org/10.3390/ma18184341
Zhang S, Ji F, Huang W, Zhang C, Wang C, Li C, Xu Q, Tu R. One-Step LCVD Fabrication of Binder-Free Porous Graphene@SiC Heterostructures for Lithium-Ion Battery Anodes. Materials. 2025; 18(18):4341. https://doi.org/10.3390/ma18184341
Chicago/Turabian StyleZhang, Song, Feiyang Ji, Wei Huang, Chitengfei Zhang, Chongjie Wang, Cuicui Li, Qingfang Xu, and Rong Tu. 2025. "One-Step LCVD Fabrication of Binder-Free Porous Graphene@SiC Heterostructures for Lithium-Ion Battery Anodes" Materials 18, no. 18: 4341. https://doi.org/10.3390/ma18184341
APA StyleZhang, S., Ji, F., Huang, W., Zhang, C., Wang, C., Li, C., Xu, Q., & Tu, R. (2025). One-Step LCVD Fabrication of Binder-Free Porous Graphene@SiC Heterostructures for Lithium-Ion Battery Anodes. Materials, 18(18), 4341. https://doi.org/10.3390/ma18184341