Utilization of Pine and Birch Juvenile Wood for Low-Density Particleboard Production
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ikubanni, P.P.; Adeleke, A.A.; Adekanye, T.A.; Aladegboye, O.J.; Agboola, O.O.; Ogunsemi, B.T. Particleboard from Biomass Wastes: A Review of Production Techniques, Properties, and Future Trends. Res. Eng. Struct. Mater. 2024. [Google Scholar] [CrossRef]
- Kawalerczyk, J.; Dukarska, D.; Antov, P.; Stuper-Szablewska, K.; Dziurka, D.; Mirski, R. Activated Carbon from Coconut Shells as a Modifier of Urea–Formaldehyde Resin in Particleboard Production. Appl. Sci. 2024, 14, 5627. [Google Scholar] [CrossRef]
- Reh, R.; Kristak, L.; Kral, P.; Pipiska, T.; Jopek, M. Perspectives on Using Alder, Larch, and Birch Wood Species to Maintain the Increasing Particleboard Production Flow. Polymers 2024, 16, 1532. [Google Scholar] [CrossRef]
- Hua, L.S.; Chen, L.W.; Geng, B.J.; Kristak, L.; Antov, P.; Pędzik, M.; Rogoziński, T.; Taghiyari, H.R.; Lubis, M.A.R.; Fatriasari, W. Particleboard from Agricultural Biomass and Recycled Wood Waste: A Review. J. Mater. Res. Technol. 2022, 20, 4630–4658. [Google Scholar] [CrossRef]
- Benthien, J.T.; Lüdtke, J.; Ohlmeyer, M. Effect of Increasing Core Layer Particle Thickness on Lightweight Particleboard Properties. Eur. J. Wood Wood Prod. 2019, 77, 1029–1043. [Google Scholar] [CrossRef]
- Boruszewski, P.; Borysiuk, P.; Jankowska, A.; Pazik, J. Low-Density Particleboards Modified with Expanded and Unexpanded Fillers—Characteristics and Properties. Materials 2022, 15, 4430. [Google Scholar] [CrossRef]
- Boruszewski, P.; Borysiuk, P.; Jankowska, A.; Pazik, J. Low-Density Particleboards Modified with Blowing Agents—Characteristic and Properties. Materials 2022, 15, 4528. [Google Scholar] [CrossRef]
- Mirski, R.; Dziurka, D.; Kuliński, M.; Derkowski, A. Lightweight Insulation Boards Based on Lignocellulosic Particles Glued with Agents of Natural Origin. Materials 2021, 14, 3219. [Google Scholar] [CrossRef]
- Luo, S.; Gao, L.; Guo, W. Effect of Face Layer Manipulation on the Density Profile and Properties of Low Density Particleboard. Wood Res. 2020, 65, 125–134. [Google Scholar] [CrossRef]
- Fehrmann, J.; Belleville, B.; Ozarska, B. Effects of Particle Dimension and Constituent Proportions on Internal Bond Strength of Ultra-Low-Density Hemp Hurd Particleboard. Forests 2022, 13, 1967. [Google Scholar] [CrossRef]
- Bekhta, P.; Kozak, R.; Gryc, V.; Sebera, V.; Tippner, J. Effects of Wood Particles from Deadwood on the Properties and Formaldehyde Emission of Particleboards. Polymers 2022, 14, 3535. [Google Scholar] [CrossRef]
- Hurmekoski, E.; Seppälä, J.; Kilpeläinen, A.; Kunttu, J. Contribution of Wood-Based Products to Climate Change Mitigation. In Forest Bioeconomy and Climate Change; Springer International Publishing: Cham, Switzerland, 2022; pp. 129–149. [Google Scholar]
- Grzegorzewska, E.; Burawska-Kupniewska, I.; Boruszewski, P.; Grzegorzewska, E.; Burawska-Kupniewska, I.; Boruszewski, P. Economic Profitability of Particleboards Production with a Diversified Raw Material Structure. Maderas-Cienc. Tecnol. 2020, 22, 537–548. [Google Scholar] [CrossRef]
- Ojewumi, M.E.; Ojewumi, E.O.; Ibrahim, O.O.; Oyinlola, O.R.; Oladapo, F.O.; Jolayemi, K.J. Production of Particleboard from Agricultural Waste-A Sustainable Approach to Waste Management. J. Sustain. Mater. Process. Manag. 2023, 3, 72–90. [Google Scholar] [CrossRef]
- Najahi, A.; Aguado, R.J.; Tarrés, Q.; Boufi, S.; Delgado-Aguilar, M. Harvesting Value from Agricultural Waste: Dimensionally Stable Fiberboards and Particleboards with Enhanced Mechanical Performance and Fire Retardancy through the Use of Lignocellulosic Nanofibers. Ind. Crops Prod. 2023, 204, 117336. [Google Scholar] [CrossRef]
- Tudor, E.M.; Dettendorfer, A.; Kain, G.; Barbu, M.C.; Réh, R.; Krišťák, Ľ. Sound-Absorption Coefficient of Bark-Based Insulation Panels. Polymers 2020, 12, 1012. [Google Scholar] [CrossRef]
- Mirski, R.; Derkowski, A.; Kawalerczyk, J.; Dziurka, D.; Walkiewicz, J. The Possibility of Using Pine Bark Particles in the Chipboard Manufacturing Process. Materials 2022, 15, 5731. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.A.; Lopes, S.; Ferreira, N.; Santos, J.; Martins, J.M.; Carvalho, L.H. Binderless Particleboards Obtained 100% from Winery By-Products for the Packaging Industry. Front. Food. Sci. Technol. 2024, 4, 1376415. [Google Scholar] [CrossRef]
- Rossi, L.; Wechsler, L.; Peltzer, M.A.; Ciannamea, E.M.; Ruseckaite, R.A.; Stefani, P.M. Sustainable Particleboards Based on Brewer’s Spent Grains. Polymers 2024, 16, 59. [Google Scholar] [CrossRef] [PubMed]
- Rahman, W.; Tamat, N.S.M.; Kasim, J. The Suitability of Fast Growing Tree Species for Particleboard Production. IJRTE 2019, 8, 3156–3161. [Google Scholar]
- Tamat, N.S.M.; Amini, M.H.M.; Hermawan, A.; Ramle, S.F.M.; Ibrahim, W.S.F.A.W.; Rahman, W.M.N.W.A. Performance of Particleboard from Fast-Growing Species. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Mirski, R.; Kawalerczyk, J.; Dziurka, D.; Stuper-Szablewska, K.; Walkiewicz, J. The Effect of Using Wood Chips Exposed to Mold Fungi on the Properties of Chipboard. Wood Mater. Sci. Eng. 2024, 19, 920–930. [Google Scholar] [CrossRef]
- Nemli, G.; Ayan, E.; Ay, N.; Tiryaki, S. Utilization Potential of Waste Wood Subjected to Insect and Fungi Degradation for Particleboard Manufacturing. Eur. J. Wood Wood Prod. 2018, 76, 759–766. [Google Scholar] [CrossRef]
- Iždinskỳ, J.; Vidholdová, Z.; Reinprecht, L. Particleboards from Recycled Wood. Forests 2020, 11, 1166. [Google Scholar] [CrossRef]
- Nguyen, D.L.; Luedtke, J.; Nopens, M.; Krause, A. Production of Wood-Based Panel from Recycled Wood Resource: A Literature Review. Eur. J. Wood Wood Prod. 2023, 81, 557–570. [Google Scholar] [CrossRef]
- Owodunni, A.A.; Lamaming, J.; Hashim, R.; Taiwo, O.F.A.; Hussin, M.H.; Mohamad Kassim, M.H.; Bustami, Y.; Sulaiman, O.; Amini, M.H.M.; Hiziroglu, S. Adhesive Application on Particleboard from Natural Fibers: A Review. Polym. Compos. 2020, 41, 4448–4460. [Google Scholar] [CrossRef]
- Bispo, R.A.; Panzera, T.H.; Lahr, F.A.R.; Christoforo, A.L.; Trevisan, M.F.; da Silva, S.A.M.; de Moura Aquino, V.B.; de Paula Saraiva, R.L.; Arroyo, F.N.; Molina, J.C. Production and Evaluation of Particleboards Made of Coconut Fibers, Pine and Eucalyptus Using Bicomponent Polyurethane-Castor Oil Resin. BioResources 2022, 17, 3944–3951. [Google Scholar] [CrossRef]
- Shi, J.L.; Zhang, S.Y.; Riedl, B. Effect of Juvenile Wood on Strength Properties and Dimensional Stability of Black Spruce Medium-Density Fiberboard Panels. Holzforschung 2005, 59, 1–9. [Google Scholar] [CrossRef]
- Tomczak, A.; Jelonek, T. Technical Parameters of Juvenile and Mature Wood in Scots Pine (Pinus sylvestris L.)—Parametry Techniczne Młodocianego i Dojrzałego Drewna Sosny Zwyczajnej (Pinus sylvestris L.). Sylwan 2012, 156, 695–702. [Google Scholar]
- Zobel, B.J.; Sprague, J.R. Juvenile Wood in Forest Trees; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Moore, J.R.; Cown, D.J. Corewood (Juvenile Wood) and Its Impact on Wood Utilisation. Curr. For. Rep. 2017, 3, 107–118. [Google Scholar] [CrossRef]
- Cloutier, A.; Ananias, R.A.; Ballerini, A.; Pecho, R. Effect of Radiata Pine Juvenile Wood on the Physical and Mechanical Properties of Oriented Strandboard. Eur. J. Wood Wood Prod. 2007, 65, 157–162. [Google Scholar] [CrossRef]
- Pecho, R.; Ananias, R.A.; Ballerini, A.; Cloutier, A. Influence of Radiata Pine Juvenile Wood on the Physical and Mechanical Properties of Oriented Strand Boards (OSB). Rev. Bosque 2005, 26, 123–132. [Google Scholar]
- Pipíška, T.; Nociar, M.; Král, P.; Ráheľ, J.; Bekhta, P.; Réh, R.; Krišťák, Ľ.; Jopek, M.; Pijáková, B.; Wimmer, R.; et al. Characterization of Randomly Oriented Strand Boards Manufactured from Juvenile Wood of Underutilized Wood Species. Eur. J. Wood Wood Prod. 2024, 82, 927–941. [Google Scholar] [CrossRef]
- Pugel, A.D.; Price, E.W.; Hse, C.-Y. Composites from Southern Pine Juvenile Wood. Part 1. Panel Fabrication and Initial Properties. For. Prod. J. 1990, 40, 29–33. [Google Scholar]
- Pugel, A.D.; Price, E.W.; Hse, C.-Y. Composites from Southern Pine Juvenile Wood. Part 2. Durability and Dimensional Stability. For. Prod. J. 1990, 40, 57–61. [Google Scholar]
- PN-77-D-04101; Wood. Determination of Density. Polski Komitet Normalizacyjny: Warszawa, Poland, 1977.
- Available online: https://www.bdl.lasy.gov.pl/portal/mapy (accessed on 20 January 2025).
- Dukarska, D.; Rogoziński, T.; Pędzik, M.; Rogozińska, W.; Czarnecki, R. Characteristics of Straw Particles of Selected Grain Species Purposed for the Production of Lignocellulose Particleboards. Part. Sci. Technol. 2021, 39, 213–222. [Google Scholar] [CrossRef]
- Dukarska, D.; Rogoziński, T.; Antov, P.; Kristak, L.; Kmieciak, J. Characterisation of Wood Particles Used in the Particleboard Production as a Function of Their Moisture Content. Materials 2022, 15, 48. [Google Scholar] [CrossRef]
- EN 319; Particleboards and Fibreboards—Determination of Tensile Strength Perpendicular to the Plane of the Board. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 310; Wood-Based Panels-Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization: Brussels, Belgium, 1999.
- EN 317; Particleboards and Fibreboards—Determination of Swelling in Thickness After Immersion in Water. European Committee for Standardization: Brussels, Belgium, 1998.
- Suo, S.; Bowyer, J.L. Simulation Modeling of Particleboard Density Profile. Wood Fiber Sci. 1994, 26, 397–411. [Google Scholar]
- Korai, H. Effects of Density Profile on Bending Strength of Commercial Particleboard. For. Prod. J. 2022, 72, 85–91. [Google Scholar] [CrossRef]
- Laskowska, A. Characteristics of the Pressing Process and Density Profile of MUPF-Bonded Particleboards Produced from Waste Plywood. Materials 2024, 17, 850. [Google Scholar] [CrossRef]
- Fabisiak, E.; Fabisiak, B.; Krauss, A. Radial Variation in Tracheid Lengths in Dominant Trees of Selected Coniferous Species. BioResources 2020, 15, 7330–7341. [Google Scholar] [CrossRef]
- Krauss, A.; Moliński, W.; Kúdela, J.; Cunderlík, I. Differences in the Mechanical Properties of Earlyand Latewood within Individual Annual Rings in Dominant Pine Tree (Pinus sylvestris L.). Wood Res. 2011, 56, 1–12. [Google Scholar]
- Koubaa, A.; Isabel, N.; Zhang, S.Y.; Beaulieu, J.; Bousquet, J. Transition from Juvenile to Mature Wood in Black Spruce (Picea Mariana (Mill.) B.S.P.). Wood Fiber Sci. 2005, 37, 445–455. [Google Scholar]
- Severo, E.T.D.; Calonego, F.W.; Sansígolo, C.A. Physical and Chemical Changes in Juvenile and Mature Woods of Pinus Elliottii Var. Elliottii by Thermal Modification. Eur. J. Wood Wood Prod. 2012, 70, 741–747. [Google Scholar] [CrossRef]
- Groom, L.H.; Mott, L.; Shaler, S. Mechanical Properties of Individual Southern Pine Fibers. Part I. Determination of Variability of Stress-Strain Curves with Respect to Tree Height and Juvenility. Wood Fiber Sci. 2002, 34, 14–27. [Google Scholar]
- Mott, L.; Groom, L.; Shaler, S. Mechanical Properties of Individual Southern Pine Fibers: Part II. Comparison of Earlywood and Latewood Fibers with Respect to Tree Height and Juvenility. Wood Fiber Sci. 2002, 34, 221–237. [Google Scholar]
- Beck, K.; Cloutier, A.; Salenikovich, A.; Beauregard, R. Effect of Strand Geometry and Wood Species on Strandboard Mechanical Properties. Wood Fiber Sci. 2009, 41, 267–278. [Google Scholar]
- Zhuang, B.; Cloutier, A.; Koubaa, A. Physical and Mechanical Properties of Oriented Strand Board Made from Eastern Canadian Softwood Species. Forests 2022, 13, 523. [Google Scholar] [CrossRef]
- EN 312; Particleboards. Specifications. European Committee for Standardization: Brussels, Belgium, 2010.
- Frihart, C.R.; Hunt, C.G. Adhesives with Wood Materials: Bond Formation and Performance. In Wood Handbook: Wood as an Engineering Material: Chapter 10; Centennial, Ed.; General technical report FPL; GTR-190; US Dept. of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; Volume 190, pp. 10–11. [Google Scholar]
- Funda, T.; Fundova, I.; Gorzsás, A.; Fries, A.; Wu, H.X. Predicting the Chemical Composition of Juvenile and Mature Woods in Scots Pine (Pinus sylvestris L.) Using FTIR Spectroscopy. Wood Sci. Technol. 2020, 54, 289–311. [Google Scholar] [CrossRef]
- Bao, F.C.; Jiang, Z.H.; Jiang, X.M.; Lu, X.X.; Luo, X.Q.; Zhang, S.Y. Differences in Wood Properties between Juvenile Wood and Mature Wood in 10 Species Grown in China. Wood Sci. Technol. 2001, 35, 363–375. [Google Scholar] [CrossRef]
- Yeh, T.-F.; Braun, J.L.; Goldfarb, B.; Chang, H.; Kadla, J.F. Morphological and Chemical Variations between Juvenile Wood, Mature Wood, and Compression Wood of Loblolly Pine (Pinus taeda L.). Holzforschung 2006, 60, 1–8. [Google Scholar] [CrossRef]
- Boquillon, N.; Elbez, G.; SchÖnfeld, U. Properties of Wheat Straw Particleboards Bonded with Different Types of Resin. J. Wood Sci. 2004, 50, 230–235. [Google Scholar] [CrossRef]
- Juliana, A.H.; Tahir, P.M.; Sudin, R.; Ibrahim, N.; Uyup, M.K.A. Properties of Particleboard Made from Kenaf (Hibiscus cannabinus L.) as Function of Particle Geometry. Mater. Des. 2012, 34, 406–411. [Google Scholar] [CrossRef]
- Jelonek, T.; Tomczak, A.; Pazdrowski, W. Wytrzymałość Na Ściskanie Wzdłuż Włókien Drewna Sosny Zwyczajnej (Pinus sylvestris L.) z Drzewostanów Eksponowanych Na Działanie Wiatru. Stud. Mater. Cent. Edukac. Przyr.-Leśnej 2014, 16, 171–180. [Google Scholar]
- Telewski, F.W. Wind and Trees: Wind-Induced Physiological and Developmental Responses in Trees; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Telewski, F.W.; Jaffe, M.J. Thigmomorphogenesis: Anatomical, Morphological and Mechanical Analysis of Genetically Different Sibs of Pinus Taeda in Response to Mechanical Perturbation. Physiol. Plant. 1986, 66, 219–226. [Google Scholar] [CrossRef]
- Brüchert, F.; Gardiner, B. The Effect of Wind Exposure on the Tree Aerial Architecture and Biomechanics of Sitka Spruce (Picea sitchensis, Pinaceae). Am. J. Bot. 2006, 93, 1512–1521. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, A.; Jelonek, T.; Zoń, L. Comparison of Selected Physical Properties of the Juvenile and Mature Wood of Scots Pine (Pinus sylvestris L.) from Mature Stands. Sylwan 2010, 154, 809–817. [Google Scholar]
- Ivković, M.; Gapare, W.J.; Abarquez, A.; Ilic, J.; Powell, M.B.; Wu, H.X. Prediction of Wood Stiffness, Strength, and Shrinkage in Juvenile Wood of Radiata Pine. Wood Sci. Technol. 2009, 43, 237–257. [Google Scholar] [CrossRef]
- Calonego, F.W.; Severo, E.T.D.; Latorraca, J.V.D.F.; Bond, B.H. Physical Properties of Thermally Modified Juvenile and Mature Wood of Hevea Brasiliensis (Euphorbiaceae). Floresta Ambiente 2020, 27, e20170841. [Google Scholar] [CrossRef]
- Roszyk, E. Wilgotnościowe i Ultrastrukturalne Uwarunkowania Parametrów Mechanicznych Drewna Sosny (Pinus sylvestris L.) Rozciąganego Wzdłuż Włókien; Wydawnictwo Uniwersytetu Przyrodniczego: Poznań, Poland, 2016; ISBN 83-7160-844-6. [Google Scholar]
- Lachowicz, H.; Wróblewska, H.; Wojtan, R.; Sajdak, M. The Effect of Tree Age on the Chemical Composition of the Wood of Silver Birch (Betula pendula Roth.) in Poland. Wood Sci. Technol. 2019, 53, 1135–1155. [Google Scholar] [CrossRef]
- Lu, C.; Wu, J.; Jiang, Q.; Liu, Y.; Zhou, L.; You, Y.; Cheng, Y.; Liu, S. Influence of juvenile and mature wood on anatomical and chemical properties of early and late wood from Chinese fir plantation. J. Wood Sci. 2021, 67, 72. [Google Scholar] [CrossRef]
- Nuryawan, A.; Rahmawaty; Tambun, K.D.S.; Risnasari, I.; Masruchin, N. Hydrolysis of Particleboard Bonded with Urea-Formaldehyde Resin for Recycling. Heliyon 2020, 6, e03936. [Google Scholar] [CrossRef] [PubMed]
Species of Wood Particles | Fraction (mm) | Shape Factors of Wood Particles | ||
---|---|---|---|---|
Degree of Slenderness (λs) | Degree of Flatness (ψ) | Width Coefficient (m) | ||
PNE-IP | 1.4 | 12.42 | 1.02 | 12.16 |
2.5 | 12.64 | 1.53 | 8.27 | |
PNE-JW | 1.4 | 17.11 | 2.12 | 8.10 |
2.5 | 20.50 | 2.22 | 9.22 | |
BIR-JW | 1.4 | 16.78 | 2.18 | 7.69 |
2.5 | 18.55 | 2.13 | 8.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czarnecki, R.; Dukarska, D.; Kawalerczyk, J.; Filipski, A. Utilization of Pine and Birch Juvenile Wood for Low-Density Particleboard Production. Materials 2025, 18, 1140. https://doi.org/10.3390/ma18051140
Czarnecki R, Dukarska D, Kawalerczyk J, Filipski A. Utilization of Pine and Birch Juvenile Wood for Low-Density Particleboard Production. Materials. 2025; 18(5):1140. https://doi.org/10.3390/ma18051140
Chicago/Turabian StyleCzarnecki, Rafał, Dorota Dukarska, Jakub Kawalerczyk, and Arkadiusz Filipski. 2025. "Utilization of Pine and Birch Juvenile Wood for Low-Density Particleboard Production" Materials 18, no. 5: 1140. https://doi.org/10.3390/ma18051140
APA StyleCzarnecki, R., Dukarska, D., Kawalerczyk, J., & Filipski, A. (2025). Utilization of Pine and Birch Juvenile Wood for Low-Density Particleboard Production. Materials, 18(5), 1140. https://doi.org/10.3390/ma18051140