Facile Synthesis of Nanoporous NiS Film with Inverse Opal Structure as Efficient Counter Electrode for DSSCs
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Preparation of PS Suspension
2.3. Preparation of PS Template Film
2.4. Preparation of Nanoporous NiS Electrode
2.5. Preparation of Flat NiS/FTO Electrode and Flat Pt/FTO Electrode
2.6. Assembly of DSSC
2.7. Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- He, Y.; Hu, J.; Xie, Y. High-efficiency dye-sensitized solar cells of up to 8.03% by air plasma treatment of ZnO nanostructures. Chem. Commun. 2015, 51, 16229–16232. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.E.; Astani, N.A.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, K.; Graetzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tański, T.; Jarka, P.; Szindler, M.; Drygała, A.; Matysiak, W.; Libera, M. Study of dye sensitized solar cells photoelectrodes consisting of nanostructures. Appl. Surf. Sci. 2019, 491, 807–813. [Google Scholar] [CrossRef]
- Grätzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. C 2003, 4, 145–153. [Google Scholar] [CrossRef]
- Giannouli, M.; Govatsi, K.; Syrrokostas, G.; Yannopoulos, S.; Leftheriotis, G. Factors Affecting the Power Conversion Efficiency in ZnO DSSCs: Nanowire vs. Nanoparticles. Materials 2018, 11, 411. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Deng, J.; Wang, N.; Deng, D.; Zhang, W.-H.; Bao, X.; Li, C. Podlike N-Doped Carbon Nanotubes Encapsulating FeNi Alloy Nanoparticles: High-Performance Counter Electrode Materials for Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed. 2014, 53, 7023–7027. [Google Scholar] [CrossRef]
- Chang, N.W.; Choi, H.-J.; Filer, A.; Baek, J.-B. Graphene in photovoltaic applications: Organic photovoltaic cells (OPVs) and dye-sensitized solar cells (DSSCs). J. Mater. Chem. A 2014, 2, 12136. [Google Scholar] [CrossRef]
- Arbab, A.A.; Sun, K.C.; Sahito, I.A.; Memon, A.A.; Choi, Y.S.; Vikraman, D. Fabrication of textile fabric counter electrodes using activated charcoal doped multi walled carbon nanotube hybrids for dye sensitized solar cells. J. Mater. Chem. A 2016, 4, 1495–1505. [Google Scholar] [CrossRef]
- Costa, R.D.; Lodermeyer, F.; Casillas, R.; Guldi, D.M. Recent advances in multifunctional nanocarbons used in dye-sensitized solar cells. Energy Environ. Sci. 2014, 7, 1281–1296. [Google Scholar] [CrossRef] [Green Version]
- Gong, F.; Xu, X.; Li, Z.; Zhou, G.; Wang, Z.-S. NiSe2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells. Chem. Commun. 2013, 49, 1437–1439. [Google Scholar] [CrossRef]
- Subbiah, V.; Landi, G.; Wu, J.J.; Anandan, S. MoS2 coated CoS2 nanocomposites as counter electrodes in Pt-free dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2019, 21, 25474–25483. [Google Scholar] [CrossRef]
- Ghifari, A.; Long, D.X.; Kim, S.; Ma, B.; Hong, J. Transparent Platinum Counter Electrode Prepared by Polyol Reduction for Bifacial, Dye-Sensitized Solar Cells. Nanomaterials 2020, 10, 502. [Google Scholar] [CrossRef] [Green Version]
- Haris, V.; Umar, A.A. The Influence of MoSe2 Coated onto Pt Film to DSSC Performance with the Structure TiO2/Dye/LxMoSe2Pt (0 ≤ x ≤ 5). Mater. Lett. 2020, 275, 128076–128078. [Google Scholar]
- Kim, H.J.; Yeo, T.-B.; Kim, S.-K.; Rao, S.S.; Savariraj, A.D.; Prabakar, K.; Gopi, C.V.V.M. Optimal-Temperature-Based Highly Efficient NiS Counter Electrode for Quantum-Dot-Sensitized Solar Cells. Eur. J. Inorg. Chem. 2014, 2014, 4281–4286. [Google Scholar] [CrossRef]
- Ke, W.; Fang, G.; Tao, H.; Qin, P.; Wang, J.; Lei, H.; Liu, Q.; Zhao, X. In Situ Synthesis of NiS Nanowall Networks on Ni Foam as a TCO-Free Counter Electrode for Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 5525–5530. [Google Scholar] [CrossRef]
- Liao, Y.; Pan, K.; Guofeng, W.; Zhou, W.; Yang, Y.; Pan, Q.; Wang, G. In situ synthesis of a NiS/Ni 3 S 2 nanorod composite array on Ni foil as a FTO-free counter electrode for dye-sensitized solar cells. Nanoscale 2015, 7, 1623–1626. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Jia, X.; Chen, L.; Yin, Z.; Zhang, Z.; Gaobc, G. Low cost NiS as an efficient counter electrode for dye-sensitized solar cells. Mater. Lett. 2016, 163, 1–3. [Google Scholar] [CrossRef]
- Yao, J.; Wang, W.; Zuo, X.; Yang, Q.; Khan, M.W.; Wu, M.; Tang, H.; Jin, S.; Li, G. Multi-interface superstructure strategy to improve the catalytic activity and cyclic stability in enhancing the photo conversion in solar cells. Appl. Catal. B Environ. 2019, 256, 117857. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, D.-J.; Rao, S.S.; Savariraj, A.D.; Soo-Kyoung, K.; Son, M.-K.; Gopi, C.V.; Prabakar, K. Highly efficient solution processed nanorice structured NiS counter electrode for quantum dot sensitized solar cells. Electrochim. Acta 2014, 127, 427–432. [Google Scholar] [CrossRef]
- Yu, Q.; Pang, Y.; Jiang, Q. NiS submicron cubes with efficient electrocatalytic activity as the counter electrode of dye-sensitized solar cells. R. Soc. Open Sci. 2018, 5, 180186. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Qin, D.; Huang, S.; Guo, X.; Li, D.; Luo, Y.; Dong, J. Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 2011, 4, 2630–2637. [Google Scholar] [CrossRef]
- Mehmood, U.; Karim, N.A.; Zahid, H.F.; Asif, T.; Younas, M. Polyaniline/graphene nanocomposites as counter electrode materials for platinum free dye-sensitized solar cells (DSSCSs). Mater. Lett. 2019, 256, 126651. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kang, S.H.; Zhu, K.; Kim, J.Y.; Neale, N.R.; Frank, A.J. Ni–NiO core–shell inverse opal electrodes for supercapacitors. Chem. Commun. 2011, 47, 5214–5216. [Google Scholar] [CrossRef] [PubMed]
- Yun, G.; Balamurugan, M.; Kim, H.-S.; Ahn, K.-S.; Kang, S.-H. Role of WO3 Layers Electrodeposited on SnO2 Inverse Opal Skeletons in Photoelectrochemical Water Splitting. J. Phys. Chem. C 2016, 120, 5906–5915. [Google Scholar] [CrossRef]
- Yeo, K.; Teh, L.; Wong, C. Process and characterization of macroporous periodic nanostructured zinc oxide via electrodeposition. J. Cryst. Growth 2006, 287, 180–184. [Google Scholar] [CrossRef]
- Kim, O.-H.; Cho, Y.-H.; Kang, S.H.; Park, H.-Y.; Kim, M.; Lim, J.W.; Chung, D.Y.; Lee, M.J.; Choe, H.; Sung, Y.-E. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure. Nat. Commun. 2013, 4, 2473. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, E.; O’Sullivan, M.; O’Connell, J.; Holmes, J.D.; O’Dwyer, C. 3D Vanadium Oxide Inverse Opal Growth by Electrodeposition. J. Electrochem. Soc. 2015, 162, D605–D612. [Google Scholar] [CrossRef] [Green Version]
- Teh, L.; Yeo, K.H.; Wong, C.C. Isotropic photonic pseudogap in electrodeposited ZnO inverse opal. Appl. Phys. Lett. 2006, 89, 51105. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Yeo, L.P.; Mandler, D.; Magdassi, S.; Zhang, T. Electrodeposition of amorphous WO3 on SnO2–TiO2 inverse opal nano-framework for highly transparent, effective and stable electrochromic smart window. RSC Adv. 2019, 9, 16730–16737. [Google Scholar] [CrossRef] [Green Version]
- Ling, T.; Kulinich, S.; Zhu, Z.-L.; Qiao, S.; Du, X.-W. Highly Conductive CdS Inverse Opals for Photochemical Solar Cells. Adv. Funct. Mater. 2013, 24, 707–715. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, Y.; Wang, W.; Song, T.; Chang, J. A theoretical and experimental investigation of the size distribution of polystyrene microspheres by seeded polymerization. J. Colloid Interface Sci. 2010, 342, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-S.; Nah, Y.-C.; Noh, Y.-Y.; Jo, J.; Kim, D.-Y. Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells. Electrochim. Acta 2006, 51, 3814–3819. [Google Scholar] [CrossRef]
- Li, G.R.; Song, J.; Pan, G.L.; Gao, X.P. Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 1680–1683. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Wang, C.-L.; He, Z.-H.; Chen, S.-H. Achieving a superior electrocatalytic activity of carbon cloth via atomic layer deposition as a flexible counter electrode for efficient dye-sensitized solar cells. J. Power Sources 2020, 458, 228043. [Google Scholar] [CrossRef]
- Listorti, A.; O’Regan, B.; Durrant, J.R. Electron Transfer Dynamics in Dye-Sensitized Solar Cells. Chem. Mater. 2011, 23, 3381–3399. [Google Scholar] [CrossRef]
- Kavan, L.; Yum, J.H.; Grätzel, M. Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets. ACS Nano 2010, 5, 165–172. [Google Scholar] [CrossRef]
- Han, L.; Koide, N.; Chiba, Y.; Mitate, T. Modeling of an equivalent circuit for dye-sensitized solar cells. Appl. Phys. Lett. 2004, 84, 2433–2435. [Google Scholar] [CrossRef]
- Wu, M.; Lin, X.; Wang, Y.; Wang, L.; Guo, W.; Qi, D.; Peng, X.; Hagfeldt, A.; Grätzel, M.; Ma, T. Economical Pt-Free Catalysts for Counter Electrodes of Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2012, 134, 3419–3428. [Google Scholar] [CrossRef]
- Yella, A.; Lee, H.-W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.-G.; Yeh, C.-Y.; Zakeeruddin, S.M.; Grätzel, M. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334, 629–634. [Google Scholar] [CrossRef]
CEs | Rs (Ω/sq) | J0 (mA/cm2) | Rct (Ω) | JSC (mA/cm2) | VOC (V) | FF | PCE (%) |
---|---|---|---|---|---|---|---|
Nanoporous NiS | 14.59 | 1.25 | 2.88 | 14.51 | 0.73 | 0.64 | 6.77 |
Flat NiS/FTO | 14.60 | 1.09 | 8.35 | 14.01 | 0.73 | 0.62 | 6.30 |
Flat Pt/FTO | 14.53 | 1.17 | 3.03 | 14.29 | 0.73 | 0.65 | 6.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhang, Y.; Pang, Y.; Jiang, Q. Facile Synthesis of Nanoporous NiS Film with Inverse Opal Structure as Efficient Counter Electrode for DSSCs. Materials 2020, 13, 4647. https://doi.org/10.3390/ma13204647
Chen X, Zhang Y, Pang Y, Jiang Q. Facile Synthesis of Nanoporous NiS Film with Inverse Opal Structure as Efficient Counter Electrode for DSSCs. Materials. 2020; 13(20):4647. https://doi.org/10.3390/ma13204647
Chicago/Turabian StyleChen, Xu, Yang Zhang, Yashuai Pang, and Qiwei Jiang. 2020. "Facile Synthesis of Nanoporous NiS Film with Inverse Opal Structure as Efficient Counter Electrode for DSSCs" Materials 13, no. 20: 4647. https://doi.org/10.3390/ma13204647
APA StyleChen, X., Zhang, Y., Pang, Y., & Jiang, Q. (2020). Facile Synthesis of Nanoporous NiS Film with Inverse Opal Structure as Efficient Counter Electrode for DSSCs. Materials, 13(20), 4647. https://doi.org/10.3390/ma13204647