Mechanical Thrombectomy in Acute Ischemic Stroke COVID-19 and Non-COVID-19 Patients: A Single Comprehensive Stroke Center Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
- Elrobaa, I.H.; New, K.J. COVID-19: Pulmonary and Extra Pulmonary Manifestations. Front. Public Health 2021, 9, 711616. [Google Scholar] [CrossRef] [PubMed]
- Sagris, D.; Papanikolaou, A.; Kvernland, A.; Korompoki, E.; Frontera, J.A.; Troxel, A.B.; Gavriatopoulou, M.; Milionis, H.; Lip, G.Y.H.; Michel, P.; et al. COVID-19 and ischemic stroke. Eur. J. Neurol. 2021, 28, 3826–3836. [Google Scholar] [CrossRef] [PubMed]
- Tudoran, C.; Velimirovici, D.E.; Berceanu-Vaduva, D.M.; Rada, M.; Voiţă-Mekeres, F.; Tudoran, M. Increased Susceptibility for Thromboembolic Events versus High Bleeding Risk Associated with COVID-19. Microorganisms 2022, 10, 1738. [Google Scholar] [CrossRef] [PubMed]
- Nannoni, S.; de Groot, R.; Bell, S.; Markus, H.S. Stroke in COVID-19: A systematic review and meta-analysis. Int. J. Stroke 2021, 16, 137–149. [Google Scholar] [CrossRef]
- Syahrul, S.; Maliga, H.A.; Ilmawan, M.; Fahriani, M.; Mamada, S.S.; Fajar, J.K.; Frediansyah, A.; Syahrul, F.N.; Imran, I.; Haris, S.; et al. Hemorrhagic and ischemic stroke in patients with coronavirus disease 2019: Incidence, risk factors, and pathogenesis—A systematic review and meta-analysis. F1000Research 2021, 10, 34. [Google Scholar] [CrossRef]
- Jovin, T.G.; Chamorro, A.; Cobo, E.; de Miquel, M.A.; Molina, C.A.; Rovira, A.; San Román, L.; Serena, J.; Abilleira, S.; Ribó, M.; et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N. Engl. J. Med. 2015, 372, 2296–2306. [Google Scholar] [CrossRef]
- Tian, C.; Cao, X.; Wang, J. Recanalisation therapy in patients with acute ischaemic stroke caused by large artery occlusion: Choice of therapeutic strategy according to underlying aetiological mechanism? Stroke Vasc. Neurol. 2017, 2, 244–250. [Google Scholar] [CrossRef]
- Kurnianto, A.; Tugasworo, D.; Andhitara, Y.; Retnaningsih; Ardhini, R.; Budiman, J. Mechanical thrombectomy (MT) for acute ischemic stroke (AIS) in COVID-19 pandemic: A systematic review. Egypt J. Neurol. Psychiatr. Neurosurg. 2021, 57, 67. [Google Scholar] [CrossRef] [PubMed]
- Zureigat, H.; Alhusban, M.; Cobia, M. Mechanical Thrombectomy Outcomes in COVID-19 Patients With Acute Ischemic Stroke: A Narrative Review. Neurologist 2021, 26, 261–267. [Google Scholar] [CrossRef]
- Jabbour, P.; Dmytriw, A.A.; Sweid, A.; Piotin, M.; Bekelis, K.; Sourour, N.; Raz, E.; Linfante, I.; Dabus, G.; Kole, M.; et al. Characteristics of a COVID-19 Cohort With Large Vessel Occlusion: A Multicenter International Study. Neurosurgery 2022, 90, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Dmytriw, A.A.; Ghozy, S.; Sweid, A.; Piotin, M.; Bekelis, K.; Sourour, N.; Raz, E.; Vela-Duarte, D.; Linfante, I.; Dabus, G.; et al. North American Neurovascular COVID-19 (NAN-C) Consortium & Society of Vascular and Interventional Neurology (SVIN) Investigators. International controlled study of revascularization and outcomes following COVID-positive mechanical thrombectomy. Eur. J. Neurol. 2022, 29, 3273–3287. [Google Scholar] [CrossRef] [PubMed]
- Douiri, A.; Muruet, W.; Bhalla, A.; James, M.; Paley, L.; Stanley, K.; Rudd, A.G.; Wolfe, C.D.A.; Bray, B.D.; SSNAP Collaboration. Stroke Care in the United Kingdom During the COVID-19 Pandemic. Stroke 2021, 52, 2125–2133. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, R.G.; Abdalkader, M.; Qureshi, M.M.; Frankel, M.R.; Mansour, O.Y.; Yamagami, H.; Qiu, Z.; Farhoudi, M.; Siegler, J.E.; Yaghi, S.; et al. Global impact of COVID-19 on stroke care. Int. J. Stroke 2021, 16, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Kerleroux, B.; Fabacher, T.; Bricout, N.; Moïse, M.; Testud, B.; Vingadassalom, S.; Ifergan, H.; Janot, K.; Consoli, A.; Ben Hassen, W.; et al. Mechanical Thrombectomy for Acute Ischemic Stroke Amid the COVID-19 Outbreak: Decreased Activity, and Increased Care Delays. Stroke 2020, 51, 2012–2017. [Google Scholar] [CrossRef]
- Gebhard, C.; Regitz-Zagrosek, V.; Neuhauser, H.K.; Morgan, R.; Klein, S.L. Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex Differ. 2020, 11, 29. [Google Scholar] [CrossRef]
- Ghazeeri, G.; Abdullah, L.; Abbas, O. Immunological differences in women compared with men: Overview and contributing factors. Am. J. Reprod. Immunol. 2011, 66, 163–169. [Google Scholar] [CrossRef]
- Bwire, G.M. Coronavirus: Why Men are More Vulnerable to Covid-19 Than Women? SN Compr. Clin. Med. 2020, 2, 874–876. [Google Scholar] [CrossRef]
- De la Vega, R.; Ruíz-Barquín, R.; Boros, S.; Szabo, A. Could attitudes toward COVID-19 in Spain render men more vulnerable than women? Glob. Public Health 2020, 15, 1278–1291. [Google Scholar] [CrossRef]
- Petik, B.; Akcicek, M.; Sahin, M.; Dag, N. Cerebrovascular radiological features of COVID-19 positive patients. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 5946–5955. [Google Scholar] [CrossRef]
- Novikova, L.B.; Latypova, R.F. Prediktory neblagopriyatnogo iskhoda ishemicheskogo insul’ta, assotsiirovannogo s COVID-19 [Predictors of unfavorable outcomes of ischemic stroke associated with COVID-19]. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova 2022, 122, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Requena, M.; Olivé-Gadea, M.; Muchada, M.; García-Tornel, Á.; Deck, M.; Juega, J.; Boned, S.; Rodríguez-Villatoro, N.; Piñana, C.; Pagola, J.; et al. COVID-19 and Stroke: Incidence and Etiological Description in a High-Volume Center. J. Stroke Cerebrovasc. Dis. 2020, 29, 105225. [Google Scholar] [CrossRef] [PubMed]
- De Havenon, A.; Yaghi, S.; Mistry, E.A.; Delic, A.; Hohmann, S.; Shippey, E.; Stulberg, E.; Tirschwell, D.; Frontera, J.A.; Petersen, N.H.; et al. Endovascular thrombectomy in acute ischemic stroke patients with COVID-19: Prevalence, demographics, and outcomes. J. Neurointerv. Surg. 2020, 12, 1045–1048. [Google Scholar] [CrossRef] [PubMed]
- Pop, R.; Quenardelle, V.; Hasiu, A.; Mihoc, D.; Sellal, F.; Dugay, M.H.; Lebedinsky, P.A.; Schluck, E.; Porta, A.L.A.; Courtois, S.; et al. Impact of the COVID-19 outbreak on acute stroke pathways—Insights from the Alsace region in France. Eur. J. Neurol. 2020, 27, 1783–1787. [Google Scholar] [CrossRef]
- Aykac, O.; Ozdemir, A.O.; Giray, S.; Akpinar, C.K.; Ozkul, A.; Ozdemir, G.; Sarionder Gencer, E.; Gurkas, E.; Acar, B.A.; Yildirim, S.; et al. Comparison of COVID-19 patients who underwent thrombectomy with those in the pre-pandemic period in terms of etiology and prognosis. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 4884–4892. [Google Scholar] [CrossRef]
- Hernández-Fernández, F.; Sandoval Valencia, H.; Barbella-Aponte, R.A.; Collado-Jiménez, R.; Ayo-Martín, Ó.; Barrena, C.; Molina-Nuevo, J.D.; García-García, J.; Lozano-Setién, E.; Alcahut-Rodriguez, C.; et al. Cerebrovascular disease in patients with COVID-19: Neuroimaging, histological and clinical description. Brain 2020, 143, 3089–3103. [Google Scholar] [CrossRef]
- Arboix, A.; Jiménez, C.; Massons, J.; Parra, O.; Besses, C. Hematological disorders: A commonly unrecognized cause of acute stroke. Expert. Rev. Hematol. 2016, 9, 891–901. [Google Scholar] [CrossRef]
- Yuan, X.; Huang, W.; Ye, B.; Chen, C.; Huang, R.; Wu, F.; Wei, Q.; Zhang, W.; Hu, J. Changes of hematological and immunological parameters in COVID-19 patients. Int. J. Hematol. 2020, 112, 553–559. [Google Scholar] [CrossRef]
- Zhu, Z.; Cai, T.; Fan, L.; Lou, K.; Hua, X.; Huang, Z.; Gao, G. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int. J. Infect. Dis. 2020, 95, 332–339. [Google Scholar] [CrossRef]
- Zeng, Z.; Yu, H.; Chen, H.; Qi, W.; Chen, L.; Chen, G.; Yan, W.; Chen, T.; Ning, Q.; Han, M.; et al. Longitudinal changes of inflammatory parameters and their correlation with disease severity and outcomes in patients with COVID-19 from Wuhan, China. Crit. Care 2020, 24, 525. [Google Scholar] [CrossRef]
- Xu, X.; Yu, M.Q.; Shen, Q.; Wang, L.Z.; Yan, R.D.; Zhang, M.Y.; Liu, J.Y.; Qu, Y.Q. Analysis of inflammatory parameters and disease severity for 88 hospitalized COVID-19 patients in Wuhan, China. Int. J. Med. Sci. 2020, 17, 2052–2062. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, M.; Wang, M.; Zhou, Y.; Chang, J.; Xian, Y.; Wang, D.; Mao, L.; Jin, H.; Hu, B. Acute cerebrovascular disease following COVID-19: A single center, retrospective, observational study. Stroke Vasc. Neurol. 2020, 5, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Belice, T.; Demir, I.; Yüksel, A. Role of neutrophil-lymphocyte-ratio in the mortality of males diagnosed with COVID-19. Iran J. Microbiol. 2020, 12, 194–197. [Google Scholar] [CrossRef]
- Sukrisman, L.; Sinto, R.; Priantono, D. Hematologic Profiles and Correlation Between Absolute Lymphocyte Count and Neutrophil/Lymphocyte Ratio with Markers of Inflammation of COVID-19 in an Indonesian National Referral Hospital. Int. J. Gen. Med. 2021, 14, 6919–6924. [Google Scholar] [CrossRef] [PubMed]
- Goel, H.; Harmouch, F.; Garg, K.; Saraiya, P.; Daly, T.; Kumar, A.; Hippen, J.T. The liver in COVID-19: Prevalence, patterns, predictors, and impact on outcomes of liver test abnormalities. Eur. J. Gastroenterol. Hepatol. 2021, 33 (Suppl. S1), e274–e281. [Google Scholar] [CrossRef]
- El-Qushayri, A.E.; Reda, A.; Dahy, A.; Azzam, A.Y.; Ghozy, S. The impact of COVID 19 on the outcomes of thrombectomy in stroke patients: A systematic review and meta-analysis. Rev. Med. Virol. 2022, e2379. [Google Scholar] [CrossRef]
- Neves Briard, J.; Dufort, G.; Jacquin, G.; Alesefir, W.; Bereznyakova, O.; Boisseau, W.; Daneault, N.; Deschaintre, Y.; Diestro, J.D.B.; Ducroux, C.; et al. Three-month functional outcomes following endovascular thrombectomy during the first wave of the COVID-19 pandemic: A Canadian single-center cohort study. J. Neurointerv. Surg. 2022, 14, 274–279. [Google Scholar] [CrossRef]
- Goyal, M.; Demchuk, A.M.; Menon, B.K.; Eesa, M.; Rempel, J.L.; Thornton, J.; Roy, D.; Jovin, T.G.; Willinsky, R.A.; Sapkota, B.L.; et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 2015, 372, 1019–1030. [Google Scholar] [CrossRef]
- Katsoularis, I.; Fonseca-Rodríguez, O.; Farrington, P.; Jerndal, H.; Lundevaller, E.H.; Sund, M.; Lindmark, K.; Fors Connolly, A.M. Risks of deep vein thrombosis, pulmonary embolism, and bleeding after COVID-19: Nationwide self-controlled cases series and matched cohort study. BMJ 2022, 377, e069590. [Google Scholar] [CrossRef]
- Li, P.; Zhao, W.; Kaatz, S.; Latack, K.; Schultz, L.; Poisson, L. Factors Associated With Risk of Postdischarge Thrombosis in Patients With COVID-19. JAMA Netw. Open 2021, 4, e2135397. [Google Scholar] [CrossRef]
COVID-19 Group (N = 13) | Non-COVID-19 (Control) Group (N = 55) | p Value | |
---|---|---|---|
Age (years), median (Q1–Q3) | 76 (59.5–82.5) | 81 (73–85) | 0.059 |
Male | 10 (76.9%) | 22 (40%) | 0.028 |
Hypertension N (%) | 10 (76.92%) | 32 (58.18%) | 0.342 |
Diabetes mellitus N (%) | 3 (23.08%) | 8 (14.55%) | 0.429 |
Atrial fibrillation N (%) | 5 (38.46%) | 11 (20%) | 0.168 |
APTT (s) | 21.45 | 22.4 | |
median (Q1–Q3) | (20.0–26.2) | (21.2–24.5) | 0.935 |
Leukocyte (×106/L) | |||
median (Q1–Q3) | 10 (7.2–11.75) | 7.2 (6.3–8.5) | 0.011 |
Neutrophil (×106/L) | |||
median (Q1–Q3) | 76.2 (68.65–86.9) | 67 (57.8–75.9) | 0.038 |
Lymphocyte (×106/L) | |||
median (Q1–Q3) | 13.9 (8.25–22.5) | 22.5 (15.2–29.8) | 0.038 |
Neutrophil/lymphocyte (N) ratio median (Q1–Q3) | 5.48 (3.16–10.27) | 2.87 (1.94–4.86) | 0.002 |
AST (IU/L) | |||
median (Q1–Q3) | 32.5 (19–44.5) | 23 (19–32) | 0.024 |
ALT (IU/L) | |||
median (Q1–Q3) | 27 (19.5–49.5) | 20 (17–27) | 0.016 |
GGT(IU/L) | |||
median (Q1–Q3) | 35 (16.5–93) | 27 (16–40) | 0.514 |
LDH (IU/L) | |||
median (Q1–Q3) | 256.5 (168.8–371) | 200.5 (168.5–220.8) | 0.01 |
CRP (mg/L) | |||
median (Q1–Q3) | 21.6 (3.25–70.85) | 3.25 (1.77–8.57) | 0.0004 |
COVID-19 Group (N = 13) | Non-COVID-19 (Control) Group (N = 55) | p Value | |
---|---|---|---|
Thrombotic events (N) | 1 | 1 | 0.089 |
Antiplatelet therapy (N, %) | 8 (61.54%) | 14 (25.45%) | 0.020 |
NIHSS at admission (N) median (Q1–Q3) | 14 (11–17) | 16 (12–18) | 0.238 |
AIS anterior circulation | 9 (69.23%) | 51 (92.73%) | 0.038 |
AIS posterior circulation | 4 (30.77%) | 4 (7.27%) | |
NIHSS at discharge (N) median (Q1–Q3) | 8 (5–14) | 8 (4–14) | 0.792 |
TICI category 2B, 2C, 3 (N, %) | 10 (76.92%) | 38 (69.09%) | 0.741 |
mRS category (0,1,2) | 4/12 (33.33%) | 20/50 (40%) | 0.751 |
mRS mortality (6) | 4/12 (33.33%) | 14/50 (28%) | 0.732 |
Control CT small AIS (0,1) | 5 (38.4%) | 30 (54.5%) | 0.45 |
Control CT large AIS (3) | 4 (30.7%) | 13 (23.6%) |
Variable | OR (95% CI) | p |
---|---|---|
Intercept | 0.61 (0.004–82.60) | 0.845 |
Age (years) | 0.99 (0.94–1.04) | 0.803 |
Hypertension | 1.13 (0.35–3.63) | 0.829 |
Diabetes melitus | 0.90 (0.19–3.83) | 0.891 |
Antiplatelet therapy | 0.77 (0.18–3.02) | 0.711 |
Atrial fibrillation | 0.71 (0.15–3.18) | 0.660 |
Smoking | 1.04 (0.04–15.00) | 0.971 |
Door to needle time (min) | 1.00 (0.99–1.02) | 0.256 |
COVID-19 | 0.54 (0.11–2.30) | 0.423 |
Variable | OR (95% CI) | p |
---|---|---|
Intercept | 276.2 (0.99–203,547) | 0.066 |
Age (years) | 0.94 (0.88–1.01) | 0.118 |
Hypertension | 1.45 (0.41–5.32) | 0.559 |
Diabetes mellitus | 1.96 (0.34–17.86) | 0.480 |
Antiplatelet therapy | 4.67 (0.84–42.29) | 0.110 |
Atrial fibrillation | 0.23 (0.02–1.37) | 0.126 |
Smoking | 0.09 (0.003–1.28) | 0.090 |
Door to needle time (min) | 0.9904 (0.97–1.00) | 0.2506 |
COVID-19 | 1.288 (0.23–10.19) | 0.7834 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kojundžić, S.L.; Sablić, S.; Budimir Mršić, D.; Marinović Guić, M.; Kraljević, I.; Benzon, B.; Dragičević, D. Mechanical Thrombectomy in Acute Ischemic Stroke COVID-19 and Non-COVID-19 Patients: A Single Comprehensive Stroke Center Study. Life 2023, 13, 186. https://doi.org/10.3390/life13010186
Kojundžić SL, Sablić S, Budimir Mršić D, Marinović Guić M, Kraljević I, Benzon B, Dragičević D. Mechanical Thrombectomy in Acute Ischemic Stroke COVID-19 and Non-COVID-19 Patients: A Single Comprehensive Stroke Center Study. Life. 2023; 13(1):186. https://doi.org/10.3390/life13010186
Chicago/Turabian StyleKojundžić, Sanja Lovrić, Sara Sablić, Danijela Budimir Mršić, Maja Marinović Guić, Ivan Kraljević, Benjamin Benzon, and Dragan Dragičević. 2023. "Mechanical Thrombectomy in Acute Ischemic Stroke COVID-19 and Non-COVID-19 Patients: A Single Comprehensive Stroke Center Study" Life 13, no. 1: 186. https://doi.org/10.3390/life13010186
APA StyleKojundžić, S. L., Sablić, S., Budimir Mršić, D., Marinović Guić, M., Kraljević, I., Benzon, B., & Dragičević, D. (2023). Mechanical Thrombectomy in Acute Ischemic Stroke COVID-19 and Non-COVID-19 Patients: A Single Comprehensive Stroke Center Study. Life, 13(1), 186. https://doi.org/10.3390/life13010186