Textbook Outcomes of Totally Robotic Versus Totally Laparoscopic Pancreaticoduodenectomy for Periampullary Neoplasm: A Propensity Score-Matched Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Surgical Procedures
2.3. Variables
2.4. Definition of Textbook Outcomes
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Short-Term Outcomes
3.3. Textbook Outcomes
3.4. Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jang, J.Y.; Chong, E.H.; Kang, I.; Yang, S.J.; Lee, S.H.; Choi, S.H. Laparoscopic pancreaticoduodenectomy and laparoscopic pancreaticoduodenectomy with robotic reconstruction: Single-surgeon experience and technical notes. J. Minim. Invasive Surg. 2023, 26, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xu, Z.; Gu, W.; Zhou, J.; Tang, N.; Zhang, S.; Chen, C.; Zhang, Z. Postoperative complications and short-term prognosis of laparoscopic pancreaticoduodenectomy vs. open pancreaticoduodenectomy for treating pancreatic ductal adenocarcinoma: A retrospective cohort study. World J. Surg. Oncol. 2023, 21, 26. [Google Scholar] [CrossRef]
- Riachi, M.E.; Hewitt, D.B. Advances in pancreas surgery: Robotic pancreaticoduodenectomy. Mini-Invasive Surg. 2023, 7, 14. [Google Scholar] [CrossRef]
- Pfister, M.; Probst, P.; Müller, P.C.; Antony, P.; Klotz, R.; Kalkum, E.; Merz, D.; Renzulli, P.; Hauswirth, F.; Muller, M.K. Minimally invasive versus open pancreatic surgery: Meta-analysis of randomized clinical trials. BJS Open 2023, 7, zrad007. [Google Scholar] [CrossRef]
- Romero-Hernandez, F.; Mohamedaly, S.; Miller, P.; Rodriguez, N.; Calthorpe, L.; Conroy, P.C.; Ganjouei, A.A.; Hirose, K.; Maker, A.V.; Nakakura, E.; et al. Minimally invasive distal pancreatectomy techniques: A contemporary analysis exploring trends similarities and differences to open surgery. Cancers 2022, 14, 5625. [Google Scholar] [CrossRef]
- Tan, W.S.; Ta, A.D.; Kelly, J.F. Robotic surgery: Getting the evidence right. Med. J. Aust. 2022, 217, 391–393. [Google Scholar] [CrossRef]
- Sheth, K.R.; Koh, C.J. The future of robotic surgery in pediatric urology: Upcoming technology and evolution within the field. Front. Pediatr. 2019, 7, 259. [Google Scholar] [CrossRef]
- Carbonell-Morote, S.; Ortiz-Sebastián, S.; Estrada-Caballero, J.L.; Gracia-Alegria, E.; Tapia, E.R.; Villodre, C.; Campo-Betancourth, C.F.; Rubio-García, J.J.; Velilla-Vico, D.; Ramia, J.M. Textbook outcome in bariatric surgery: Evolution during 15 years in a referral center. J. Gastrointest. Surg. 2023, 27, 1578–1586. [Google Scholar] [CrossRef]
- Maeda, Y.; Iwatsuki, M.; Mitsuura, C.; Morito, A.; Ohuchi, M.; Kosumi, K.; Eto, K.; Ogawa, K.; Baba, Y.; Iwagami, S.; et al. Textbook outcome contributes to long-term prognosis in elderly colorectal cancer patients. Langenbeck’s Arch. Surg. 2023, 408, 245. [Google Scholar] [CrossRef]
- Neary, C.; O’BRien, L.; McCormack, E.; Kelly, M.; Bolger, J.; McEntee, G.; Conneely, J. Defining a textbook outcome for the resection of colorectal liver metastases. J. Surg. Oncol. 2022, 127, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.K. Textbook outcome: Implications for prognosis and quality improvement in head neck cancer surgeries. Oral Dis. 2023, 30, 3506–3507. [Google Scholar] [CrossRef]
- van Roessel, S.; Mackay, T.M.; van Dieren, S.; van der Schelling, G.P.; Nieuwenhuijs, V.B.; Bosscha, K.; van der Harst, E.; van Dam, R.M.; Liem, M.S.L.; Festen, S.; et al. Textbook outcome: Nationwide analysis of a novel quality measure in pancreatic surgery. Ann. Surg. 2020, 271, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Yoon, Y.-S.; Han, H.-S.; Kim, J.; Lee, B.; Lee, H.-W.; Cho, J.Y. Standard minimally invasive pancreaticoduodenectomy. Laparosc. Surg. 2021, 5, 12. [Google Scholar] [CrossRef]
- Lee, J.S.; Yoon, Y.-S.; Han, H.-S.; Kim, J.; Lee, B.; Lee, H.-W.; Cho, J.Y. Techniques to improve the limited degree of freedom inherent from laparoscopic surgery during laparoscopic duct-to-mucosa pancreaticojejunostomy. Surg. Oncol. 2022, 43, 101805. [Google Scholar] [CrossRef] [PubMed]
- Bassi, C.; Marchegiani, G.; Dervenis, C.; Sarr, M.; Hilal, M.A.; Adham, M.; Allen, P.; Andersson, R.; Asbun, H.J.; Besselink, M.G.; et al. The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 years after. Surgery 2017, 161, 584–591. [Google Scholar] [CrossRef]
- Wente, M.N.; Veit, J.A.; Bassi, C.; Dervenis, C.; Fingerhut, A.; Gouma, D.J.; Izbicki, J.R.; Neoptolemos, J.P.; Padbury, R.T.; Sarr, M.G.; et al. Postpancreatectomy hemorrhage (PPH): An International Study Group of Pancreatic Surgery (ISGPS) definition. Surgery 2007, 142, 20–25. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Augustinus, S.; Mackay, T.M.; Andersson, B.; Beane, J.D.; Busch, O.R.; Gleeson, E.M.; Koerkamp, B.G.; Keck, T.; van Santvoort, H.C.; Tingstedt, B.; et al. Ideal Outcome After Pancreatoduodenectomy: A Transatlantic Evaluation of a Harmonized Composite Outcome Measure. Ann. Surg. 2023, 278, 740–747. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nam, D.J.; Oh, C.M.; Ha, E.; Kim, M.H.; Yang, E.H.; Lee, H.C.; Shin, S.S.; Hwang, W.Y.; You, A.H.; Ryoo, J.H. The association of pancreatic cancer incidence with smoking status and smoking amount in Korean men. Epidemiol Health 2022, 44, e2022040. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Veldhuisen, E.; Klompmaker, S.; Janssen, Q.P.; Abu Hilal, M.; Alseidi, A.; Balduzzi, A.; Balzano, G.; Bassi, C.; Berrevoet, F.; Bonds, M.; et al. Surgical and oncological outcomes after preoperative FOLFIRINOX chemotherapy in resected pancreatic cancer: An international multicenter cohort study. Ann. Surg. Oncol. 2023, 30, 1463–1473. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhuo, Q.F.; Liu, M.Q.; Li, Z.; Liu, W.S.; Shi, Y.H.; Xu, W.Y.; Ji, S.R.; Xu, X.W.; Yu, X.J. Effect of laparoscopic surgery for pancreatic cancer after neoadjuvant chemotherapy. Zhonghua Wai Ke Za Zhi 2022, 60, 134–139. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Mirzaie, S.; Premji, A.; Seo, Y.; Mederos, M.; Hines, J.; Donahue, T.; Tomlinson, J.; King, J.; Girgis, M. Learning curves in establishing a new minimally invasive pancreas program. Am. Surg. 2023, 89, 4166–4170. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.-J.; Lu, W.-H.; Liao, T.-K.; Su, P.-J.; Wang, C.-J.; Lai, C.-H.; Hung, J.-Y.; Su, P.-F.; Shan, Y.-S. Feasibility of simultaneous development of laparoscopic and robotic pancreaticoduodenectomy. Sci. Rep. 2023, 13, 6190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mazzola, M.; Giani, A.; Veronesi, V.; Bernasconi, D.P.; Benedetti, A.; Magistro, C.; Bertoglio, C.L.; De Martini, P.; Ferrari, G. Multidimensional evaluation of the learning curve for totally laparoscopic pancreaticoduodenectomy: A risk-adjusted cumulative summation analysis. HPB 2023, 25, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.-J.; Liao, T.-K.; Su, P.-J.; Wang, C.-J.; Shan, Y.-S. Impact of body mass index on the early experience of robotic pancreaticoduodenectomy. Updat. Surg. 2021, 73, 929–937. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cullinane, C.; Fullard, A.; Croghan, S.M.; A Elliott, J.; A Fleming, C. Effect of obesity on perioperative outcomes following gastrointestinal surgery: Meta-analysis. BJS Open 2023, 7, zrad026. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Entire Cohort | Matched Cohort | ||||||
---|---|---|---|---|---|---|---|
RPD (n = 60) | LPD (n = 262) | p | RPD (n = 48) | LPD (n = 96) | p Value | ||
Male, n (%) | 57 (76.7%) | 178 (68.0%) | 0.038 | 39 (78.0%) | 68 (71.0%) | 0.78 | |
Age, mean [SD], years | 65.3 ± 11.5 | 64.4 ± 13.1 | 0.369 | 64.8 ± 12.7 | 65.2 ± 11.5 | 0.521 | |
BMI, mean [SD], Kg/m2 | 24.3 ± 3.0 | 24.1 ± 4.2 | 0.595 | 24.4 ± 3.6 | 24.2 ± 3.0 | 0.761 | |
HTN, n (%) | 20 (33.3%) | 125 (47.7%) | 0.303 | 19 (38.0%) | 50 (52.1%) | 0.113 | |
DM, n (%) | 19 (31.7%) | 56 (21.5%) | 0.211 | 17 (34.0%) | 21 (21.8%) | 0.331 | |
ASA, n (%) | 0.677 | 0.297 | |||||
1 | 15 (25.0%) | 54 (20.7%) | 14 (28.0%) | 18 (18.8%) | |||
2 | 40 (66.7%) | 172 (65.6%) | 31 (62.0%) | 65 (67.7%) | |||
3 | 5 (8.3%) | 36 (13.8%) | 5 (10.5%) | 13 (13.5%) | |||
ECOG, n (%) | 0.472 | 0.403 | |||||
0 | 52 (86.7%) | 210 (80.5%) | 42 (84.0%) | 87 (90.6%) | |||
1 | 8 (13.3%) | 51 (19.5%) | 8 (16.0%) | 9 (9.4%) | |||
Previous abdominal operation hx. n (%) | 17 (28.3%) | 88 (33.6%) | 0.187 | 11 (25.0%) | 37 (38.5%) | 0.119 | |
Incidental detection, n (%) | 6 (10.0%) | 36 (13.7%) | 0.701 | 6 (13.6%) | 17 (17.7%) | 0.805 | |
Weight loss, n (%) | 25 (41.7%) | 107 (40.8%) | 0.881 | 17 (38.6%) | 44 (45.8%) | 0.458 | |
Jaundice, n (%) | 21 (35.0%) | 87 (33.2%) | >0.999 | 16 (32.0%) | 37 (38.5%) | 0.518 | |
Biliary drainage | 26 (43.3%) | 134 (51.1%) | 0.593 | 26 (52.0%) | 57 (59.3%) | 0.247 | |
Tumor location | 0.306 | 0.405 | |||||
Pancreas | 24 (40.0%) | 82 (31.3%) | 19 (38.0%) | 21 (21.9%) | |||
Common bile duct | 24 (40.0%) | 106 (40.5%) | 19 (38.0%) | 38 (39.6%) | |||
AoV | 12 (20.2%) | 74 (28.2%) | 12 (24.0%) | 37 (38.5%) | |||
Malignancy, n (%) | 50 (83.8) | 214 (81.7) | 0.791 | 40 (83.3) | 79 (82.3) | 0.880 | |
CEA, mean [SD] | 4.8 ± 14.1 | 4.3 ± 21.5 | 0.883 | 3.7 ± 2.7 | 4.3 ± 23.5 | 0.782 | |
CA 19-9, mean [SD] | 369.3 ± 127.1 | 207.5 ± 755.9 | 0.638 | 341.5 ± 449.5 | 212.7 ± 819.2 | 0.731 | |
Tumor size (cm), mean [SD] | 2.5 ± 1.0 | 3.04 ± 1.9 | 0.218 | 2.4 ± 1.1 | 2.9 ± 1.4 | 0.463 | |
Neoadjuvant CTx, n (%) | 0 | 1 (0.4%) | >0.999 | 0 | 0 | >0.999 |
Matched Cohort | |||
---|---|---|---|
RPD (n = 48) | LPD (n = 96) | p Value | |
Op time, mean [SD], min | 543.6 ± 117.4 | 444.2 ± 135.7 | 0.372 |
EBL, mean [SD], mL | 401.1 ± 383.7 | 362.8 ± 352.7 | 0.615 |
Transfusion, n (%) | 4 (8.3%) | 10 (8.3%) | >0.999 |
Soft pancreas | 35 (72.9%) | 67 (69.8%) | 0.892 |
P-duct size (mm), mean [SD] | 2.58 ± 1.89 | 2.82 ± 1.67 | 0.768 |
C-D grade, n (%) | 0.136 | ||
III | 10 (20.8%) | 15 (15.6%) | |
IV | 2 (4.2%) | 1 (1.0%) | |
V | 0 | 2 (2.1%) | |
CR-POPF, n (%) | 10 (20.8%) | 17 (17.8%) | 0.176 |
Hospital days, mean [SD], days | 12.3 ± 11.4 | 11.6 ± 5.7 | 0.281 |
Margin status (R0), n (%) | 38 (95.0) | 75 (94.9) | 0.981 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
Variable | Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value |
Operation method (n/%) | 0.496 | |||
LPD | Ref | |||
RPD | 0.727 (0.289–1.824) | |||
Sex (n/%) | 0.577 | |||
Male | Ref | |||
Female | 1.246 (0.576–2.696) | |||
Age (Years) | 0.696 | |||
<70 years | Ref | |||
>70 years | 1.166 (0.538–2.526) | |||
Previous abdominal surgery (n/%) | 0.635 | |||
Yes | Ref | |||
NO | 0.820 (0.360–1.866) | |||
ASA score (n/%) | ||||
1 | Ref | 0.345 | ||
2 or 3 | 1.594 (0.605–4.197) | |||
BMI (kg/m2) | 0.002 | 0.008 | ||
<25 kg/m2 | 2.302 (1.139–4.656) | 3.134 (1.349–7.282) | ||
>25 kg/m2 | Ref | Ref | ||
Preoperative CA 19-9 | 0.266 | |||
<250 | Ref | |||
>250 | 0.522 (0.166–1.642) | |||
Preoperative DM (n/%) | 0.393 | |||
Yes | Ref | |||
No | 0.655 (0.248–1.729) | |||
Preoperative jaundice (n/%) | 0.037 | |||
Yes | Ref | |||
No | 0.411 (0.179–0.946) | |||
Pancreas duct size (mm) | 0.017 | |||
<3 mm | 0.391 (0.269–0.594) | |||
>3 mm | Ref | |||
Pancreas hardness (n/%) | <0.001 | |||
Soft | 0.193 (0.280–0.825) | |||
Firm/Hard | Ref | |||
Operative time (min) | 0.074 | |||
<300 min | Ref | |||
>300 min | 0.448 (0.186–1.081) | |||
Blood loss (mL) | 0.192 | |||
<500 mL | Ref | |||
>500 mL | 0.546 (0.238–1.334) | |||
Inatraoperative transfusion (n/%) | 0.001 | |||
Yes | Ref | |||
No | 0.283 (0.335–0.609) | |||
Pathology (n/%) | 0.838 | |||
Pancreatic cancer | Ref | |||
Non-pancreatic cancer | 0.320 (0.541–0.646) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.; Han, H.-S.; Yoon, Y.-S.; Lee, J.S. Textbook Outcomes of Totally Robotic Versus Totally Laparoscopic Pancreaticoduodenectomy for Periampullary Neoplasm: A Propensity Score-Matched Cohort Study. J. Clin. Med. 2025, 14, 6687. https://doi.org/10.3390/jcm14186687
Lee B, Han H-S, Yoon Y-S, Lee JS. Textbook Outcomes of Totally Robotic Versus Totally Laparoscopic Pancreaticoduodenectomy for Periampullary Neoplasm: A Propensity Score-Matched Cohort Study. Journal of Clinical Medicine. 2025; 14(18):6687. https://doi.org/10.3390/jcm14186687
Chicago/Turabian StyleLee, Boram, Ho-Seong Han, Yoo-Seok Yoon, and Jun Suh Lee. 2025. "Textbook Outcomes of Totally Robotic Versus Totally Laparoscopic Pancreaticoduodenectomy for Periampullary Neoplasm: A Propensity Score-Matched Cohort Study" Journal of Clinical Medicine 14, no. 18: 6687. https://doi.org/10.3390/jcm14186687
APA StyleLee, B., Han, H.-S., Yoon, Y.-S., & Lee, J. S. (2025). Textbook Outcomes of Totally Robotic Versus Totally Laparoscopic Pancreaticoduodenectomy for Periampullary Neoplasm: A Propensity Score-Matched Cohort Study. Journal of Clinical Medicine, 14(18), 6687. https://doi.org/10.3390/jcm14186687