Lack of Vaccination Against COVID-19, Obesity and Coexistence of Cardiovascular Diseases as Independent Predictors of a Higher Number of ECG Changes in Patients with Previous SARS-CoV-2 Infection
Abstract
:1. Introduction
1.1. ACE2 Receptor: Gateway for SARS-CoV-2 and Mediator of Cardiovascular Impact
1.2. SARS-CoV-2 Infection: Multifactorial Mechanisms Driving Arrhythmias
1.3. COVID-19 Vaccination: Efficacy, Safety and Implications for Arrhythmias
1.4. Objective
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parohan, M.; Yaghoubi, S.; Seraji, A. Cardiac injury is associated with severe outcome and death in patients with Coronavirus disease 2019 (COVID-19) infection: A systematic review and meta-analysis of observational studies. Eur. Heart J. Acute Cardiovasc. Care 2020, 9, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Yue, H.; Liang, W.; Wu, Z. Effects of COVID-19 on Arrhythmia. J. Cardiovasc. Dev. Dis. 2022, 9, 292. [Google Scholar] [CrossRef]
- Shiravi, A.A.; Ardekani, A.; Sheikhbahaei, E.; Heshmat-Ghahdarijani, K. Cardiovascular Complications of SARS-CoV-2 Vaccines: An Overview. Cardiol. Ther. 2022, 11, 13–21. [Google Scholar] [CrossRef]
- Liu, K.; Fang, Y.-Y.; Deng, Y.; Liu, W.; Wang, M.-F.; Ma, J.-P.; Xiao, W.; Wang, Y.-N.; Zhong, M.-H.; Li, C.-H.; et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin. Med. J. 2020, 133, 1025–1031. [Google Scholar] [CrossRef]
- Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811–818. [Google Scholar] [CrossRef]
- Kobusiak-Prokopowicz, M.; Fułek, K.; Fułek, M.; Kaaz, K.; Mysiak, A.; Kurpas, D.; Beszłej, J.A.; Brzecka, A.; Leszek, J. Cardiovascular, Pulmonary, and Neuropsychiatric Short- and Long-Term Complications of COVID-19. Cells 2022, 11, 3882. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Tanzadehpanah, H.; Lotfian, E.; Avan, A.; Saki, S.; Nobari, S.; Mahmoodian, R.; Sheykhhasan, M.; Froutagh, M.H.S.; Ghotbani, F.; Jamshidi, R.; et al. Role of SARS-COV-2 and ACE2 in the pathophysiology of peripheral vascular diseases. Biomed. Pharmacother. 2023, 166, 115321. [Google Scholar] [CrossRef]
- Lindner, D.; Fitzek, A.; Bräuninger, H.; Aleshcheva, G.; Edler, C.; Meissner, K.; Scherschel, K.; Kirchhof, P.; Escher, F.; Schultheiss, H.-P.; et al. Association of Cardiac Infection With SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases. JAMA Cardiol. 2020, 5, 1281–1285. [Google Scholar] [CrossRef]
- Du, Y.; Zhou, N.; Zha, W.; Lv, Y. Hypertension is a clinically important risk factor for critical illness and mortality in COVID-19: A meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 745–755. [Google Scholar] [CrossRef]
- Varney, J.A.; Dong, V.S.; Tsao, T.; Sabir, M.S.; Rivera, A.T.; Ghula, S.; Moriles, K.E.; Cherukuri, M.L.; Fazal, R.; Azevedo, C.B.; et al. COVID-19 and arrhythmia: An overview. J. Cardiol. 2022, 79, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Babapoor-Farrokhran, S.; Rasekhi, R.T.; Gill, D.; Babapoor, S.; Amanullah, A. Arrhythmia in COVID-19. SN Compr. Clin. Med. 2020, 2, 1430–1435. [Google Scholar] [CrossRef]
- Liao, S.-C.; Shao, S.-C.; Cheng, C.-W.; Chen, Y.-C.; Hung, M.-J. Incidence rate and clinical impacts of arrhythmia following COVID-19: A systematic review and meta-analysis of 17,435 patients. Crit. Care 2020, 24, 690. [Google Scholar] [CrossRef] [PubMed]
- Driggin, E.; Madhavan, M.V.; Bikdeli, B.; Chuich, T.; Laracy, J.; Biondi-Zoccai, G.; Brown, T.S.; Der Nigoghossian, C.; Zidar, D.A.; Haythe, J.; et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J. Am. Coll. Cardiol. 2020, 75, 2352–2371. [Google Scholar] [CrossRef]
- Urban, S.; Fułek, M.; Błaziak, M.; Iwanek, G.; Jura, M.; Fułek, K.; Guzik, M.; Garus, M.; Gajewski, P.; Lewandowski, Ł.; et al. COVID-19 Related Myocarditis in Adults: A Systematic Review of Case Reports. J. Clin. Med. 2022, 11, 5519. [Google Scholar] [CrossRef]
- Colon, C.M.; Barrios, J.G.; Chiles, J.W.; McElwee, S.K.; Russell, D.W.; Maddox, W.R.; Kay, G.N. Atrial Arrhythmias in COVID-19 Patients. JACC. Clin. Electrophysiol. 2020, 6, 1189–1190. [Google Scholar] [PubMed]
- Dherange, P.; Lang, J.; Qian, P.; Oberfeld, B.; Sauer, W.H.; Koplan, B.; Tedrow, U. Arrhythmias and COVID-19: A Review. JACC. Clin. Electrophysiol. 2020, 6, 1193–1204. [Google Scholar] [CrossRef]
- Abutaleb, M.H.; Makeen, H.A.; Meraya, A.M.; Alqahtani, S.S.; Al-Mass, B.I.; Aljazaeri, R.O.; Alhazmi, B.D.; Kalakattawi, A.M.N.; Alajam, A.A. Risks of Cardiac Arrhythmia Associated with COVID-19 Vaccination: A Systematic Review and Meta-Analysis. Vaccines 2023, 11, 112. [Google Scholar] [CrossRef]
- Cocco, N.; Leibundgut, G.; Pelliccia, F.; Cammalleri, V.; Nusca, A.; Mangiacapra, F.; Cocco, G.; Fanale, V.; Ussia, G.P.; Grigioni, F. Arrhythmias after COVID-19 Vaccination: Have We Left All Stones Unturned? Int. J. Mol. Sci. 2023, 24, 10405. [Google Scholar] [CrossRef]
- Gać, P.; Jaźwiec, P.; Mazur, G.; Poręba, R. Exposure to Cigarette Smoke and the Morphology of Atherosclerotic Plaques in the Extracranial Arteries Assessed by Computed Tomography Angiography in Patients with Essential Hypertension. Cardiovasc. Toxicol. 2017, 17, 67–78. [Google Scholar] [CrossRef]
- Babicki, M.; Kołat, D.; Kałuzińska-Kołat, Ż.; Kapusta, J.; Mastalerz-Migas, A.; Jankowski, P.; Chudzik, M. The Course of COVID-19 and Long COVID: Identifying Risk Factors among Patients Suffering from the Disease before and during the Omicron-Dominant Period. Pathogens 2024, 13, 267. [Google Scholar] [CrossRef] [PubMed]
- Bielecka-Dabrowa, A.; Kapusta, J.; Sakowicz, A.; Banach, M.; Jankowski, P.; Chudzik, M. The Influence of Long COVID on the Cardiovascular System and Predictors of Long COVID in Females: Data from the Polish Long COVID Cardiovascular (PoLoCOV-CVD) Study. J. Clin. Med. 2024, 13, 7829. [Google Scholar] [CrossRef]
- Kuck, K.-H.; Schlüter, M.; Vogler, J.; Heeger, C.H.; Tilz, R.R. Has COVID-19 changed the spectrum of arrhythmias and the incidence of sudden cardiac death? Herz 2023, 48, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Song, M.K.; Kwon, B. Arrhythmia and COVID-19 in children. Clin. Exp. Pediatr. 2023, 66, 190–200. [Google Scholar] [CrossRef]
- Madjid, M.; Safavi-Naeini, P.; Solomon, S.D.; Vardeny, O. Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA Cardiol. 2020, 5, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Hakeem, H.; Chennu, G.; Saeed, Q.; Vucic, E.; Kats, Y.; Waxman, S. Left ventricular mural thrombi with multisystem thrombosis in patients with COVID-19 and myocardial injury: A case series. Eur. Heart J. Case Rep. 2021, 5, ytab239. [Google Scholar] [CrossRef] [PubMed]
- Sonaglioni, A.; Albini, A.; Nicolosi, G.L.; Rigamonti, E.; Noonan, D.M.; Lombardo, M. Case Report: An Unusual Case of Biventricular Thrombosis in a COVID-19 Patient With Ischemic Dilated Cardiomyopathy: Assessment of Mass Mobility and Embolic Risk by Tissue Doppler Imaging. Front. Cardiovasc. Med. 2021, 8, 694542. [Google Scholar] [CrossRef]
- Manolis, A.S.; Manolis, A.A.; Manolis, T.A.; Apostolopoulos, E.J.; Papatheou, D.; Melita, H. COVID-19 infection and cardiac arrhythmias. Trends Cardiovasc. Med. 2020, 30, 451–460. [Google Scholar] [CrossRef]
- Yarmohammadi, H.; Morrow, J.P.; Dizon, J.; Biviano, A.; Ehlert, F.; Saluja, D.; Waase, M.; Elias, P.; Poterucha, T.J.; Berman, J.; et al. Frequency of Atrial Arrhythmia in Hospitalized Patients With COVID-19. Am. J. Cardiol. 2021, 147, 52–57. [Google Scholar] [CrossRef]
- Gopinathannair, R.; Merchant, F.M.; Lakkireddy, D.R.; Etheridge, S.P.; Feigofsky, S.; Han, J.K.; Kabra, R.; Natale, A.; Poe, S.; Saha, S.A.; et al. COVID-19 and cardiac arrhythmias: A global perspective on arrhythmia characteristics and management strategies. J. Interv. Card. Electrophysiol. Int. J. Arrhythm. Pacing. 2020, 59, 329–336. [Google Scholar] [CrossRef]
- Patone, M.; Mei, X.W.; Handunnetthi, L.; Dixon, S.; Zaccardi, F.; Shankar-Hari, M.; Watkinson, P.; Khunti, K.; Harnden, A.; Coupland, C.A.C.; et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat. Med. 2022, 28, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Cersosimo, A.; Cimino, G.; Amore, L.; Calvi, E.; Pascariello, G.; Inciardi, R.M.; Lombardi, C.M.; Vizzardi, E.; Metra, M. Cardiac biomarkers and mortality in COVID-19 infection: A review. Monaldi Arch. Chest Dis. Arch. Monaldi Per Le Mal. Del Torace 2022, 93, 2276. [Google Scholar] [CrossRef]
- Kapusta, J.; Sinnadurai, S.; Babicki, M.; Kałuzińska-Kołat, Ż.; Meijers, W.C.; Kołat, D.; Manintveld, O.C.; Jankowski, P.; Chudzik, M. Predictors of Cardiovascular Symptoms Among Long COVID Patients: Data from the Polish Long COVID Cardiovascular (PoLoCOV-CVD) Study. J. Clin. Med. 2025, 14, 956. [Google Scholar] [CrossRef]
- Abdel Moneim, A.; Radwan, M.A.; Yousef, A.I. COVID-19 and cardiovascular disease: Manifestations, pathophysiology, vaccination, and long-term implication. Curr. Med. Res. Opin. 2022, 38, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Haseeb, S.; Gul, E.E.; Çinier, G.; Bazoukis, G.; Alvarez-Garcia, J.; Garcia-Zamora, S.; Lee, S.; Yeung, C.; Liu, T.; Tse, G.; et al. Value of electrocardiography in coronavirus disease 2019 (COVID-19). J. Electrocardiol. 2020, 62, 39–45. [Google Scholar] [CrossRef]
- Woźniak, A.; Misiąg, W.; Leśnik, P.; Janc, J.; Chabowski, M. Leveraging independence and mental fitness—Keys to reducing in-hospital mortality among geriatric COVID-19 patients in the intensive care unit: A cross-sectional study in Poland. Dent. Med. Probl. 2024. Epub ahead of print. (accessed on 4 January 2025). [Google Scholar] [CrossRef]
- Karakasis, P.; Nasoufidou, A.; Sagris, M.; Fragakis, N.; Tsioufis, K. Vascular Alterations Following COVID-19 Infection: A Comprehensive Literature Review. Life 2024, 14, 545. [Google Scholar] [CrossRef]
- Babicki, M.; Mastalerz-Migas, A. Attitudes toward Vaccination against COVID-19 in Poland. A Longitudinal Study Performed before and Two Months after the Commencement of the Population Vaccination Programme in Poland. Vaccines 2021, 9, 503. [Google Scholar] [CrossRef]
Study Group (n = 237) | |
---|---|
age (years) | 59.68 ± 11.30 |
sex (%/n) | |
men | 49.8/118 |
female | 50.2/119 |
height (cm) | 171.14 ± 12.38 |
body weight (kg) | 76.82 ± 9.27 |
BMI (kg/m2) | 26.14 ± 6.31 |
arterial hypertension (%/n) | 59.5/141 |
systolic blood pressure (mmHg) | 138.10 ± 23.67 |
diastolic blood pressure (mmHg) | 83.78 ± 12.85 |
diuretics (%/n) | 27.8/66 |
β-blockers (%/n) | 33.3/79 |
ACE inhibitors (%/n) | 35.0/83 |
sartans (%/n) | 10.5/25 |
Ca-blockers (%/n) | 27.0/64 |
total cholesterol (mg/dL) | 165.31 ± 39.10 |
triglicerides (mg/dL) | 124.29 ± 68.07 |
statins (%/n) | 59.1/140 |
fibrates (%/n) | 19.4/46 |
miocardial infarction (%/n) | 8.4/20 |
stroke (%/n) | 2.9/7 |
atrial fibrillation (%/n) | 5.1/12 |
deep vein thrombosis (%/n) | 3.3/8 |
diabetes type 2 (%/n) | 11.8/28 |
fasting glucose (mg/dL) | 103.31 ± 15.44 |
oral hypoglycemic drugs (%/n) | 11.8/28 |
insulin (%/n) | 4.6/11 |
thyroid diseases (%/n) | 8.4/20 |
smoking (%/n) | 17.3/41 |
cigarette years | 274.23 ± 148.52 |
CRP (mg/L) | 2.20 ± 4.97 |
Group A (n = 91) | Group B (n = 80) | Group C (n = 66) | p < 0.05 | |
---|---|---|---|---|
age (years) | 59.75 ± 14.82 | 62.11 ± 8.95 | 60.53 ± 10.28 | ns |
sex (%/n) | ||||
men | 51.6/47 | 46.2/37 | 51.5/34 | ns |
female | 48.4/44 | 53.7/43 | 48.5/32 | ns |
height (cm) | 172.52 ± 11.18 | 170.52 ± 8.83 | 168.14 ± 9.27 | ns |
body weight (kg) | 77.63 ± 11.48 | 75.28 ± 8.26 | 75.59 ± 12.15 | ns |
BMI (kg/m2) | 27.83 ± 2.92 | 26.17 ± 2.27 | 25.26 ± 3.59 | ns |
arterial hypertension (%/n) | 49.4/45 | 70.0/56 | 60.6/40 | ns |
systolic blood pressure (mmHg) | 137.58 ± 25.79 | 140.31 ± 20.83 | 136.14 ± 23.98 | ns |
diastolic blood pressure (mmHg) | 82.75 ± 12.96 | 85.44 ± 12.81 | 83.18 ± 12.76 | ns |
diuretics (%/n) | 23.1/21 | 35.0/28 | 25.8/17 | ns |
β-blockers (%/n) | 26.4/24 | 41.2/33 | 33.3/22 | ns |
ACE inhibitors (%/n) | 27.5/25 | 42.5/34 | 36.4/24 | ns |
sartans (%/n) | 9.9/9 | 11.2/9 | 10.6/7 | ns |
Ca-blockers (%/n) | 24.2/22 | 26.2/21 | 31.8/21 | ns |
total cholesterol (mg/dL) | 163.34 ± 39.44 | 163.59 ± 40.14 | 170.10 ± 37.48 | ns |
triglicerides (mg/dL) | 128.30 ± 64.97 | 116.24 ± 68.20 | 128.52 ± 72.16 | ns |
statins (%/n) | 59.3/54 | 57.5/46 | 60.6/40 | ns |
fibrates (%/n) | 20.88/19 | 18.75/15 | 18.2/12 | ns |
myocardial infarction (%/n) | 8.8/8 | 8.7/7 | 7.6/5 | ns |
stroke (%/n) | 3.3/3 | 2.5/2 | 3.0/2 | ns |
atrial fibrillation (%/n) | 5.5/5 | 5.0/4 | 4.5/3 | ns |
deep vein thrombosis (%/n) | 4.4/4 | 3.7/3 | 1.5/1 | ns |
diabetes type 2 (%/n) | 9.9/9 | 15.0/12 | 10.6/7 | ns |
oral hypoglycemic drugs (%/n) | 9.9/9 | 15.0/12 | 10.6/7 | ns |
insulin (%/n) | 5.5/5 | 5.0/4 | 3.0/2 | ns |
fasting glucose (mg/dL) | 103.81 ± 16.49 | 105.42 ± 16.88 | 100.05 ± 11.22 | ns |
thyroid diseases (%/n) | 8.8/8 | 8.7/7 | 7.6/5 | ns |
smoking (%/n) | 16.5/15 | 17.5/14 | 18.2/12 | ns |
cigarette years | 272.19 ± 152.86 | 272.00 ± 146.85 | 284.64 ± 153.38 | ns |
CRP (mg/L) | 2.09 ± 4.70 | 2.21 ± 4.96 | 2.35 ± 5.40 | ns |
hospitalization due to COVID-19 (%/n) | 56.0/51 | 20.0/16.0 | - | A vs. B |
duration of hospitalization due to COVID-19 (days) | 21.63 ± 15.64 | 22.69 ± 17.98 | - | ns |
vaccine against COVID-19 (%/n) | ||||
Comirnaty (Pfizer-BioNTech) | 0.0/0 | 80.0/64 | 78.8/52 | A vs. B; A vs. C |
Spikevax (Moderna, NIAID) | 0.0/0 | 13.7/11 | 9.1/6 | ns |
Vaxzevria (AstraZeneca) | 0.0/0 | 9.1/6 | 4.5/3 | ns |
lack of vaccination | 100.0/91 | 0.0/0 | 7.6/5 | A vs. B; A vs. C |
Study Group (n = 237) | |
---|---|
HR Min (bpm) | 51.17 ± 7.98 |
HR max (bpm) | 115.55 ± 19.02 |
HR mean (bpm) | 73.14 ± 8.98 |
VEs | 290.79 ± 92.21 |
SVEs | 372.32 ± 127.11 |
bradycardia (number) | 28.87 ± 10.35 |
minimum bradycardia | 40.51 ± 6.73 |
tachycardia (number) | 27.46 ± 18.79 |
maximum tachycardia | 151.67 ± 18.79 |
VT | 0.13 ± 0.07 |
SVT | 2.58 ± 1.47 |
AF | 0.18 ± 0.35 |
ventricular rhythm | 0.08 ± 0.05 |
Group A (n = 91) | Group B (n = 80) | Group C (n = 66) | p < 0.05 | |
---|---|---|---|---|
HR min (bpm) | 52.16 ± 7.20 | 51.68 ± 5.62 | 50.73 ± 9.43 | ns |
HR max (bpm) | 122.66 ± 18.92 | 115.27 ± 20.27 | 113.20 ± 17.06 | ns |
HR mean (bpm) | 74.21 ± 9.07 | 73.84 ± 10.19 | 72.11 ± 8.46 | ns |
VEs | 617.48 ± 234.40 | 96.05 ± 36.57 | 76.40 ± 18.12 | A vs. C |
SVEs | 660.89 ± 324.36 | 236.61 ± 88.99 | 138.96 ± 43.45 | A vs. C; B vs. C |
bradycardia (number) | 32.34 ± 15.58 | 35.13 ± 11.38 | 22.63 ± 10.46 | ns |
minimum bradycardia | 40.57 ± 6.75 | 41.38 ± 7.52 | 40.68 ± 6.87 | ns |
tachycardia (number) | 35.52 ± 24.79 | 25.24 ± 10.18 | 14.52 ± 5.2 | ns |
maximum tachycardia | 149.22 ± 17.02 | 153.57 ± 20.12 | 147.98 ± 20.11 | ns |
VT | 0.16 ± 0.07 | 0.14 ± 0.09 | 0.02 ± 0.01 | ns |
SVT | 3.86 ± 1.87 | 1.11 ± 0.45 | 0.47 ± 0.98 | ns |
AF | 0.45 ± 0.41 | 0.05 ± 0.15 | 0.00 ± 0.00 | ns |
ventricular rhythm | 0.11 ± 0.10 | 0.04 ± 0.02 | 0.00 ± 0.00 | ns |
Model for VEs | Model for SVEs | |||||
---|---|---|---|---|---|---|
Regression Coefficient | SEM of Regression Coefficient | p | Regression Coefficient | SEM of Regression Coefficient | p | |
obesity | 176.948 | 72.635 | 0.035 | 105.420 | 46.678 | 0.041 |
arterial hypertension | 201.347 | 102.098 | 0.037 | - | - | - |
β-blockers | −200.478 | 85.852 | 0.028 | −151.274 | 60.534 | 0.018 |
ACE inhibitors | - | - | - | −146.186 | 42.425 | 0.026 |
myocardial infarction | 187.158 | 71.255 | 0.035 | - | - | - |
diabetes type 2 | - | - | - | 312.048 | 199.274 | 0.043 |
lack of vaccination against COVID-19 | 205.455 | 94.356 | 0.038 | 125.148 | 40.126 | 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beck, E.; Malczyk, A.; Dykiert, I.; Fułek, M.; Fułek, K.; Poręba, M.; Gać, P.; Poręba, R. Lack of Vaccination Against COVID-19, Obesity and Coexistence of Cardiovascular Diseases as Independent Predictors of a Higher Number of ECG Changes in Patients with Previous SARS-CoV-2 Infection. J. Clin. Med. 2025, 14, 2329. https://doi.org/10.3390/jcm14072329
Beck E, Malczyk A, Dykiert I, Fułek M, Fułek K, Poręba M, Gać P, Poręba R. Lack of Vaccination Against COVID-19, Obesity and Coexistence of Cardiovascular Diseases as Independent Predictors of a Higher Number of ECG Changes in Patients with Previous SARS-CoV-2 Infection. Journal of Clinical Medicine. 2025; 14(7):2329. https://doi.org/10.3390/jcm14072329
Chicago/Turabian StyleBeck, Ewelina, Agata Malczyk, Irena Dykiert, Michał Fułek, Katarzyna Fułek, Małgorzata Poręba, Paweł Gać, and Rafał Poręba. 2025. "Lack of Vaccination Against COVID-19, Obesity and Coexistence of Cardiovascular Diseases as Independent Predictors of a Higher Number of ECG Changes in Patients with Previous SARS-CoV-2 Infection" Journal of Clinical Medicine 14, no. 7: 2329. https://doi.org/10.3390/jcm14072329
APA StyleBeck, E., Malczyk, A., Dykiert, I., Fułek, M., Fułek, K., Poręba, M., Gać, P., & Poręba, R. (2025). Lack of Vaccination Against COVID-19, Obesity and Coexistence of Cardiovascular Diseases as Independent Predictors of a Higher Number of ECG Changes in Patients with Previous SARS-CoV-2 Infection. Journal of Clinical Medicine, 14(7), 2329. https://doi.org/10.3390/jcm14072329