The Impact of Age Differences and Injury Severity on Pedestrian Traffic Crashes: An Analysis of Clinical Characteristics and Outcomes
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Status Report on Road Safety 2018: Summary; World Health Organization: Geneva, Switzerland, 2018; p. 16.
- Alharbi, R.; Mosley, I.; Miller, C.; Hillel, S.; Lewis, V. Factors associated with physical, psychological and functional outcomes in adult trauma patients following road traffic crash: A scoping literature review. Transp. Res. Res. Res. Interdiscip. Perspect. 2019, 3, 100061. [Google Scholar] [CrossRef]
- Atreya, A.; Kc, A.; Nepal, S.; Menezes, R.G.; Khadka, A.; Shah, P.; Kandel, R.A. Road traffic injuries among patients visiting the emergency department in a tertiary care centre: A descriptive cross-sectional study. JNMA J. Nepal Med. Assoc. 2022, 60, 922. [Google Scholar] [CrossRef] [PubMed]
- Nantulya, V.M.; Reich, M.R. The neglected epidemic: Road traffic injuries in developing countries. BMJ 2002, 324, 1139–1141. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Wu, X.; Huang, J.; Peng, Y.; Liu, W.I. Investigation of clusters and injuries in pedestrian crashes using GIS in Changsha, China. Saf. Sci. 2020, 127, 104710. [Google Scholar] [CrossRef]
- Li, Y.; Fan, W. Mixed logit approach to modeling the severity of pedestrian-injury in pedestrian-vehicle crashes in North Carolina: Accounting for unobserved heterogeneity. J. Transp. Saf. Secur. 2022, 14, 796–817. [Google Scholar] [CrossRef]
- Blazquez, C.A.; Celis, M.S. A spatial and temporal analysis of child pedestrian crashes in Santiago, Chile. Accid. Anal. Prev. 2013, 50, 304–311. [Google Scholar] [CrossRef]
- Henary, B.Y.; Crandall, J.; Bhalla, K.; Mock, C.N.; Roudsari, B.S. Child and adult pedestrian impact: The influence of vehicle type on injury severity. In Annual Proceedings/Association for the Advancement of Automotive Medicine; Association for the Advancement of Automotive Medicine: Chicago, IL, USA, 2003. [Google Scholar]
- Park, S.-H.; Bae, M.-K. Exploring the determinants of the severity of pedestrian injuries by pedestrian age: A case study of Daegu Metropolitan City, South Korea. Int. J. Environ. Res. Public Health 2020, 17, 2358. [Google Scholar] [CrossRef]
- Cinnamon, J.; Schuurman, N.; Hameed, S.M. Pedestrian injury and human behaviour: Observing road-rule violations at high-incident intersections. PLoS ONE 2011, 6, e21063. [Google Scholar] [CrossRef]
- Khan, M.A.; Grivna, M.; Nauman, J.; Soteriades, E.S.; Cevik, A.A.; Hashim, M.J.; Govender, R.; Al Azeezi, S.R. Global incidence and mortality patterns of pedestrian road traffic injuries by sociodemographic index, with forecasting: Findings from the global burden of diseases, injuries, and risk factors 2017 study. Int. J. Environ. Res. Public Health 2020, 17, 2135. [Google Scholar] [CrossRef]
- Al-Naami, M.; Arafah, M.; Al-Ibrahim, F. Trauma care systems in Saudi Arabia: An agenda for action. Ann. Saudi Med. 2010, 30, 50. [Google Scholar] [CrossRef]
- Alghnam, S.; Alkelya, M.; Al-Bedah, K.; Al-Enazi, S. Burden of traumatic injuries in Saudi Arabia: Lessons from a major trauma registry in Riyadh, Saudi Arabia. Ann. Saudi Med. 2014, 34, 291. [Google Scholar] [CrossRef] [PubMed]
- Mansuri, F.A.; Al-Zalabani, A.H.; Zalat, M.M.; Qabshawi, R.I. Road safety and road traffic accidents in Saudi Arabia: A systematic review of existing evidence. Saudi Med. J. 2015, 36, 418. [Google Scholar] [CrossRef] [PubMed]
- Leo, C.; Rizzi, M.C.; Bos, N.M.; Davidse, R.J.; Linder, A.; Tomasch, E.; Klug, C. Are there any significant differences in terms of age and sex in pedestrian and cyclist accidents? Front. Bioeng. Biotechnol. 2021, 9, 677952. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, R.J.; Al-Jafar, R.; Chowdhury, S.; Rahman, M.A.; Almuwallad, A.; Alshibani, A.; Lewis, V. Impact of easing COVID-19 lockdown restrictions on traumatic injuries in Riyadh, Saudi Arabia: One-year experience at a major trauma centre. BMC Public Health 2023, 23, 22. [Google Scholar] [CrossRef]
- Cloutier, M.-S.; Rafiei, M.; Desrosiers-Gaudette, L.; AliYas, Z. An examination of child pedestrian rule compliance at crosswalks around parks in Montreal, Canada. Int. J. Environ. Res. Public Health 2022, 19, 13784. [Google Scholar] [CrossRef]
- Chowdhury, S.; Almarhabi, M.M.; Varghese, B.B.; Leenen, L. Trauma resuscitation training: An evaluation of nurses’ knowledge. J. Trauma Nurs. 2022, 29, 192–200. [Google Scholar] [CrossRef]
- Alharbi, R.J.; Lewis, V.; Miller, C. A state-of-the-art review of factors that predict mortality among traumatic injury patients following a road traffic crash. Australas. Emerg. Care 2022, 25, 13–22. [Google Scholar] [CrossRef]
- Albedewi, H.; Al-Saud, N.; Kashkary, A.; Al-Qunaibet, A.; AlBalawi, S.M.; Alghnam, S. Epidemiology of childhood injuries in Saudi Arabia: A scoping review. BMC Pediatr. 2021, 21, 424. [Google Scholar] [CrossRef]
- Billah, K.; Sharif, H.O.; Dessouky, S. Analysis of pedestrian–motor vehicle crashes in San Antonio, Texas. Sustainability 2021, 13, 6610. [Google Scholar] [CrossRef]
- Se, C.; Champahom, T.; Wisutwattanasak, P.; Jomnonkwao, S.; Ratanavaraha, V. Temporal instability and differences in injury severity between restrained and unrestrained drivers in speeding-related crashes. Sci. Rep. 2023, 13, 9756. [Google Scholar] [CrossRef]
- Turner, C.; McClure, R. Age and gender differences in risk-taking behaviour as an explanation for high incidence of motor vehicle crashes as a driver in young males. Inj. Control. Saf. Promot. 2003, 10, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Mannocci, A.; Saulle, R.; Villari, P.; La Torre, G. Male gender, age and low income are risk factors for road traffic injuries among adolescents: An umbrella review of systematic reviews and meta-analyses. J. Public Health 2019, 27, 263–272. [Google Scholar] [CrossRef]
- Tournier, I.; Dommes, A.; Cavallo, V. Review of safety and mobility issues among older pedestrians. Accid. Anal. Prev. 2016, 91, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, R.J.; Lewis, V.; Othman, O.; Miller, C. Exploring factors that influence injured patients’ outcomes following road traffic crashes: A multi-site feasibility study. Trauma Care 2022, 2, 35–50. [Google Scholar] [CrossRef]
- Vakayil, V.; Ingraham, N.E.; Robbins, A.J.; Freese, R.; Northrop, E.F.B.; Brunsvold, M.E.; Pendleton, K.M.; Charles, A.; Chipman, J.G.; Tignanelli, C.J. Epidemiological trends of surgical admissions to the intensive care unit in the United States. J. Trauma Acute Care Surg. 2020, 89, 279. [Google Scholar] [CrossRef]
- Feng, X.Y.J.; Nah, S.A.; Lee, Y.T.; Lin, Y.C.; Chiang, L. Pedestrian injuries in children: Who is most at risk? Singap. Med. J. 2015, 56, 618. [Google Scholar] [CrossRef]
- Useche, S.A.; Cendales, B.; Gómez, V. Measuring fatigue and its associations with job stress, health and traffic accidents in professional drivers: The case of BRT operators. EC Neurol. 2017, 4, 103–118. [Google Scholar]
- Alsofayan, Y.M.; Alghnam, S.A.; Alshahrani, S.M.; Hajjam, R.M.; AlJardan, B.A.; Alhajjaj, F.S.; Alowais, J.M. Do crashes happen more frequently at sunset in Ramadan than the rest of the year? J. Taibah Univ. Med. Sci. 2022, 17, 1031–1038. [Google Scholar] [CrossRef]
Characteristics | Total, n (%) |
---|---|
Age group | |
<17 | 177 (16.7) |
18–29 | 322 (30.3) |
30–44 | 300 (28.2) |
45–59 | 170 (16.0) |
≥60 | 93 (8.8) |
Gender | |
Male | 950 (89.5) |
Female | 112 (10.5) |
Injury type | |
Head and face | 388 (21.3) |
Thorax | 207 (11.3) |
Abdomen and pelvis | 289 (16.0) |
Spine | 246 (13.5) |
Upper extremities | 188 (10.4) |
Lower extremities | 498 (27.5) |
Prehospital physiological assessment, mean (SD) | |
First systolic BP | 125.71 (21.77) |
First heart rate | 91.46 (17.40) |
First RR | 17.45 (3.17) |
On arrival at the ED, mean (SD) | |
First systolic BP | 125 (23.33) |
First heart rate | 94 (20.910) |
First RR | 20.17 (2.90) |
First O2 saturation | 97.02 (5.67) |
Assisted respiration | 239 (23.9) |
GCS score | |
13–15 | 834 (85.1) |
9–12 | 39 (3.9) |
3–8 | 108 (11) |
ISS | |
≤14 | 741 (69.8) |
15–40 | 301 (28.3) |
>40 | 19 (1.8) |
Requires operation | 696 (65.5) |
ICU admission | 271 (25.6) |
Days in hospital, median (IQR) | 9 (12) |
In-hospital mortality | 52 (4.9) |
Variables, n (%) | <18 | 18–29 | 30–44 | 45–59 | ≥60 | p-Value |
---|---|---|---|---|---|---|
Gender, n (%) | 0.036 | |||||
Male | 147 (13.8) | 296 (27.9) | 272 (25.6) | 152 (14.3) | 83 (7.8) | |
Female | 30 (2.8) | 26 (2.4) | 28 (2.6) | 18 (1.7) | 10 (0.9) | |
Time of day, n (%) | 0.166 | |||||
Day (6:00–18:59) | 59 (5.6) | 108 (10.2) | 112 (10.5) | 75 (7.1) | 36 (3.4) | |
Night (19:00–5:59) | 118 (11.1) | 214(20.4) | 188 (17.7) | 95 (8.9) | 57 (5.4) | |
Day of week, n (%) | 0.030 | |||||
Weekday | 136 (12.8) | 231 (21.8) | 205 (19.3) | 133 (12.5) | 59 (5.6) | |
Weekend | 41 (3.9) | 91 (8.6) | 95 (8.9) | 37 (3.5) | 34 (3.2) | |
Month of injury, n (%) | 0.994 | |||||
January–March | 52 (4.9) | 82 (7.7) | 78 (7.3) | 49 (4.6) | 26 (2.4) | |
April–June | 55 (5.2) | 95 (8.9) | 96 (9.0) | 48 (4.5) | 29 (2.7) | |
July–September | 25 (2.4) | 53 (5.0) | 41 (3.9) | 25 (2.4) | 14 (1.3) | |
October–December | 45 (4.2) | 92 (8.7) | 85 (8.0) | 48 (4.5) | 24 (2.3) | |
Type of injury, n (%) | ||||||
Head and face | 75 (7.1) | 102 (9.6) | 100 (9.4) | 66 (6.2) | 45 (4.2) | 0.010 |
Thorax | 33 (3.1) | 66 (6.2) | 43 (4.0) | 40 (3.8) | 25 (2.4) | 0.049 |
Abdomen and pelvis | 55 (5.2) | 72 (6.8) | 84 (7.9) | 47 (4.4) | 31 (2.9) | 0.134 |
Spine | 25 (2.4) | 66 (6.2) | 78 (7.3) | 47 (4.4) | 30 (2.8) | 0.002 |
Upper extremities | 30 (2.8) | 56 (5.3) | 55 (5.2) | 34 (3.2) | 13 (6.9) | 0.796 |
Lower extremities | 71 (6.7) | 163 (15.3) | 141 (13.3) | 81 (7.6) | 42 (4.0) | 0.266 |
GCS | <0.001 | |||||
13–15 | 124 (12.6) | 255 (26.0) | 253 (25.8) | 137 (14.0) | 65 (6.6) | |
9–12 | 7 (0.7) | 10 (1.0) | 8 (0.8) | 6 (0.6) | 8 (0.8) | |
3–8 | 36 (3.7) | 30 (3.1) | 20 (2.0) | 11 (1.1) | 11 (1.1) | |
Require operation | 104 (9.8) | 220 (20.7) | 200 (18.9) | 114 (10.7) | 58 (5.5) | 0.228 |
Mean hospital stays | 14.12 | 14.20 | 14.93 | 16.94 | 18.69 | 0.256 |
ICU admission (%) | 62 (5.8) | 77 (7.3) | 62 (5.8) | 39 (3.7) | 31 (2.9) | 0.003 |
Mean ICU stay | 5.02 | 2.54 | 2.79 | 3.11 | 5.54 | 0.002 |
Mortality, n (%) | 8 (0.8) | 13 (1.2) | 7 (0.7) | 10 (0.9) | 14 (1.3) | <0.001 |
Independent Variable | ICU Admission | Mortality |
---|---|---|
β (95% CI) p-Value | β (95% CI) p-Value | |
Age group | ||
1–17 | −0.00 (−0.05, 0.05) 0.931 | −0.05 (−0.06, 0.00) 0.120 |
30–44 | −0.04 (−0.09, 0.01) 0.068 | −0.03 (−0.04, 0.01) 0.278 |
45–59 | −0.03 (−0.09, −0.01) 0.129 | −0.02 (−0.02, 0.05) 0.421 |
≥60 | −0.03 (−0.11, 0.02) 0.196 | 0.10 (0.03, 0.12) < 0.001 |
Gender | ||
Male | Ref | Ref |
Female | −0.03 (−0.11, 0.00) 0.072 | −0.01 (−0.56, 0.57) 0.574 |
Injury type, n (%) | ||
Head | 0.08 (0.03, 0.11) < 0.001 | 0.01 (−0.03, 0.02) 0.716 |
Thorax | 0.05 (0.00, 0.09) 0.039 | 0.01 (−0.02, 0.03) 0.733 |
Spine | −0.00 (−0.05, 0.03) 0.679 | −0.01 (−0.02, −0.02) 0.534 |
Mode of arrival | ||
Red Crescent ambulance | −0.06 (−0.09, −0.01) 0.010 | −0.03 (−0.04, 0.01) 0.221 |
Private/police vehicle | −0.07 (−0.15, −0.03) 0.003 | −0.06 (−0.08, −0.00) 0.048 |
GCS score | −0.12 (−0.01, −0.00) < 0.001 | −0.12 (−0.00, −0.00) < 0.001 |
ISS | 0.17 (0.06, 0.01) < 0.001 | 0.12 (0.00, 0.01) < 0.001 |
Length of stay in ICU | 0.55 (0.02, 0.03) < 0.001 | 0.34 (0.00, 0.01) < 0.001 |
Length of stay in hospital | −0.06 (−0.00, 0.00) 0.022 | −0.20 (−0.00, −0.00) < 0.001 |
Require operation | −0.00 (−0.4, 0.03) 0.926 | −0.04 (−0.04, 0.00) 0.118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, R.J. The Impact of Age Differences and Injury Severity on Pedestrian Traffic Crashes: An Analysis of Clinical Characteristics and Outcomes. J. Clin. Med. 2025, 14, 741. https://doi.org/10.3390/jcm14030741
Alharbi RJ. The Impact of Age Differences and Injury Severity on Pedestrian Traffic Crashes: An Analysis of Clinical Characteristics and Outcomes. Journal of Clinical Medicine. 2025; 14(3):741. https://doi.org/10.3390/jcm14030741
Chicago/Turabian StyleAlharbi, Rayan Jafnan. 2025. "The Impact of Age Differences and Injury Severity on Pedestrian Traffic Crashes: An Analysis of Clinical Characteristics and Outcomes" Journal of Clinical Medicine 14, no. 3: 741. https://doi.org/10.3390/jcm14030741
APA StyleAlharbi, R. J. (2025). The Impact of Age Differences and Injury Severity on Pedestrian Traffic Crashes: An Analysis of Clinical Characteristics and Outcomes. Journal of Clinical Medicine, 14(3), 741. https://doi.org/10.3390/jcm14030741