Functional Cure for Hepatitis B Virus: Challenges and Achievements
Abstract
1. Introduction
Defining Functional Cure and Partial Cure
Type of Cure | HBV DNA Undetectable (U) or <LLOQ | Loss of HBsAg (<0.05 IU/mL) | HBeAg | Normal Levels of ALT | Anti-HBs Seroconversion (Anti-HBs ≥ 10 IU/mL) | Elimination of cccDNA | Year of Definition | Refs. | |
---|---|---|---|---|---|---|---|---|---|
Complete (Sterilizing) | U | ✓ | - | ✓ | +/− | ✓ | 2019 | [21] | |
U | ✓ | +/− | ✓ | +/− | ✓ | 2022 | [22] | ||
Functional | U | ✓ | +/− | +/− | 2019 | [21] | |||
<LLOQ | ✓ | +/− | ✓ | +/− | 2022 | [22] | |||
Partial | U | Any | +/− | ✓ | - | 2019 | [22] | ||
<LLOQ | <100 IU/mL | 2022 |
2. Biomarkers and Immune Mechanisms in Achieving a Functional Cure
2.1. Virological and Biomarker Predictors of a Functional Cure
# | Marker and Time of Measurement | Therapy | Prediction/Importance | Response Rate | Additional Patient Details | Refs. |
---|---|---|---|---|---|---|
1 | HBcrAg < 4 log10 IU/mL + HBsAb > 2log10 IU/mL at end of treatment (EOT) | PEG-IFNα + ETV (48w) followed by PEG-IFNα (48w) | Identifies patients likely to achieve a functional cure + probability of a functional cure at 6 months post-treatment | A total of 21/80 (26.25%) patients were included. All with HBcrAg < 4 log10 and HBsAb > 2 log10 at end of treatment had a 100% PPV for a sustained response at 6 months. | 80 total patients, prior viral suppression with NA | [41] |
2 | HBcrAg > 8.35 log10 U/mL (Non-responder)/<5.73 U/mL (Responder) (Week 24) | PEG-IFNα ± LAM (52w) | The probability of a sustained response (HBeAg loss + HBV DNA < 2000 IU/mL) at 6 months. HBcrAg > 8.35 U/mL predicts no response, while HBcrAg < 5.73 U/mL indicates a higher response likelihood. | A virologic response in 15/46 patients (32.6%). NPV at week 12/week 24: HBsAg > 20,000 IU/mL (80%/100%), HBcrAg > log10 8.0 U/mL (94.4%/100%). | 222 total patients, HBeAg+ | [43] |
3 | HBsAg > 20,000 IU/mL and HBcrAg > log10 8.0 U/mL (Weeks 12 and 24) | PEG-IFNα (48w) | Identifies non-responders to PEG-IFNα at 24 weeks post-treatment | NPV 94.4% (Week 12) and NPV 100% (Week 24). | 46 total patients, HBeAg+ | [45] |
4 | HBsAg < 50 IU/mL (EOT) | Long-term NA | Predicts a virologic response post-NA(24w + 48w) | Virologic response: 51% (291/572) at week 24, 41% (206/504) at week 48, and 47.7% (267) at the last follow-up. Re-treatment: Required in 43% (246) of patients after therapy discontinuation. HBsAg < 50 IU/mL at the end of therapy: a total of 64% achieved a virologic response at the follow-up. | 572 total patients (24w), 504 (48w), no IFN history, HBeAg (-) | [46] |
5 | HBcrAg < 2 log10 U/mL (EOT) | See Row 4 | See Row 4 | Virologic response and re-treatment: See Row 4 A total of 65% with HbcrAg < 2 log IU/mL at the end of treatment had a virologic response at the follow-up. | See Row 4 | [46] |
6 | HBsAg < 1 IU/mL (On Tx) | NAP + TDF + PEG-IFNα | Predicts a functional cure (HBsAg loss, normal ALT, and undetectable HBV DNA after 48w) | A total of 14/40 patients achieved a functional cure, while 13/40 patients attained virologic control. | HBeAg− patients, the REP401 study | [35,47,48] |
7 | Baseline: Age ≤ 40, ALT ≤ 40, and HBsAg ≤ 100 IU/mL | Weeks 12 and 24: ALT, anti-HBc, and HBsAg thresholds | PEG-IFNα (52w) | A scoring system predicting the response likelihood at baseline and weeks 12 and 24 | The cumulative score system predicted response rates of 8.6%, 19.1%, 35.0%, and 96.4%. | 242 total patients, HBeAg-negative, and anti-HB-negative | [49] |
8 | HBsAg on NA Therapy | NA (multiple) | Correlation with cccDNA levels | Correlation coefficients: r = 0.66 (HBeAg−) and r = 0.47 (HBeAg ≤ 50 S/CO). | Undetectable serum HBV DNA while on NA therapy, 90 total patients | [61] |
9 | Undetectable HBV RNA and HBcrAg < 4 log10 IU/mL (EOT) | NA discontinuation after seroconversion + HBV DNA < 50 IU/mL for ≥48w | Predicts relapse risk post-NA | A total of 0/14 patients with undetectable HBV RNA and HBcrAg < 4 log10 IU/mL relapsed. | 127 total patients | [52] |
10 | Pre-Tx HBV DNA/RNA, and Post-Tx HBsAg | LAM/ADV (96w) | Correlation of HBV DNA/RNA and HBsAg with cccDNA levels | Correlation coefficients: HBV DNA (r = 0.36), HBV RNA (r = 0.25), and HBsAg (r = 0.39). | HBeAg+, ALT ≥ 2× ULN, HBV DNA ≥ 105 copies/mL, and no recent antiviral therapy (≤6 months). A total of 82 total patients at baseline and 62 at 96 weeks. | [49] |
11 | Baseline and on-treatment HBV DNA + RNA | ETV or ADV | Correlation with cccDNA = identify surrogate markers for cccDNA | Correlation between baseline serum HBV DNA + RNA and cccDNA: β = 0.205 and r = 0.698 Correlation between on-treatment declines in HBV DNA + RNA and cccDNA: β = 0.172 and r = 0.525 | HBeAg+, n = 54 | [55] |
2.2. Immune System Dysregulation and Therapeutic Implications in the HBV Functional Cure
Item # | Viral Component/Treatment Impacting the Immune System | Effect of Viral Component/Treatment on Immune System | Citation |
---|---|---|---|
1 | Effect of chronic HBV (persistence of HBsAg for at least 6 months) on T cells |
| [64,78] |
2 | HBsAg level > 50,000 vs. < 500 IU/mL | Expression of FcRL5 on T and B cells with HBsAg > 50,000 IU/mL. | [63] |
3 | HBsAg level > 50,000 vs. < 500 IU/mL | Higher polyfunctional T-cell frequency with HBsAg < 500 IU/mL. | [63] |
4 | At least a 30% decrease in HBsAg over 6 months of IFN therapy (rapid decrease) vs. those who did not have a rapid reduction in HBsAg | Alterations in multiple T-cell markers, including higher HLA-DR and CD-107a on CD4+ and CD8+ T cells; TIM-3, CD40L, and CTLA-4 on CD4+ T cells; and CD69 on CD8+ T cells. | [68] |
5 | HBsAg clearance | Increased T-cell expression of activation markers | [68] |
6 | HBsAg clearance | Higher frequencies of IFNγ-secreting CD4+ and CD8+ T cells specific for the core. | [68] |
7 | HBcrAg < 4 log10 U/mL and HBsAb > 2 log10 IU/L following treatment, which is associated with a sustained response as defined by HBsAg loss +/− HBsAb at 24 weeks post-treatment | Sustained humoral immunity and stable/increased levels of HBV-specific CD8+ T cells. | [41] |
8 | HBcrAg < 4 log10 U/mL post-treatment | Increased Tfh cells. | [41] |
Durable response to NA | Patients with a durable response to NA were more likely to have HBV-specific CD8+ T-cell responses against multiple HBV proteins prior to completing NA treatment. | [77] | |
NA discontinuation |
| [77,78] | |
Effect of chronic HBV (persistence of HBsAg for at least 6 months) on B cells |
| [81,85] | |
9 | Effects of HBsAg on innate immunity and B-cell function |
| [70] [63,81] [85] [83,85] |
3. Achieving a Functional Cure with Antiviral Therapy
3.1. PEG-IFNα Therapy
3.2. Combination and Switching Between PEG-IFNα and NA
3.3. Long-Term NA Therapy
3.4. NA Discontinuation Therapy Approach
3.5. Drugs in Development
3.5.1. HBsAg Reduction
Bepirovirsen
SiRNA-JNJ-3989
AB-729
Nucleic Acid Polymers
VIR-3434
3.5.2. Replication Inhibition
Capsid Assembly Modulators (CAMs)
3.5.3. Entry Inhibitors
Bulevirtide
HBIG
# | Treatment Type | Sample Size and Patient Characteristics | % Functional Cure | Key Findings from the Studies | Patient Response | Refs. |
---|---|---|---|---|---|---|
1 | PEG-IFNα monotherapy added to existing NA therapy | N = 185 (HBeAg+ with undetectable HBV DNA on an NA regimen of >1 year) | 7.8% at 96w | PEG-IFNα tx did not significantly augment HBsAg clearance. | HBsAg loss: 7.87% (PEG-IFN, 7/90) vs. 3.2% (NA alone, 3/93); all had undetectable HBV DNA with PEG-IFN. | [93] |
2 | Switching from ETV to PEG-IFNα | N = 200 (ETV for 9–36 months, undetectable HBV DNA, and HBeAg+) | 8.5% at 48w | Better outcomes in the HBsAg < 200 IU/mL group. | HBsAg seroconversion: 4.3% (4/94) at week 48; HBV DNA < 1000 copies/mL in 72.0%. | [94] |
3 | NA monotherapy (LAM, ETV, TDF, and TAF) | ETV: N = 658 (36% HBeAg+); TAF vs. TDF: N = 875 (HBeAg+); TAF vs. TDF: N = 426 (HBeAg−); ETV: N = 146 (HBeAg+) | 1.4–8% | Long-term treatment with NA required for results. | TDF: 8% HBsAg loss over 3 years (HBeAg+). | [129,130,131,132] |
ETV: HBsAg loss over 5 years (HBeAg+) and 4.6% over 5 years (HBeAg−). | ||||||
TAF: a 1% HBsAg loss over 5 years (HBeAg+). | ||||||
4 | NA discontinuation after 4–5y of tx | N = 42 (HBeAg−, TDF); N = 691 (HBeAg−, various NAs); Meta-analysis: N = 1753 (HBeAg−, various NAs across 17 studies) | 13–19% | HBsAg loss observed post-therapy. | In HBeAg-negative patients, HBsAg loss after NA discontinuation (4–5 years) varied: 39% (adefovir, Hadziyannis et al.), 19% (TDF, Berg et al.), 13% (6-year rate, Papatheodoridis et al.), and 33.1% (Chen et al.). | [101,103,105,106] |
5 | Bepirovirsen | N = 457 (NA therapy or naïve) | 9–10% | The 24-week treatment with bepirovirsen led to sustained HBsAg and HBV DNA loss in 9–10% of participants with CHB. | A total of 9–10% of patients had sustained loss of HBsAg; by the end of treatment, this was seen in 59% to 63% of participants receiving 300 mg. | [110] |
6 | Si-RNA JNJ-3989 and capsid modulator JNJ-6379 | N = 130 (HBeAg−, non-cirrhotic); N = 470 (non-cirrhotic, virologically suppressed, HBeAg+/−); N = 84 (treatment-naïve or NA-suppressed, HBeAg+/−) | 0% | The dose-dependent response rarely resulted in complete HBsAg loss. | Tx with JNJ-3989 led to HBsAg reductions of ≥1 log10 IU/mL in a high percentage of patients, sustained in 38%. | [111,112,133] |
7 | AB-729 ± NA ± PEG-IFNα | N = 16 (CHB, on NA therapy); N = 32 (CHB, HBeAg+, treated with Ab-729, sustained HBsAg suppression); N = 43 (virally suppressed, HBeAg−) | 0% | Sustained declines in HBsAg levels with some patients showing temporary seroconversion. | A total of 93% had HBsAg < 100 IU/mL, while 9.7% had HBsAg below the LLOQ but no sustained loss. | [120,121,122,133] |
8 | VIR-2218 and PEG-IFNα | N = 18 (CHB, HBeAg status unknown) | 16% | A significant increase in HBsAg loss with combination therapy. | A total of 30% achieved HBsAg loss, and 16% sustained loss | [115] |
9 | NAPs (REP 2139, REP 2165) ± TDF, PEG-IFNα | N = 40 (non-cirrhotic, HBeAg−) | 35% | High rates of a functional cure in the REP 401 phase II study. A non-monophasic HBsAg decline pattern had a 100% negative predictive value for the functional cure. | Sustained functional cure observed in 14/40 (35%) patients. | [43,123,124] |
10 | VIR-3434 + VIR-2218 ± PEG-IFNα | N = 21 (HBeAg status unknown) | 15% | VIR-3434 combined with VIR-2218 and optionally PEG-IFNα increased HBsAg loss rates. | Up to 15% showed HBsAg loss at 24w. | [115] |
11 | Linvercorvir (CAM) ± NA ± PEG-IFNα | N = 72; Cohort A: NA-suppressed (N = 32); Cohort B: Treatment-naïve, NA + linvencorvir (N = 10); Cohort C: Treatment-naïve, NA + linvencorvir + PEG-IFNα (N = 30) | N/A |
| HBV DNA was suppressed, but no evidence of a functional cure. | [127] |
| ||||||
| ||||||
| ||||||
|
4. Studies and Publications That Have Examined the Use of Vaccines in Attempting to Achieve a Functional Cure
Therapeutic Vaccines
Item # | Vaccine Name | Description | Trial Phase | Citation |
---|---|---|---|---|
1 | GSK3528869A | Viral vector vaccine in patients on NA. | 1/2 | [177] |
2 | GSK3228836 | Sequential treatment with GSK3228836, an antisense oligonucleotide, and the viral vector vaccine GSK3528869A in participants on NA. | 2 | [178] |
3 | ChAdOx1-HBV and MVA-HBV (VTP-300) | Chimpanzee adenovirus-vectored vaccines (ChAdOx1)-HBV and Modified Vaccinia Ankara (MVA)-HBV vaccines with or without nivolumab in patients with viral suppression. | 1b/2a | [179] |
4 | HepTcell (FP-02.2) | The HepTcell (Adjuvanted FP-02.2) vaccine in treatment-naive patients with HBeAg-negative CHB in the low replicative state with low HBsAg levels (qHBsAg ≥ 10 IU/mL but ≤100 IU/mL in the 12 months prior to screening). Double-blind, randomized, placebo-controlled design. | 2 | [180] |
5 | VBI-2601 (BRII-179) | A therapeutic vaccine containing recombinant pre-S1, pre-S2, and, S HBV antigens, evaluated in combination with GalNAc-siRNA BRII-835 (VIR-2218) to enhance immune responses. Induced anti-HBs in ≥40% of patients and T-cell responses in up to 70% but achieved modest HBsAg reductions (~1.8 log10) with limited seroclearance (two patients). | 2 | [34] |
5. Conclusions
Author Contributions
Funding
Copyright Statement
Author Disclaimer
Conflicts of Interest
References
- Magnius, L.; Mason, W.S.; Taylor, J.; Kann, M.; Glebe, D.; Deny, P.; Sureau, C.; Norder, H.; ICTV Report Consortium. ICTV Virus Taxonomy Profile: Hepadnaviridae. J. Gen. Virol. 2020, 101, 571–572. [Google Scholar] [CrossRef]
- Rizzo, G.E.M.; Cabibbo, G.; Craxi, A. Hepatitis B Virus-Associated Hepatocellular Carcinoma. Viruses 2022, 14, 986. [Google Scholar] [CrossRef]
- WHO Organization. Hepatitis B. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (accessed on 15 December 2024).
- Easterbrook, P.J.; Luhmann, N.; Bajis, S.; Min, M.S.; Newman, M.; Lesi, O.; Doherty, M.C. WHO 2024 hepatitis B guidelines: An opportunity to transform care. Lancet Gastroenterol. Hepatol. 2024, 9, 493–495. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Guo, H. Hepatitis B virus cccDNA: Formation, regulation and therapeutic potential. Antivir. Res. 2020, 180, 104824. [Google Scholar] [CrossRef] [PubMed]
- Nassal, M. HBV cccDNA: Viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut 2015, 64, 1972–1984. [Google Scholar] [CrossRef] [PubMed]
- Sausen, D.G.; Shechter, O.; Bietsch, W.; Shi, Z.; Miller, S.M.; Gallo, E.S.; Dahari, H.; Borenstein, R. Hepatitis B and Hepatitis D Viruses: A Comprehensive Update with an Immunological Focus. Int. J. Mol. Sci. 2022, 23, 15973. [Google Scholar] [CrossRef]
- Meier, M.A.; Calabrese, D.; Suslov, A.; Terracciano, L.M.; Heim, M.H.; Wieland, S. Ubiquitous expression of HBsAg from integrated HBV DNA in patients with low viral load. J. Hepatol. 2021, 75, 840–847. [Google Scholar] [CrossRef]
- Magri, A.; Harris, J.M.; D’Arienzo, V.; Minisini, R.; Juhling, F.; Wing, P.A.C.; Rapetti, R.; Leutner, M.; Testoni, B.; Baumert, T.F.; et al. Inflammatory Gene Expression Associates with Hepatitis B Virus cccDNA- but Not Integrant-Derived Transcripts in HBeAg Negative Disease. Viruses 2022, 14, 1070. [Google Scholar] [CrossRef]
- Kim, S.W.; Yoon, J.S.; Lee, M.; Cho, Y. Toward a complete cure for chronic hepatitis B: Novel therapeutic targets for hepatitis B virus. Clin. Mol. Hepatol. 2022, 28, 17–30. [Google Scholar] [CrossRef]
- Vaillant, A. HBsAg, Subviral Particles, and Their Clearance in Establishing a Functional Cure of Chronic Hepatitis B Virus Infection. ACS Infect. Dis. 2021, 7, 1351–1368. [Google Scholar] [CrossRef]
- Durantel, D.; Zoulim, F. New antiviral targets for innovative treatment concepts for hepatitis B virus and hepatitis delta virus. J. Hepatol. 2016, 64, S117–S131. [Google Scholar] [CrossRef] [PubMed]
- Levrero, M.; Testoni, B.; Zoulim, F. HBV cure: Why, how, when? Curr. Opin. Virol. 2016, 18, 135–143. [Google Scholar] [CrossRef]
- Cornberg, M.; Wong, V.W.; Locarnini, S.; Brunetto, M.; Janssen, H.L.A.; Chan, H.L. The role of quantitative hepatitis B surface antigen revisited. J. Hepatol. 2017, 66, 398–411. [Google Scholar] [CrossRef] [PubMed]
- Dusheiko, G.; Wang, B.; Carey, I. HBsAg loss in chronic hepatitis B: Pointers to the benefits of curative therapy. Hepatol. Int. 2016, 10, 727–729. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, F.; Vigano, M.; Grossi, G.; Lampertico, P. The prognosis and management of inactive HBV carriers. Liver. Int. 2016, 36 (Suppl. S1), 100–104. [Google Scholar] [CrossRef]
- Schmidt, K.L. The Schmidt Model for program planning. J. Nurs. Staff Dev. 1991, 7, 67–70. [Google Scholar]
- Marcellin, P.; Lau, G.K.; Bonino, F.; Farci, P.; Hadziyannis, S.; Jin, R.; Lu, Z.M.; Piratvisuth, T.; Germanidis, G.; Yurdaydin, C.; et al. Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B. N. Engl. J Med. 2004, 351, 1206–1217. [Google Scholar] [CrossRef]
- Marcellin, P.; Bonino, F.; Lau, G.K.; Farci, P.; Yurdaydin, C.; Piratvisuth, T.; Jin, R.; Gurel, S.; Lu, Z.M.; Wu, J.; et al. Sustained response of hepatitis B e antigen-negative patients 3 years after treatment with peginterferon alpha-2a. Gastroenterology 2009, 136, 2169–2179.E4. [Google Scholar] [CrossRef]
- Chen, J.D.; Yang, H.I.; Iloeje, U.H.; You, S.L.; Lu, S.N.; Wang, L.Y.; Su, J.; Sun, C.A.; Liaw, Y.F.; Chen, C.J.; et al. Carriers of inactive hepatitis B virus are still at risk for hepatocellular carcinoma and liver-related death. Gastroenterology 2010, 138, 1747–1754. [Google Scholar] [CrossRef]
- Cornberg, M.; Lok, A.S.; Terrault, N.A.; Zoulim, F.; 2019 EASL-AASLD HBV Treatment Endpoints Conference Faculty. Guidance for design and endpoints of clinical trials in chronic hepatitis B—Report from the 2019 EASL-AASLD HBV Treatment Endpoints Conference. Hepatology 2020, 72, 539–557. [Google Scholar] [CrossRef]
- Ghany, M.G.; Buti, M.; Lampertico, P.; Lee, H.M.; on behalf of the 2022 AASLD-EASL HBV-HDV Treatment Endpoints Conference Faculty. Guidance on treatment endpoints and study design for clinical trials aiming to achieve cure in chronic hepatitis B and D: Report from the 2022 AASLD-EASL HBV-HDV Treatment Endpoints Conference. J. Hepatol. 2023, 79, 1254–1269. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.T.; Choi, H.S.J.; Lenz, O.; Peters, M.G.; Janssen, H.L.A.; Mishra, P.; Donaldson, E.; Westman, G.; Buchholz, S.; Miller, V.; et al. Association Between Seroclearance of Hepatitis B Surface Antigen and Long-term Clinical Outcomes of Patients with Chronic Hepatitis B Virus Infection: Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2021, 19, 463–472. [Google Scholar] [CrossRef] [PubMed]
- van Bommel, F.; Stein, K.; Heyne, R.; Petersen, J.; Buggisch, P.; Berg, C.; Zeuzem, S.; Stallmach, A.; Sprinzl, M.; Schott, E.; et al. A multicenter randomized-controlled trial of nucleos(t)ide analogue cessation in HBeAg-negative chronic hepatitis B. J. Hepatol. 2023, 78, 926–936. [Google Scholar] [CrossRef]
- Lai, C.L.; Wong, D.K.; Wong, G.T.; Seto, W.K.; Fung, J.; Yuen, M.F. Rebound of HBV DNA after cessation of nucleos/tide analogues in chronic hepatitis B patients with undetectable covalently closed. JHEP Rep. 2020, 2, 100112. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.F.; Margolis, H.S.; Fields, H.A.; Nainan, O.V.; Chang, W.Y.; Tsai, J.H. Immunoglobulin and hepatitis B surface antigen-specific circulating immune complexes in chronic hepatitis with hepatitis delta virus infection. J. Med. Virol. 1990, 30, 25–29. [Google Scholar] [CrossRef]
- Rath, S.; Devey, M.E. IgG subclass composition of antibodies to HBsAg in circulating immune complexes from patients with hepatitis B virus infections. Clin. Exp. Immunol. 1988, 72, 164–167. [Google Scholar]
- Pu, Z.; Li, D.; Wang, A.; Su, H.; Shao, Z.; Zhang, J.; Ji, Z.; Gao, J.; Choi, B.C.; Yan, Y. Epidemiological characteristics of the carriers with coexistence of HBsAg and anti-HBs based on a community cohort study. J. Viral Hepat. 2016, 23, 286–293. [Google Scholar] [CrossRef]
- Jiang, X.; Chang, L.; Yan, Y.; Wang, L. Paradoxical HBsAg and anti-HBs coexistence among Chronic HBV Infections: Causes and Consequences. Int. J. Biol. Sci. 2021, 17, 1125–1137. [Google Scholar] [CrossRef]
- Zhou, T.C.; Li, X.; Li, L.; Li, X.F.; Zhang, L.; Wei, J. Evolution of full-length genomes of HBV quasispecies in sera of patients with a coexistence of HBsAg and anti-HBs antibodies. Sci. Rep. 2017, 7, 661. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, X.; Chen, S.; Huang, C.; Zhou, J.; Dai, E.; Li, Y.; Liu, L.; Huang, X.; Gao, Z.; et al. The Impact of HBV Quasispecies Features on Immune Status in HBsAg+/HBsAb+ Patients with HBV Genotype C Using Next-Generation Sequencing. Front. Immunol. 2021, 12, 775461. [Google Scholar] [CrossRef]
- Xiao, Y.; Sun, K.; Duan, Z.; Liu, Z.; Li, Y.; Yan, L.; Song, Y.; Zou, H.; Zhuang, H.; Wang, J.; et al. Quasispecies characteristic in “a” determinant region is a potential predictor for the risk of immunoprophylaxis failure of mother-to-child-transmission of sub-genotype C2 hepatitis B virus: A prospective nested case-control study. Gut 2020, 69, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Lim, T.H.; Leerapun, A.; Weltman, M.; Jia, J.; Lim, Y.S.; Tangkijvanich, P.; Sukeepaisarnjaroen, W.; Ji, Y.; Le Bert, N.; et al. Therapeutic vaccine BRII-179 restores HBV-specific immune responses in patients with chronic HBV in a phase Ib/IIa study. JHEP Rep. 2021, 3, 100361. [Google Scholar] [CrossRef] [PubMed]
- Yuen, M.F.; Wong, G.L.; Douglas, M.; Ma, H.; Zhu, C.; Ji, Y.; Liu, W.; Chen, X.; Zhu, Q. Preliminary Safety and Efficacy of the Combination Therapy of BRII-835 (VIR-2218) and BRII-179 (VBI-2601) Treating Chronic HBV Infection. In Proceedings of the 32nd Annual Conference of the Asian Pacific Association for the Study of the Liver (APASL), Taipei, Taiwan, 18 February 2023. [Google Scholar]
- Bazinet, M.; Anderson, M.; Pantea, V.; Placinta, G.; Moscalu, I.; Cebotarescu, V.; Cojuhari, L.; Jimbei, P.; Iarovoi, L.; Smesnoi, V.; et al. Analysis of HBsAg Immunocomplexes and cccDNA Activity During and Persisting After NAP-Based Therapy. Hepatol. Commun. 2021, 5, 1873–1887. [Google Scholar] [CrossRef] [PubMed]
- Mak, L.Y.; Hui, R.W.; Fung, J.; Seto, W.K.; Yuen, M.F. The role of different viral biomarkers on the management of chronic hepatitis B. Clin. Mol. Hepatol. 2023, 29, 263–276. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, B.; Valdes, J.D.; Sun, J.; Guo, H. Serum Hepatitis B Virus RNA: A New Potential Biomarker for Chronic Hepatitis B Virus Infection. Hepatology 2019, 69, 1816–1827. [Google Scholar] [CrossRef]
- Suslov, A.; Meier, M.A.; Ketterer, S.; Wang, X.; Wieland, S.; Heim, M.H. Transition to HBeAg-negative chronic hepatitis B virus infection is associated with reduced cccDNA transcriptional activity. J. Hepatol. 2021, 74, 794–800. [Google Scholar] [CrossRef]
- Pan, J.; Tian, Y.; Xu, J.; Luo, H.; Tan, N.; Han, Y.; Kang, Q.; Chen, H.; Yang, Y.; Xu, X. Dynamics of Hepatitis B Virus Pregenomic RNA in Chronic Hepatitis B Patients with Antiviral Therapy Over 9 Years. Front. Med. 2022, 9, 851717. [Google Scholar] [CrossRef]
- Inoue, T.; Tanaka, Y. The Role of Hepatitis B Core-Related Antigen. Genes 2019, 10, 357. [Google Scholar] [CrossRef]
- Huang, D.; Wu, D.; Wang, P.; Wang, Y.; Yuan, W.; Hu, D.; Hu, J.; Wang, Y.; Tao, R.; Xiao, F.; et al. End-of-treatment HBcrAg and HBsAb levels identify durable functional cure after Peg-IFN-based therapy in patients with CHB. J. Hepatol. 2022, 77, 42–54. [Google Scholar] [CrossRef]
- Carey, I.; Gersch, J.; Wang, B.; Moigboi, C.; Kuhns, M.; Cloherty, G.; Dusheiko, G.; Agarwal, K. Pregenomic HBV RNA and Hepatitis B Core-Related Antigen Predict Outcomes in Hepatitis B e Antigen-Negative Chronic Hepatitis B Patients Suppressed on Nucleos(T)ide Analogue Therapy. Hepatology 2020, 72, 42–57. [Google Scholar] [CrossRef]
- Beudeker, B.J.; Groothuismink, Z.M.; de Man, R.A.; Janssen, H.; van der Eijk, A.A.; Boonstra, A.; Sonneveld, M.J. Hepatitis B core-related antigen levels predict pegylated interferon-alpha therapy response in HBeAg-positive chronic hepatitis B. Antivir. Ther. 2020, 25, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Ghany, M.G.; King, W.C.; Hinerman, A.S.; Lok, A.S.; Lisker-Melman, M.; Chung, R.T.; Terrault, N.; Janssen, H.L.A.; Khalili, M.; Lee, W.M.; et al. Use of HBV RNA and to predict change in serological status and disease activity in CHB. Hepatology 2023, 78, 1542–1557. [Google Scholar] [CrossRef]
- Chuaypen, N.; Posuwan, N.; Payungporn, S.; Tanaka, Y.; Shinkai, N.; Poovorawan, Y.; Tangkijvanich, P. Serum hepatitis B core-related antigen as a treatment predictor of pegylated interferon in patients with HBeAg-positive chronic hepatitis B. Liver Int. 2016, 36, 827–836. [Google Scholar] [CrossRef]
- Sonneveld, M.J.; Park, J.Y.; Kaewdech, A.; Seto, W.K.; Tanaka, Y.; Carey, I.; Papatheodoridi, M.; van Bommel, F.; Berg, T.; Zoulim, F.; et al. Prediction of Sustained Response After Nucleo(s)tide Analogue Cessation Using HBsAg and HBcrAg Levels: A Multicenter Study (CREATE). Clin. Gastroenterol. Hepatol. 2022, 20, e784–e793. [Google Scholar] [CrossRef] [PubMed]
- Bazinet, M.; Pantea, V.; Placinta, G.; Moscalu, I.; Cebotarescu, V.; Cojuhari, L.; Jimbei, P.; Iarovoi, L.; Smesnoi, V.; Musteata, T.; et al. Safety and Efficacy of 48 Weeks REP 2139 or REP 2165, Tenofovir Disoproxil, and Pegylated Interferon Alfa-2a in Patients with Chronic HBV Infection Naive to Nucleos(t)ide Therapy. Gastroenterology 2020, 158, 2180–2194. [Google Scholar] [CrossRef]
- Hershkovich, L.; Shekhtman, L.; Bazinet, M.; Pantea, V.; Placinta, G.; Cotler, S.J.; Vaillant, A.; Dahari, H. Rapid monophasic HBsAg decline during nucleic-acid polymer-based therapy predicts functional cure. Hepatol. Commun. 2023, 7, e0205. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Ye, J.; Zhang, Y.; Zhang, P.; Xia, G.; Zhu, J.; Wei, S.; Li, X.; Zhang, Z. Establishment of a multi-parameter prediction model for the functional cure of HBeAg-negative chronic hepatitis B patients treated with pegylated interferonalpha and decision process based on response-guided therapy strategy. BMC Infect. Dis. 2023, 23, 456. [Google Scholar] [CrossRef]
- Marcellin, P.; Ahn, S.H.; Ma, X.; Caruntu, F.A.; Tak, W.Y.; Elkashab, M.; Chuang, W.L.; Lim, S.G.; Tabak, F.; Mehta, R.; et al. Combination of Tenofovir Disoproxil Fumarate and Peginterferon alpha-2a Increases Loss of Hepatitis B Surface Antigen in Patients with Chronic Hepatitis B. Gastroenterology 2016, 150, 134–144.E10. [Google Scholar] [CrossRef]
- Marcellin, P.; Ahn, S.H.; Chuang, W.L.; Hui, A.J.; Tabak, F.; Mehta, R.; Petersen, J.; Lee, C.M.; Ma, X.; Caruntu, F.A.; et al. Predictors of response to tenofovir disoproxil fumarate plus peginterferon alfa-2a combination therapy for chronic hepatitis B. Aliment. Pharmacol. Ther. 2016, 44, 957–966. [Google Scholar] [CrossRef]
- Fan, R.; Peng, J.; Xie, Q.; Tan, D.; Xu, M.; Niu, J.; Wang, H.; Ren, H.; Chen, X.; Wang, M.; et al. Combining Hepatitis B Virus RNA and Hepatitis B Core-Related Antigen: Guidance for Safely Stopping Nucleos(t)ide Analogues in Hepatitis B e Antigen-Positive Patients with Chronic Hepatitis B. J. Infect. Dis. 2020, 222, 611–618. [Google Scholar] [CrossRef]
- Lok, J.; Harris, J.M.; Carey, I.; Agarwal, K.; McKeating, J.A. Assessing the virological response to direct-acting antiviral therapies in the HBV cure programme. Virology 2025, 605, 110458. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, Y.; Meng, Q.; Zhang, Z.; Zhao, P.; Shang, Q.; Li, Y.; Su, M.; Li, T.; Liu, X.; et al. Serum Hepatitis B Virus DNA, RNA, and HBsAg: Which Correlated Better with Intrahepatic Covalently Closed Circular DNA before and after Nucleos(t)ide Analogue Treatment? J. Clin. Microbiol. 2017, 55, 2972–2982. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Liao, H.; Deng, Z.; Bian, D.; Ren, Y.; Yu, G.; Jiang, Y.; Bai, L.; Liu, S.; et al. Serum HBV DNA plus RNA reflecting cccDNA level before and during NAs treatment in HBeAg positive CHB patients. Int. J. Med. Sci. 2022, 19, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Hershkovich, L.; Cotler, S.J.; Shekhtman, L.; Bazinet, M.; Anderson, M.; Kuhns, M.; Cloherty, G.; Vaillant, A.; Dahari, H. HBV serum RNA kinetics during nucleic acid polymers based therapy predict functional cure. Antivir. Res. 2025, 234, 106061. [Google Scholar] [CrossRef]
- Laras, A.; Koskinas, J.; Dimou, E.; Kostamena, A.; Hadziyannis, S.J. Intrahepatic levels and replicative activity of covalently closed circular hepatitis B virus DNA in chronically infected patients. Hepatology 2006, 44, 694–702. [Google Scholar] [CrossRef]
- Pan, J.; Xu, J.; Luo, H.; Tan, N.; Kang, Q.; Chen, H.; Cheng, R.; Han, Y.; Yang, Y.; Xu, X. Factors and virological significance of hepatitis B virus pregenomic RNA status after 5 years of antiviral therapy. Int. J. Infect. Dis. 2021, 105, 418–423. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, M.; Liao, J.; Cheng, X.; He, M.; Zhang, D.; Zhou, T.; Chen, J.; Chen, E.; Tang, H. Dynamics of Serum Pregenome RNA in Chronic Hepatitis B Patients Receiving 96-Month Nucleos(t)ide Analog Therapy. Front. Med. 2022, 9, 787770. [Google Scholar] [CrossRef]
- Vachon, A.; Osiowy, C. Novel Biomarkers of Hepatitis B Virus and Their Use in Chronic Hepatitis B Patient Management. Viruses 2021, 13, 951. [Google Scholar] [CrossRef]
- Li, J.; Sun, X.; Fang, J.; Wang, C.; Han, G.; Ren, W. Analysis of intrahepatic total HBV DNA, cccDNA and serum HBsAg level in Chronic Hepatitis B patients with undetectable serum HBV DNA during oral antiviral therapy. Clin. Res. Hepatol. Gastroenterol. 2017, 41, 635–643. [Google Scholar] [CrossRef]
- Zheng, J.R.; Wang, Z.L.; Feng, B. Hepatitis B functional cure and immune response. Front. Immunol. 2022, 13, 1075916. [Google Scholar] [CrossRef]
- Kim, J.H.; Ghosh, A.; Ayithan, N.; Romani, S.; Khanam, A.; Park, J.J.; Rijnbrand, R.; Tang, L.; Sofia, M.J.; Kottilil, S.; et al. Circulating serum HBsAg level is a biomarker for HBV-specific T and B cell responses in chronic hepatitis B patients. Sci. Rep. 2020, 10, 1835. [Google Scholar] [CrossRef]
- Le Bert, N.; Gill, U.S.; Hong, M.; Kunasegaran, K.; Tan, D.Z.M.; Ahmad, R.; Cheng, Y.; Dutertre, C.A.; Heinecke, A.; Rivino, L.; et al. Effects of Hepatitis B Surface Antigen on Virus-Specific and Global T Cells in Patients with Chronic Hepatitis B Virus infection. Gastroenterology 2020, 159, 652–664. [Google Scholar] [CrossRef] [PubMed]
- Bosch, M.; Kallin, N.; Donakonda, S.; Zhang, J.D.; Wintersteller, H.; Hegenbarth, S.; Heim, K.; Ramirez, C.; Furst, A.; Lattouf, E.I.; et al. A liver immune rheostat regulates CD8 T cell immunity in chronic HBV infection. Nature 2024, 631, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Lebosse, F.; Testoni, B.; Fresquet, J.; Facchetti, F.; Galmozzi, E.; Fournier, M.; Hervieu, V.; Berthillon, P.; Berby, F.; Bordes, I.; et al. Intrahepatic innate immune response pathways are downregulated in untreated chronic hepatitis B. J. Hepatol. 2017, 66, 897–909. [Google Scholar] [CrossRef]
- Meng, Z.; Liu, J.; Kosinska, A.D.; Lu, M. Editorial: Targeting the Immune System to Treat Hepatitis B Virus Infection. Front. Immunol. 2022, 13, 868616. [Google Scholar] [CrossRef]
- Xiong, S.; Zhu, D.; Liang, B.; Li, M.; Pan, W.; He, J.; Wang, H.; Sutter, K.; Dittmer, U.; Lu, M.; et al. Longitudinal characterization of phenotypic profile of T cells in chronic hepatitis B identifies immune markers associated with HBsAg loss. eBioMedicine 2021, 69, 103464. [Google Scholar] [CrossRef]
- Wang, H.; Luo, H.; Wan, X.; Fu, X.; Mao, Q.; Xiang, X.; Zhou, Y.; He, W.; Zhang, J.; Guo, Y.; et al. TNF-alpha/IFN-gamma profile of HBV-specific CD4 T cells is associated with liver damage and viral clearance in chronic HBV infection. J. Hepatol. 2020, 72, 45–56. [Google Scholar] [CrossRef]
- Jiang, M.; Broering, R.; Trippler, M.; Poggenpohl, L.; Fiedler, M.; Gerken, G.; Lu, M.; Schlaak, J.F. Toll-like receptor-mediated immune responses are attenuated in the presence of high levels of hepatitis B virus surface antigen. J. Viral Hepat. 2014, 21, 860–872. [Google Scholar] [CrossRef]
- Peng, G.; Li, S.; Wu, W.; Tan, X.; Chen, Y.; Chen, Z. PD-1 upregulation is associated with HBV-specific T cell dysfunction in chronic hepatitis B patients. Mol. Immunol. 2008, 45, 963–970. [Google Scholar] [CrossRef]
- Feray, C.; Lopez-Labrador, F.X. Is PD-1 blockade a potential therapy for HBV? JHEP Rep. 2019, 1, 142–144. [Google Scholar] [CrossRef]
- Ferrando-Martinez, S.; Snell Bennett, A.; Lino, E.; Gehring, A.J.; Feld, J.; Janssen, H.L.A.; Robbins, S.H. Functional Exhaustion of HBV-Specific CD8 T Cells Impedes PD-L1 Blockade Efficacy in Chronic HBV Infection. Front. Immunol. 2021, 12, 648420. [Google Scholar] [CrossRef] [PubMed]
- Calvo Sánchez, H.; Peña Asensio, J.; Míquel, J.; Sanz-de Villalobos, E.; Delgado, A.; Torralba, M.; González Praetorius, A.; Larrubia, J.R. SAT-374-YI IL-15 plus anti-PDL-1 restores CD8 T-cell response against core but not against polymerase in chronic hepatitis B with extreme exhaustion-associated factors. J. Hepatol. EASL 2024, 80, S738–S739. [Google Scholar] [CrossRef]
- Gane, E.; Verdon, D.J.; Brooks, A.E.; Gaggar, A.; Nguyen, A.H.; Subramanian, G.M.; Schwabe, C.; Dunbar, P.R. Anti-PD-1 blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: A pilot study. J. Hepatol. 2019, 71, 900–907. [Google Scholar] [CrossRef]
- Suvas, S.; Singh, V.; Sahdev, S.; Vohra, H.; Agrewala, J.N. Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. J. Biol. Chem. 2002, 277, 7766–7775. [Google Scholar] [CrossRef]
- Garcia-Lopez, M.; Lens, S.; Pallett, L.J.; Testoni, B.; Rodriguez-Tajes, S.; Marino, Z.; Bartres, C.; Garcia-Pras, E.; Leonel, T.; Perpinan, E.; et al. Viral and immune factors associated with successful treatment withdrawal in HBeAg-negative chronic hepatitis B patients. J. Hepatol. 2021, 74, 1064–1074. [Google Scholar] [CrossRef] [PubMed]
- Rinker, F.; Zimmer, C.L.; Honer Zu Siederdissen, C.; Manns, M.P.; Kraft, A.R.M.; Wedemeyer, H.; Bjorkstrom, N.K.; Cornberg, M. Hepatitis B virus-specific T cell responses after stopping nucleos(t)ide analogue therapy in HBeAg-negative chronic hepatitis B. J. Hepatol. 2018, 69, 584–593. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, H.; Tang, L.; Wang, F.; Tolufashe, G.; Chang, J.; Guo, J.T. Mechanism of interferon alpha therapy for chronic hepatitis B and potential approaches to improve its therapeutic efficacy. Antivir. Res. 2023, 221, 105782. [Google Scholar] [CrossRef]
- Cai, Y.; Yin, W. The Multiple Functions of B Cells in Chronic HBV Infection. Front. Immunol. 2020, 11, 582292. [Google Scholar] [CrossRef]
- Le Bert, N.; Salimzadeh, L.; Gill, U.S.; Dutertre, C.A.; Facchetti, F.; Tan, A.; Hung, M.; Novikov, N.; Lampertico, P.; Fletcher, S.P.; et al. Comparative characterization of B cells specific for HBV nucleocapsid and envelope proteins in patients with chronic hepatitis B. J. Hepatol. 2020, 72, 34–44. [Google Scholar] [CrossRef]
- Vanwolleghem, T.; Groothuismink, Z.M.A.; Kreefft, K.; Hung, M.; Novikov, N.; Boonstra, A. Hepatitis B core-specific memory B cell responses associate with clinical parameters in patients with chronic HBV. J. Hepatol. 2020, 73, 52–61. [Google Scholar] [CrossRef]
- Burton, A.R.; Pallett, L.J.; McCoy, L.E.; Suveizdyte, K.; Amin, O.E.; Swadling, L.; Alberts, E.; Davidson, B.R.; Kennedy, P.T.; Gill, U.S.; et al. Circulating and intrahepatic antiviral B cells are defective in hepatitis B. J. Clin. Investig. 2018, 128, 4588–4603. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Guo, Y.; Kong, Y.; Zhu, H.; Zhang, J. Immune profiling of HBsAg-specific B cells in CHB patients with HBsAg loss. J. Hepatol. EASL 2024, 80, S748. [Google Scholar] [CrossRef]
- Poonia, B.; Ayithan, N.; Nandi, M.; Masur, H.; Kottilil, S. HBV induces inhibitory FcRL receptor on B cells and dysregulates B cell-T follicular helper cell axis. Sci. Rep. 2018, 8, 15296. [Google Scholar] [CrossRef] [PubMed]
- Sutton, H.J.; Aye, R.; Idris, A.H.; Vistein, R.; Nduati, E.; Kai, O.; Mwacharo, J.; Li, X.; Gao, X.; Andrews, T.D.; et al. Atypical B cells are part of an alternative lineage of B cells that participates in responses to vaccination and infection in humans. Cell Rep. 2021, 34, 108684. [Google Scholar] [CrossRef]
- Li, H.; Dement-Brown, J.; Liao, P.J.; Mazo, I.; Mills, F.; Kraus, Z.; Fitzsimmons, S.; Tolnay, M. Fc receptor-like 4 and 5 define human atypical memory B cells. Int. Immunol. 2020, 32, 755–770. [Google Scholar] [CrossRef]
- Block, T.M.; Guo, J.T.; Zoulim, F.; Rice, C.M.; Thio, C.L.; Schneider, W.M.; Alter, H.J.; Jacobson, I.M.; Gish, R.G.; Block, P.D.; et al. New potent HBV replication inhibitors for the management of chronic hepatitis B are needed. Nat. Rev. Gastroenterol. Hepatol. 2025, 22, 150–151. [Google Scholar] [CrossRef]
- Marcellin, P.; Xie, Q.; Woon Paik, S.; Flisiak, R.; Piratvisuth, T.; Petersen, J.; Asselah, T.; Cornberg, M.; Ouzan, D.; Foster, G.R.; et al. Final analysis of the international observational S-Collate study of peginterferon alfa-2a in patients with chronic hepatitis B. PLoS ONE 2020, 15, e0230893. [Google Scholar] [CrossRef]
- Lau, G.K.; Piratvisuth, T.; Luo, K.X.; Marcellin, P.; Thongsawat, S.; Cooksley, G.; Gane, E.; Fried, M.W.; Chow, W.C.; Paik, S.W.; et al. Peginterferon Alfa-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B. N. Engl. J. Med. 2005, 352, 2682–2695. [Google Scholar] [CrossRef]
- Luo, H.; Tan, G.; Hu, X.; Li, Y.; Lei, D.; Zeng, Y.; Qin, B. Triple motif proteins 19 and 38 correlated with treatment responses and HBsAg clearance in HBeAg-negative chronic hepatitis B patients during peg-IFN-alpha therapy. Virol. J. 2023, 20, 161. [Google Scholar] [CrossRef]
- Wong, G.L.H.; Gane, E.; Lok, A.S.F. How to achieve functional cure of HBV: Stopping NUCs, adding interferon or new drug development? J. Hepatol. 2022, 76, 1249–1262. [Google Scholar] [CrossRef]
- Sonneveld, M.J.; Rijckborst, V.; Cakaloglu, Y.; Simon, K.; Heathcote, E.J.; Tabak, F.; Mach, T.; Boucher, C.A.; Hansen, B.E.; Zeuzem, S.; et al. Durable hepatitis B surface antigen decline in hepatitis B e antigen-positive chronic hepatitis B patients treated with pegylated interferon-alpha2b: Relation to response and HBV genotype. Antivir. Ther. 2012, 17, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Mimura, S.; Fujita, K.; Takuma, K.; Nakahara, M.; Oura, K.; Tadokoro, T.; Kobara, H.; Tani, J.; Morishita, A.; Himoto, T.; et al. Effect of pegylated interferon alfa-2a in HBeAg-negative chronic hepatitis B during and 48 weeks after off-treatment follow-up: The limitation of pre-treatment HBsAg load for the seroclearance of HBsAg. Intern. Emerg. Med. 2021, 16, 1559–1565. [Google Scholar] [CrossRef]
- Kumar, K.; Jindal, A.; Gupta, E.; Trehanpati, N.; Shasthry, S.M.; Maiwall, R.; Arora, V.; Bhardwaj, A.; Kumar, G.; Kumar, M.; et al. Long Term HBsAg Responses to Peg-Interferon Alpha-2b in HBeAg Negative Chronic Hepatitis B Patients Developing Clinical Relapse after Stopping Long-Term Nucleos(t)ide Analogue Therapy. J. Clin. Exp. Hepatol. 2024, 14, 101272. [Google Scholar] [CrossRef] [PubMed]
- Li, G.J.; Yu, Y.Q.; Chen, S.L.; Fan, P.; Shao, L.Y.; Chen, J.Z.; Li, C.S.; Yi, B.; Chen, W.C.; Xie, S.Y.; et al. Sequential combination therapy with pegylated interferon leads to loss of hepatitis B surface antigen and hepatitis B e antigen (HBeAg) seroconversion in HBeAg-positive chronic hepatitis B patients receiving long-term entecavir treatment. Antimicrob. Agents Chemother. 2015, 59, 4121–4128. [Google Scholar] [CrossRef] [PubMed]
- Bourliere, M.; Rabiega, P.; Ganne-Carrie, N.; Serfaty, L.; Marcellin, P.; Barthe, Y.; Thabut, D.; Guyader, D.; Hezode, C.; Picon, M.; et al. Effect on HBs antigen clearance of addition of pegylated interferon alfa-2a to nucleos(t)ide analogue therapy versus nucleos(t)ide analogue therapy alone in patients with HBe antigen-negative chronic hepatitis B and sustained undetectable plasma hepatitis B virus DNA: A randomised, controlled, open-label trial. Lancet Gastroenterol. Hepatol. 2017, 2, 177–188. [Google Scholar] [CrossRef]
- Ning, Q.; Han, M.; Sun, Y.; Jiang, J.; Tan, D.; Hou, J.; Tang, H.; Sheng, J.; Zhao, M. Switching from entecavir to PegIFN alfa-2a in patients with HBeAg-positive chronic hepatitis B: A randomised open-label trial (OSST trial). J. Hepatol. 2014, 61, 777–784. [Google Scholar] [CrossRef]
- He, L.T.; Ye, X.G.; Zhou, X.Y. Effect of switching from treatment with nucleos(t)ide analogs to pegylated interferon alpha-2a on virological and serological responses in chronic hepatitis B patients. World J. Gastroenterol. 2016, 22, 10210–10218. [Google Scholar] [CrossRef]
- Marcellin, P.; Wong, D.K.; Sievert, W.; Buggisch, P.; Petersen, J.; Flisiak, R.; Manns, M.; Kaita, K.; Krastev, Z.; Lee, S.S.; et al. Ten-year efficacy and safety of tenofovir disoproxil fumarate treatment for chronic hepatitis B virus infection. Liver Int. 2019, 39, 1868–1875. [Google Scholar] [CrossRef]
- Hou, J.; Ning, Q.; Duan, Z.; Chen, Y.; Xie, Q.; Wang, F.S.; Zhang, L.; Wu, S.; Tang, H.; Li, J.; et al. 3-year Treatment of Tenofovir Alafenamide vs. Tenofovir Disoproxil Fumarate for Chronic HBV Infection in China. J. Clin. Transl. Hepatol. 2021, 9, 324–334. [Google Scholar] [CrossRef]
- Kim, G.A.; Lim, Y.S.; An, J.; Lee, D.; Shim, J.H.; Kim, K.M.; Lee, H.C.; Chung, Y.H.; Lee, Y.S.; Suh, D.J. HBsAg seroclearance after nucleoside analogue therapy in patients with chronic hepatitis B: Clinical outcomes and durability. Gut 2014, 63, 1325–1332. [Google Scholar] [CrossRef]
- Yip, T.C.; Wong, G.L.; Chan, H.L.; Tse, Y.K.; Lam, K.L.; Lui, G.C.; Wong, V.W. HBsAg seroclearance further reduces hepatocellular carcinoma risk after complete viral suppression with nucleos(t)ide analogues. J. Hepatol. 2019, 70, 361–370. [Google Scholar] [CrossRef]
- Wong, G.L.; Tse, Y.K.; Wong, V.W.; Yip, T.C.; Tsoi, K.K.; Chan, H.L. Long-term safety of oral nucleos(t)ide analogs for patients with chronic hepatitis B: A cohort study of 53,500 subjects. Hepatology 2015, 62, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Hadziyannis, S.J.; Sevastianos, V.; Rapti, I.; Vassilopoulos, D.; Hadziyannis, E. Sustained responses and loss of HBsAg in HBeAg-negative patients with chronic hepatitis B who stop long-term treatment with adefovir. Gastroenterology 2012, 143, 629–636.e621. [Google Scholar] [CrossRef] [PubMed]
- Gish, R.; Agarwal, K.; Mahajan, A.; Desai, S.; Kharawala, S.; Elston, R.; Das, J.; Kendrick, S.; Gielen, V. Nucleos(t)ide Analog Treatment Discontinuation in Chronic Hepatitis B Virus Infection: A Systematic Literature Review. Gastro Hep Adv. 2025, 4, 100536. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Hung, C.H.; Wang, J.H.; Lu, S.N.; Hu, T.H.; Lee, C.M. Long-term incidence and predictors of hepatitis B surface antigen loss after discontinuing nucleoside analogues in noncirrhotic chronic hepatitis B patients. Clin. Microbiol. Infect. 2018, 24, 997–1003. [Google Scholar] [CrossRef]
- Kao, J.H.; Jeng, W.J.; Ning, Q.; Su, T.H.; Tseng, T.C.; Ueno, Y.; Yuen, M.F. APASL guidance on stopping nucleos(t)ide analogues in chronic hepatitis B patients. Hepatol. Int. 2021, 15, 833–851. [Google Scholar] [CrossRef]
- Berg, T.; Simon, K.G.; Mauss, S.; Schott, E.; Heyne, R.; Klass, D.M.; Eisenbach, C.; Welzel, T.M.; Zachoval, R.; Felten, G.; et al. Long-term response after stopping tenofovir disoproxil fumarate in non-cirrhotic HBeAg-negative patients—FINITE study. J. Hepatol. 2017, 67, 918–924. [Google Scholar] [CrossRef]
- Papatheodoridis, G.V.; Rigopoulou, E.I.; Papatheodoridi, M.; Zachou, K.; Xourafas, V.; Gatselis, N.; Hadziyannis, E.; Vlachogiannakos, J.; Manolakopoulos, S.; Dalekos, G.N. DARING-B: Discontinuation of effective entecavir or tenofovir disoproxil fumarate long-term therapy before HBsAg loss in non-cirrhotic HBeAg-negative chronic hepatitis B. Antivir. Ther. 2018, 23, 677–685. [Google Scholar] [CrossRef]
- Jeng, W.J.; Chen, Y.C.; Chien, R.N.; Sheen, I.S.; Liaw, Y.F. Incidence and predictors of hepatitis B surface antigen seroclearance after cessation of nucleos(t)ide analogue therapy in hepatitis B e antigen-negative chronic hepatitis B. Hepatology 2018, 68, 425–434. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, M.; Wu, S.; Jiang, W.; Feng, Y. Predictors of relapse after cessation of nucleos(t)ide analog treatment in HBeAg-negative chronic hepatitis B patients: A meta-analysis. Int. J. Infect. Dis. 2019, 86, 201–207. [Google Scholar] [CrossRef]
- Hirode, G.; Choi, H.S.J.; Chen, C.H.; Su, T.H.; Seto, W.K.; Van Hees, S.; Papatheodoridi, M.; Lens, S.; Wong, G.; Brakenhoff, S.M.; et al. Off-Therapy Response After Nucleos(t)ide Analogue Withdrawal in Patients with Chronic Hepatitis B: An International, Multicenter, Multiethnic Cohort (RETRACT-B Study). Gastroenterology 2022, 162, 757–771.e754. [Google Scholar] [CrossRef] [PubMed]
- Yuen, M.F.; Lim, S.G.; Plesniak, R.; Tsuji, K.; Janssen, H.L.A.; Pojoga, C.; Gadano, A.; Popescu, C.P.; Stepanova, T.; Asselah, T.; et al. Efficacy and Safety of Bepirovirsen in Chronic Hepatitis B Infection. N. Engl. J. Med. 2022, 387, 1957–1968. [Google Scholar] [CrossRef]
- Yuen, M.F.; Locarnini, S.; Lim, T.H.; Strasser, S.I.; Sievert, W.; Cheng, W.; Thompson, A.J.; Given, B.D.; Schluep, T.; Hamilton, J.; et al. Combination treatments including the small-interfering RNA JNJ-3989 induce rapid and sometimes prolonged viral responses in patients with CHB. J. Hepatol. 2022, 77, 1287–1298. [Google Scholar] [CrossRef]
- Agarwal, K.; Buti, M.; Van Boemmel, F.; Lampertico, P.; Janczewska, E.; Bourliere, M.; Vanwolleghem, T.; Lenz, O.; Verbinnen, T.; Kakuda, T.; et al. Efficacy and Safety of Finite 48-Week Treatment with the siRNA JNJ-3989 and the Capsid Assembly Modulator JNJ-6379 in HBeAg Negative Virologically Suppressed Chronic Hepatitis B Patients: Results from the REEF-2 Study. Available online: https://www.natap.org/2022/EASL/EASL_35.htm (accessed on 21 March 2024).
- Agarwal, K.; Buti, M.; van Bömmel, F.; Lampertico, P.; Janczewska, E.; Bourliere, M.; Vanwolleghem, T.; Lenz, O.; Verbinnen, T.; Kakuda, T.N.; et al. JNJ-73763989 and bersacapavir treatment in nucleos(t)ide analog suppressed patients with chronic hepatitis B: REEF-2. J. Hepatol. 2024, 81, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, K.; Lok, J.; Carey, I.; Shivkar, Y.; Biermer, M.; Berg, T.; Lonjon-Domanec, I. A case of HBV-induced liver failure in the REEF-2 phase II trial: Implications for finite treatment strategies in HBV ‘cure’. J. Hepatol. 2022, 77, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Vir Biotechnology. Vir Biotechnology to Present New Data from Its Ongoing Phase 2 Chronic Hepatitis Delta and B Trials Today at AASLD’s The Liver Meeting® 2023. Available online: https://investors.vir.bio/news/news-details/2023/Vir-Biotechnology-to-Present-New-Data-from-Its-Ongoing-Phase-2-Chronic-Hepatitis-Delta-and-B-Trials-Today-at-AASLDs-The-Liver-Meeting-2023-2023-YGYyKO3oyh/default.aspx (accessed on 6 January 2024).
- Kovacs, E.J.; Radzioch, D.; Young, H.A.; Varesio, L. Differential inhibition of IL-1 and TNF-alpha mRNA expression by agents which block second messenger pathways in murine macrophages. J. Immunol. 1988, 141, 3101–3105. [Google Scholar] [CrossRef]
- Li, H.; Liang, S.; Liu, L.; Zhou, D.; Liu, Y.; Zhang, Y.; Chen, X.; Zhang, J.; Cao, Z. Clinical cure rate of inactive HBsAg carriers with HBsAg <200 IU/ml treated with pegylated interferon. Front. Immunol. 2022, 13, 1091786. [Google Scholar] [CrossRef]
- Ning, H.; Li, K.; Peng, Z.; Jin, H.; Zhao, H.; Shang, J. The efficacy and safety of pegylated interferon alpha-2b-based immunotherapy for inactive hepatitis B surface antigen carriers. Eur. J. Gastroenterol. Hepatol. 2023, 35, 1216–1223. [Google Scholar] [CrossRef]
- Coffin, C.S.; Haylock-Jacobs, S.; Doucette, K.; Ramji, A.; Ko, H.H.; Wong, D.K.; Elkhashab, M.; Bailey, R.; Uhanova, J.; Minuk, G.; et al. Clinical Outcomes and Quantitative HBV Surface Antigen Levels in Diverse Chronic Hepatitis B Patients in Canada: A Retrospective Real-World Study of CHB in Canada (REVEAL-CANADA). Viruses 2022, 14, 2668. [Google Scholar] [CrossRef]
- Paratala, B.; Park, J.J.; Ganchua, S.C.; Gane, E.; Yuen, R.M.F.; Lee, A.C.; Moore, C.; Lam, A.M.; Sevinsky, H.; Sims, K.; et al. Inhibition of hepatitis B surface antigen in chronic hepatitis B subjects by RNA interference therapeutic AB-729 is accompanied by upregulation of HBV-specific T cell activation markers. J. Hepatol. 2021, 75 (Suppl. S2), S761. [Google Scholar]
- Yuen, M.-F.; Berliba, E.; Sukeepaisarnjaroen, W.; Holmes, J.; Leerapun, A.; Tangkijvanich, P.; Strasser, S.; Jucov, A.; Gane, E.J.; Thi, E.P.; et al. Long-term suppression maintained after cessation of AB-729 treatment and comparable on-treatment response observed in HBeAg+ subjects. J. Hepatol. 2022, 77, S876–S877. [Google Scholar] [CrossRef]
- Vaillant, A. Oligonucleotide-Based Therapies for Chronic HBV Infection: A Primer on Biochemistry, Mechanisms and Antiviral Effects. Viruses 2022, 14, 2052. [Google Scholar] [CrossRef] [PubMed]
- Javanbakht, H.; Mueller, H.; Walther, J.; Zhou, X.; Lopez, A.; Pattupara, T.; Blaising, J.; Pedersen, L.; Albaek, N.; Jackerott, M.; et al. Liver-Targeted Anti-HBV Single-Stranded Oligonucleotides with Locked Nucleic Acid Potently Reduce HBV Gene Expression In Vivo. Mol. Ther. Nucleic Acids 2018, 11, 441–454. [Google Scholar] [CrossRef]
- Sims, K. Update on AB-729, an RNAi Therapeutic in Phase 2 Development as a Key Component of a Functional Cure Strategy for cHBV. Available online: https://www.arbutusbio.com/wp-content/uploads/2023/06/Arbutus_ScienceofHBVCure2023_FINAL.pdf (accessed on 21 May 2024).
- Vaillant, A. Nucleic acid polymers: Broad spectrum antiviral activity, antiviral mechanisms and optimization for the treatment of hepatitis B and hepatitis D infection. Antivir. Res. 2016, 133, 32–40. [Google Scholar] [CrossRef]
- Al-Mahtab, M.; Bazinet, M.; Vaillant, A. Safety and Efficacy of Nucleic Acid Polymers in Monotherapy and Combined with Immunotherapy in Treatment-Naive Bangladeshi Patients with HBeAg+ Chronic Hepatitis B Infection. PLoS ONE 2016, 11, e0156667. [Google Scholar] [CrossRef]
- Lempp, F.A.; Volz, T.; Cameroni, E.; Benigni, F.; Zhou, J.; Rosen, L.E.; Noack, J.; Zatta, F.; Kaiser, H.; Bianchi, S.; et al. Potent broadly neutralizing antibody VIR-3434 controls hepatitis B and D virus infection and reduces HBsAg in humanized mice. J. Hepatol. 2023, 79, 1129–1138. [Google Scholar] [CrossRef]
- Berke, J.M.; Dehertogh, P.; Vergauwen, K.; Van Damme, E.; Mostmans, W.; Vandyck, K.; Pauwels, F. Capsid Assembly Modulators Have a Dual Mechanism of Action in Primary Human Hepatocytes Infected with Hepatitis B Virus. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef]
- Hou, J.; Gane, E.; Balabanska, R.; Zhang, W.; Zhang, J.; Lim, T.H.; Xie, Q.; Yeh, C.T.; Yang, S.S.; Liang, X.; et al. Efficacy, safety, and pharmacokinetics of capsid assembly modulator linvencorvir plus standard of care in chronic hepatitis B patients. Clin. Mol. Hepatol. 2024, 30, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Lempp, F.A.; Mehrle, S.; Nkongolo, S.; Kaufman, C.; Falth, M.; Stindt, J.; Koniger, C.; Nassal, M.; Kubitz, R.; et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 2014, 146, 1070–1083. [Google Scholar] [CrossRef]
- Yan, H.; Zhong, G.; Xu, G.; He, W.; Jing, Z.; Gao, Z.; Huang, Y.; Qi, Y.; Peng, B.; Wang, H.; et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 2012, 1, e00049. [Google Scholar] [CrossRef]
- Schulze, A.; Schieck, A.; Ni, Y.; Mier, W.; Urban, S. Fine mapping of pre-S sequence requirements for hepatitis B virus large envelope protein-mediated receptor interaction. J. Virol. 2010, 84, 1989–2000. [Google Scholar] [CrossRef]
- Petersen, J.; Dandri, M.; Mier, W.; Lutgehetmann, M.; Volz, T.; von Weizsacker, F.; Haberkorn, U.; Fischer, L.; Pollok, J.M.; Erbes, B.; et al. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat. Biotechnol. 2008, 26, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Shekhtman, L.; Cotler, S.J.; Ploss, A.; Dahari, H. Mathematical modeling suggests that entry-inhibitor bulevirtide may interfere with hepatitis D virus clearance from circulation. J. Hepatol. 2022, 76, 1229–1231. [Google Scholar] [CrossRef]
- Villeret, F.; Lebosse, F.; Radenne, S.; Samuel, D.; Roche, B.; Mabrut, J.Y.; Leroy, V.; Pageaux, G.P.; Anty, R.; Thevenon, S.; et al. Early intrahepatic recurrence of HBV infection in liver transplant recipients despite antiviral prophylaxis. JHEP Rep. 2023, 5, 100728. [Google Scholar] [CrossRef] [PubMed]
- Cholongitas, E.; Papatheodoridis, G.V. High genetic barrier nucleos(t)ide analogue(s) for prophylaxis from hepatitis B virus recurrence after liver transplantation: A systematic review. Am. J. Transplant. 2013, 13, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Congly, S.E.; Burak, K.W.; Coffin, C.S. Hepatitis B immunoglobulin for prevention of hepatitis B virus infection and recurrence after liver transplantation. Expert Rev. Clin. Immunol. 2011, 7, 429–436. [Google Scholar] [CrossRef]
- Chen, Z.; Zeng, M.; Liu, D.; Wu, L.; Zhang, L. Antenatal administration of hepatitis B immunoglobulin and hepatitis B vaccine to prevent mother to child transmission in hepatitis B virus surface antigen positive pregnant women: A systematic review and meta-analysis. Medicine 2020, 99, e19886. [Google Scholar] [CrossRef]
- Jimenez-Perez, M.; Gonzalez-Grande, R.; Mostazo Torres, J.; Gonzalez Arjona, C.; Rando-Munoz, F.J. Management of hepatitis B virus infection after liver transplantation. World J. Gastroenterol. 2015, 21, 12083–12090. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, J.; Li, T. Regulation of the HBV Entry Receptor NTCP and its Potential in Hepatitis B Treatment. Front. Mol. Biosci. 2022, 9, 879817. [Google Scholar] [CrossRef]
- Romano, L.; Zanetti, A.R. Hepatitis B Vaccination: A Historical Overview with a Focus on the Italian Achievements. Viruses 2022, 14, 1515. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, X.; Zhou, Y.H. Hepatitis B vaccine development and implementation. Hum. Vaccines Immunother. 2020, 16, 1533–1544. [Google Scholar] [CrossRef] [PubMed]
- Bucher, B.; Francioli, P.; Geudelin, B.; Fritzell, B.; Lavanchy, D.; Frei, P.C. Immunogenicity of a recombinant Pre-S2-containing hepatitis B vaccine versus plasma-derived vaccine administered as a booster. Eur. J. Clin. Microbiol. Infect. Dis. 1994, 13, 212–217. [Google Scholar] [CrossRef]
- Desombere, I.; Gijbels, Y.; Verwulgen, A.; Leroux-Roels, G. Characterization of the T cell recognition of hepatitis B surface antigen (HBsAg) by good and poor responders to hepatitis B vaccines. Clin. Exp. Immunol. 2000, 122, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Pol, S.; Driss, F.; Michel, M.L.; Nalpas, B.; Berthelot, P.; Brechot, C. Specific vaccine therapy in chronic hepatitis B infection. Lancet 1994, 344, 342. [Google Scholar] [CrossRef]
- Pata, C.; Yazar, A.; Konca, K.; Bilgic, G.; Eskandari, G.; Ozturk, C. The effect of recombinant hepatitis B vaccine therapy in chronic hepatitis B infection. Turk. J. Gastroenterol. 2002, 13, 6–10. [Google Scholar]
- Pol, S.; Nalpas, B.; Driss, F.; Michel, M.L.; Tiollais, P.; Denis, J.; Brecho, C.; Multicenter study, g. Efficacy and limitations of a specific immunotherapy in chronic hepatitis B. J. Hepatol. 2001, 34, 917–921. [Google Scholar] [CrossRef]
- Dikici, B.; Bosnak, M.; Ucmak, H.; Dagli, A.; Ece, A.; Haspolat, K. Failure of therapeutic vaccination using hepatitis B surface antigen vaccine in the immunotolerant phase of children with chronic hepatitis B infection. J. Gastroenterol. Hepatol. 2003, 18, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.M.; Wu, X.H.; Hu, D.C.; Zhang, Q.P.; Guo, S.Q. Hepatitis B vaccine and anti-HBs complex as approach for vaccine therapy. Lancet 1995, 345, 1575–1576. [Google Scholar] [CrossRef]
- Yao, X.; Zheng, B.; Zhou, J.; Xu, D.Z.; Zhao, K.; Sun, S.H.; Yuan, Z.H.; Wen, Y.M. Therapeutic effect of hepatitis B surface antigen-antibody complex is associated with cytolytic and non-cytolytic immune responses in hepatitis B patients. Vaccine 2007, 25, 1771–1779. [Google Scholar] [CrossRef]
- Xu, D.Z.; Zhao, K.; Guo, L.M.; Li, L.J.; Xie, Q.; Ren, H.; Zhang, J.M.; Xu, M.; Wang, H.F.; Huang, W.X.; et al. A randomized controlled phase IIb trial of antigen-antibody immunogenic complex therapeutic vaccine in chronic hepatitis B patients. PLoS ONE 2008, 3, e2565. [Google Scholar] [CrossRef]
- Xu, D.Z.; Wang, X.Y.; Shen, X.L.; Gong, G.Z.; Ren, H.; Guo, L.M.; Sun, A.M.; Xu, M.; Li, L.J.; Guo, X.H.; et al. Results of a phase III clinical trial with an HBsAg-HBIG immunogenic complex therapeutic vaccine for chronic hepatitis B patients: Experiences and findings. J. Hepatol. 2013, 59, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Zhang, X.X.; Yao, X.; Jiang, J.H.; Xie, Y.H.; Yuan, Z.H.; Wen, Y.M. Serum HBeAg sero-conversion correlated with decrease of HBsAg and HBV DNA in chronic hepatitis B patients treated with a therapeutic vaccine. Vaccine 2010, 28, 8169–8174. [Google Scholar] [CrossRef] [PubMed]
- Kosinska, A.D.; Zhang, E.; Johrden, L.; Liu, J.; Seiz, P.L.; Zhang, X.; Ma, Z.; Kemper, T.; Fiedler, M.; Glebe, D.; et al. Combination of DNA prime--adenovirus boost immunization with entecavir elicits sustained control of chronic hepatitis B in the woodchuck model. PLoS Pathog. 2013, 9, e1003391. [Google Scholar] [CrossRef] [PubMed]
- Thermet, A.; Buronfosse, T.; Werle-Lapostolle, B.; Chevallier, M.; Pradat, P.; Trepo, C.; Zoulim, F.; Cova, L. DNA vaccination in combination or not with lamivudine treatment breaks humoral immune tolerance and enhances cccDNA clearance in the duck model of chronic hepatitis B virus infection. J. Gen. Virol. 2008, 89, 1192–1201. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, E.; Ma, Z.; Wu, W.; Kosinska, A.; Zhang, X.; Moller, I.; Seiz, P.; Glebe, D.; Wang, B.; et al. Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection. PLoS Pathog. 2014, 10, e1003856. [Google Scholar] [CrossRef]
- Mancini-Bourgine, M.; Fontaine, H.; Brechot, C.; Pol, S.; Michel, M.L. Immunogenicity of a hepatitis B DNA vaccine administered to chronic HBV carriers. Vaccine 2006, 24, 4482–4489. [Google Scholar] [CrossRef]
- Cavenaugh, J.S.; Awi, D.; Mendy, M.; Hill, A.V.; Whittle, H.; McConkey, S.J. Partially randomized, non-blinded trial of DNA and MVA therapeutic vaccines based on hepatitis B virus surface protein for chronic HBV infection. PLoS ONE 2011, 6, e14626. [Google Scholar] [CrossRef]
- Yang, F.Q.; Yu, Y.Y.; Wang, G.Q.; Chen, J.; Li, J.H.; Li, Y.Q.; Rao, G.R.; Mo, G.Y.; Luo, X.R.; Chen, G.M. A pilot randomized controlled trial of dual-plasmid HBV DNA vaccine mediated by in vivo electroporation in chronic hepatitis B patients under lamivudine chemotherapy. J. Viral Hepat. 2012, 19, 581–593. [Google Scholar] [CrossRef]
- Fontaine, H.; Kahi, S.; Chazallon, C.; Bourgine, M.; Varaut, A.; Buffet, C.; Godon, O.; Meritet, J.F.; Saidi, Y.; Michel, M.L.; et al. Anti-HBV DNA vaccination does not prevent relapse after discontinuation of analogues in the treatment of chronic hepatitis B: A randomised trial--ANRS HB02 VAC-ADN. Gut 2015, 64, 139–147. [Google Scholar] [CrossRef]
- Yang, F.Q.; Rao, G.R.; Wang, G.Q.; Li, Y.Q.; Xie, Y.; Zhang, Z.Q.; Deng, C.L.; Mao, Q.; Li, J.; Zhao, W.; et al. Phase IIb trial of in vivo electroporation mediated dual-plasmid hepatitis B virus DNA vaccine in chronic hepatitis B patients under lamivudine therapy. World J. Gastroenterol. 2017, 23, 306–317. [Google Scholar] [CrossRef]
- Yang, S.H.; Lee, C.G.; Park, S.H.; Im, S.J.; Kim, Y.M.; Son, J.M.; Wang, J.S.; Yoon, S.K.; Song, M.K.; Ambrozaitis, A.; et al. Correlation of antiviral T-cell responses with suppression of viral rebound in chronic hepatitis B carriers: A proof-of-concept study. Gene Ther 2006, 13, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.K.; Seo, Y.B.; Im, S.J.; Bae, S.H.; Song, M.J.; You, C.R.; Jang, J.W.; Yang, S.H.; Suh, Y.S.; Song, J.S.; et al. Safety and immunogenicity of therapeutic DNA vaccine with antiviral drug in chronic HBV patients and its immunogenicity in mice. Liver Int. 2015, 35, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Lok, A.S.; Pan, C.Q.; Han, S.H.; Trinh, H.N.; Fessel, W.J.; Rodell, T.; Massetto, B.; Lin, L.; Gaggar, A.; Subramanian, G.M.; et al. Randomized phase II study of GS-4774 as a therapeutic vaccine in virally suppressed patients with chronic hepatitis B. J. Hepatol. 2016, 65, 509–516. [Google Scholar] [CrossRef]
- Boni, C.; Janssen, H.L.A.; Rossi, M.; Yoon, S.K.; Vecchi, A.; Barili, V.; Yoshida, E.M.; Trinh, H.; Rodell, T.C.; Laccabue, D.; et al. Combined GS-4774 and Tenofovir Therapy Can Improve HBV-Specific T-Cell Responses in Patients with Chronic Hepatitis. Gastroenterology 2019, 157, 227–241.e227. [Google Scholar] [CrossRef] [PubMed]
- Zoulim, F.; Fournier, C.; Habersetzer, F.; Sprinzl, M.; Pol, S.; Coffin, C.S.; Leroy, V.; Ma, M.; Wedemeyer, H.; Lohse, A.W.; et al. Safety and immunogenicity of the therapeutic vaccine TG1050 in chronic hepatitis B patients: A phase 1b placebo-controlled trial. Hum. Vaccines Immunother. 2020, 16, 388–399. [Google Scholar] [CrossRef]
- Vitiello, A.; Ishioka, G.; Grey, H.M.; Rose, R.; Farness, P.; LaFond, R.; Yuan, L.; Chisari, F.V.; Furze, J.; Bartholomeuz, R.; et al. Development of a lipopeptide-based therapeutic vaccine to treat chronic HBV infection. I. Induction of a primary cytotoxic T lymphocyte response in humans. J. Clin. Investig. 1995, 95, 341–349. [Google Scholar] [CrossRef]
- Heathcote, J.; McHutchison, J.; Lee, S.; Tong, M.; Benner, K.; Minuk, G.; Wright, T.; Fikes, J.; Livingston, B.; Sette, A.; et al. A pilot study of the CY-1899 T-cell vaccine in subjects chronically infected with hepatitis B virus. The CY1899 T Cell Vaccine Study Group. Hepatology 1999, 30, 531–536. [Google Scholar] [CrossRef]
- Luo, J.; Li, J.; Chen, R.L.; Nie, L.; Huang, J.; Liu, Z.W.; Luo, L.; Yan, X.J. Autologus dendritic cell vaccine for chronic hepatitis B carriers: A pilot, open label, clinical trial in human volunteers. Vaccine 2010, 28, 2497–2504. [Google Scholar] [CrossRef]
- Sacherl, J.; Kosinska, A.D.; Kemter, K.; Kachele, M.; Laumen, S.C.; Kerth, H.A.; Oz, E.A.; Wolff, L.S.; Su, J.; Essbauer, S.; et al. Efficient stabilization of therapeutic hepatitis B vaccine components by amino-acid formulation maintains its potential to break immune tolerance. JHEP Rep. 2023, 5, 100603. [Google Scholar] [CrossRef]
- Su, J.; Harati Taji, Z.; Kosinska, A.D.; Ates Oz, E.; Xie, Z.; Bielytskyi, P.; Shein, M.; Hagen, P.; Esmaeili, S.; Steiger, K.; et al. Introducing adjuvant-loaded particulate hepatitis B core antigen as an alternative therapeutic hepatitis B vaccine component. JHEP Rep. 2024, 6, 100997. [Google Scholar] [CrossRef]
- Bunse, T.; Kosinska, A.D.; Michler, T.; Protzer, U. PD-L1 Silencing in Liver Using siRNAs Enhances Efficacy of Therapeutic Vaccination for Chronic Hepatitis B. Biomolecules 2022, 12, 470. [Google Scholar] [CrossRef] [PubMed]
- GlaxoSmithKline. Safety, Efficacy, Immunogenicity Study of GSK Biologicals’ HBV Viral Vector and Adjuvanted Proteins Vaccine (GSK3528869A) in Adult Patients with Chronic Hepatitis B Infection. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT03866187 (accessed on 11 May 2024).
- GlaxoSmithKline. A Study on the Safety, Efficacy and Immune Response Following Sequential Treatment with an Anti-Sense Oligonucleotide Against Chronic Hepatitis B (CHB) and Chronic Hepatitis B Targeted Immunotherapy (CHB-TI) in CHB Patients Receiving Nucleos(t)Ide Analogue (NA) Therapy. Available online: https://classic.clinicaltrials.gov/show/NCT05276297 (accessed on 11 May 2024).
- Barinthus Biotherapeutics. First-in-Human Study of ChAdOx1-HBV & MVA-HBV Vaccines (VTP-300) for Chronic HBV. Available online: https://classic.clinicaltrials.gov/show/NCT04778904 (accessed on 11 May 2024).
- Altimmune, I. HepTcell Immunotherapy in Patients with Inactive Chronic Hepatitis B (CHB). Available online: https://classic.clinicaltrials.gov/show/NCT04684914 (accessed on 11 May 2024).
- Brunetto, M.R.; Oliveri, F.; Colombatto, P.; Moriconi, F.; Ciccorossi, P.; Coco, B.; Romagnoli, V.; Cherubini, B.; Moscato, G.; Maina, A.M.; et al. Hepatitis B surface antigen serum levels help to distinguish active from inactive hepatitis B virus genotype D carriers. Gastroenterology 2010, 139, 483–490. [Google Scholar] [CrossRef]
- O’Neil, C.R.; Congly, S.E.; Rose, M.S.; Lee, S.S.; Borman, M.A.; Charlton, C.L.; Osiowy, C.; Swain, M.G.; Burak, K.W.; Coffin, C.S. Long-Term Follow-up and Quantitative Hepatitis B Surface Antigen Monitoring in North American Chronic HBV Carriers. Ann. Hepatol. 2018, 17, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Belopolskaya, M.; Avrutin, V.; Firsov, S.; Yakovlev, A. HBsAg level and hepatitis B viral load correlation with focus on pregnancy. Ann. Gastroenterol. 2015, 28, 379–384. [Google Scholar]
- Wen, W.H.; Huang, C.W.; Chie, W.C.; Yeung, C.Y.; Zhao, L.L.; Lin, W.T.; Wu, J.F.; Ni, Y.H.; Hsu, H.Y.; Chang, M.H.; et al. Quantitative maternal hepatitis B surface antigen predicts maternally transmitted hepatitis B virus infection. Hepatology 2016, 64, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Tseng, T.C.; Liu, C.J.; Yang, H.C.; Su, T.H.; Wang, C.C.; Chen, C.L.; Kuo, S.F.; Liu, C.H.; Chen, P.J.; Chen, D.S.; et al. High levels of hepatitis B surface antigen increase risk of hepatocellular carcinoma in patients with low HBV load. Gastroenterology 2012, 142, 1140–1149.E3, quiz e1113–e1144. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.I.; Lee, M.H.; Jen, C.L.; Batrla-Utermann, R.; Lu, S.N.; Wang, L.Y.; You, S.L.; Chen, C.J. Serum Levels of Hepatitis B Surface Antigen and DNA Can Predict Inactive Carriers with Low Risk of Disease Progression. Hepatology 2016, 64, 381–389. [Google Scholar] [CrossRef]
- Sonneveld, M.J.; Hansen, B.E.; Brouwer, W.P.; Chan, H.L.; Piratvisuth, T.; Jia, J.D.; Zeuzem, S.; Chien, R.N.; de Knegt, R.J.; Wat, C.; et al. Hepatitis B Surface Antigen Levels Can Be Used to Rule Out Cirrhosis in Hepatitis B e Antigen-Positive Chronic Hepatitis B: Results from the SONIC-B Study. J. Infect. Dis. 2022, 225, 1967–1973. [Google Scholar] [CrossRef]
- Martinot-Peignoux, M.; Lapalus, M.; Asselah, T.; Marcellin, P. HBsAg quantification: Useful for monitoring natural history and treatment outcome. Liver Int. 2014, 34 (Suppl. S1), 97–107. [Google Scholar] [CrossRef]
- Soriano, V.; Moreno-Torres, V.; Trevino, A.; de Jesus, F.; Corral, O.; de Mendoza, C. Prospects for Controlling Hepatitis B Globally. Pathogens 2024, 13, 291. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shechter, O.; Sausen, D.G.; Dahari, H.; Vaillant, A.; Cotler, S.J.; Borenstein, R. Functional Cure for Hepatitis B Virus: Challenges and Achievements. Int. J. Mol. Sci. 2025, 26, 3633. https://doi.org/10.3390/ijms26083633
Shechter O, Sausen DG, Dahari H, Vaillant A, Cotler SJ, Borenstein R. Functional Cure for Hepatitis B Virus: Challenges and Achievements. International Journal of Molecular Sciences. 2025; 26(8):3633. https://doi.org/10.3390/ijms26083633
Chicago/Turabian StyleShechter, Oren, Daniel G. Sausen, Harel Dahari, Andrew Vaillant, Scott J. Cotler, and Ronen Borenstein. 2025. "Functional Cure for Hepatitis B Virus: Challenges and Achievements" International Journal of Molecular Sciences 26, no. 8: 3633. https://doi.org/10.3390/ijms26083633
APA StyleShechter, O., Sausen, D. G., Dahari, H., Vaillant, A., Cotler, S. J., & Borenstein, R. (2025). Functional Cure for Hepatitis B Virus: Challenges and Achievements. International Journal of Molecular Sciences, 26(8), 3633. https://doi.org/10.3390/ijms26083633