The Use of Neurons Derived from Pluripotent Stem Cells to Study Nerve–Cancer Cell Interactions
Abstract
1. Introduction
2. Innervation of Different Types of Cancer
2.1. Breast Cancer
2.2. Lung Cancer
2.3. Prostate Cancer
2.4. Pancreatic Cancer
2.5. Colorectal Cancer
3. The Use of Pluripotent Stem Cells to Study Cancer Biology
The Use of PSCs with Microfluidic Devices in Neurobiology and Cancer Biology
4. The Use of Tumor Organoids to Study Cancer Innervation
4.1. Pancreatic Tumor Organoids and Innervation
4.2. Colon Tumor Organoids and Innervation
4.3. Lung Tumor Organoids to Study Innervation
4.4. Prostate Tumor Organoids and Innervation
4.5. Brain and Glioma Organoids for the Study of Innervation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gysler, S.M.; Drapkin, R. Tumor Innervation: Peripheral Nerves Take Control of the Tumor Microenvironment. J. Clin. Investig. 2021, 131, e147276. [Google Scholar] [CrossRef]
- Silverman, D.A.; Martinez, V.K.; Dougherty, P.M.; Myers, J.N.; Calin, G.A.; Amit, M. Cancer-Associated Neurogenesis and Nerve-Cancer Cross-Talk. Cancer Res. 2021, 81, 1431–1440. [Google Scholar] [CrossRef]
- Wang, W.; Li, L.; Chen, N.; Niu, C.; Li, Z.; Hu, J.; Cui, J. Nerves in the Tumor Microenvironment: Origin and Effects. Front. Cell Dev. Biol. 2020, 8, 601738. [Google Scholar] [CrossRef] [PubMed]
- Le, T.T.; Oudin, M.J. Understanding and Modeling Nerve-Cancer Interactions. Dis. Model. Mech. 2023, 16, dmm049729. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.Y.; Liang, X.H.; Tang, Y.L. Neuroscience in Peripheral Cancers: Tumors Hijacking Nerves and Neuroimmune Crosstalk. MedComm 2024, 5, e784. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Geng, Y.; Wei, G.; He, D.; Lv, J.; Wen, W.; Xiang, F.; Tao, K.; Wu, C. Neural Circuitries between the Brain and Peripheral Solid Tumors. Cancer Res. 2024, 84, 3509–3521. [Google Scholar] [CrossRef]
- Ayala, G.E.; Wheeler, T.M.; David Shine, H.; Schmelz, M.; Frolov, A.; Chakraborty, S.; Rowley, D. In Vitro Dorsal Root Ganglia and Human Prostate Cell Line Interaction: Redefining Perineural Invasion in Prostate Cancer. Prostate 2001, 49, 213–223. [Google Scholar] [CrossRef]
- Ayala, G.E.; Dai, H.; Powell, M.; Li, R.; Ding, Y.; Wheeler, T.M.; Shine, D.; Kadmon, D.; Thompson, T.; Miles, B.J.; et al. Cancer-Related Axonogenesis and Neurogenesis in Prostate Cancer. Clin. Cancer Res. 2008, 14, 7593–7603. [Google Scholar] [CrossRef]
- Amit, M.; Takahashi, H.; Dragomir, M.P.; Lindemann, A.; Gleber-Netto, F.O.; Pickering, C.R.; Anfossi, S.; Osman, A.A.; Cai, Y.; Wang, R.; et al. Loss of P53 Drives Neuron Reprogramming in Head and Neck Cancer. Nature 2020, 578, 449–454. [Google Scholar] [CrossRef]
- Prazeres, P.H.D.M.; Leonel, C.; Silva, W.N.; Rocha, B.G.S.; Santos, G.S.P.; Costa, A.C.; Picoli, C.C.; Sena, I.F.G.; Gonçalves, W.A.; Vieira, M.S.; et al. Ablation of Sensory Nerves Favours Melanoma Progression. J. Cell. Mol. Med. 2020, 24, 9574–9589. [Google Scholar] [CrossRef]
- Lyu, Y.; Xie, F.; Chen, B.; Shin, W.S.; Chen, W.; He, Y.; Leung, K.T.; Tse, G.M.K.; Yu, J.; To, K.F.; et al. The Nerve Cells in Gastrointestinal Cancers: From Molecular Mechanisms to Clinical Intervention. Oncogene 2024, 43, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, L.; Jiang, S.; Yu, M. Nerve Dependence in Colorectal Cancer. Front. Cell Dev. Biol. 2022, 10, 766653. [Google Scholar] [CrossRef]
- Mauffrey, P.; Tchitchek, N.; Barroca, V.; Bemelmans, A.; Firlej, V.; Allory, Y.; Roméo, P.H.; Magnon, C. Progenitors from the Central Nervous System Drive Neurogenesis in Cancer. Nature 2019, 569, 672–678. [Google Scholar] [CrossRef]
- Lu, R.; Fan, C.; Shangguan, W.; Liu, Y.; Li, Y.; Shang, Y.; Yin, D.; Zhang, S.; Huang, Q.; Li, X.; et al. Neurons Generated from Carcinoma Stem Cells Support Cancer Progression. Signal Transduct. Target. Ther. 2017, 2, 16036. [Google Scholar] [CrossRef]
- Sorrells, S.F.; Paredes, M.F.; Cebrian-Silla, A.; Sandoval, K.; Qi, D.; Kelley, K.W.; James, D.; Mayer, S.; Chang, J.; Auguste, K.I.; et al. Human Hippocampal Neurogenesis Drops Sharply in Children to Undetectable Levels in Adults. Nature 2018, 555, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Jiménez, E.P.; Flor-García, M.; Terreros-Roncal, J.; Rábano, A.; Cafini, F.; Pallas-Bazarra, N.; Ávila, J.; Llorens-Martín, M. Adult Hippocampal Neurogenesis Is Abundant in Neurologically Healthy Subjects and Drops Sharply in Patients with Alzheimer’s Disease. Nat. Med. 2019, 25, 554–560. [Google Scholar] [CrossRef]
- Curtis, M.A.; Kam, M.; Nannmark, U.; Anderson, M.F.; Axell, M.Z.; Wikkelso, C.; Holtås, S.; Van Roon-Mom, W.M.C.; Björk-Eriksson, T.; Nordborg, C.; et al. Human Neuroblasts Migrate to the Olfactory Bulb via a Lateral Ventricular Extension. Science 2007, 315, 1243–1249. [Google Scholar] [CrossRef]
- Sanai, N.; Nguyen, T.; Ihrie, R.A.; Mirzadeh, Z.; Tsai, H.H.; Wong, M.; Gupta, N.; Berger, M.S.; Huang, E.; Garcia-Verdugo, J.M.; et al. Corridors of Migrating Neurons in the Human Brain and Their Decline during Infancy. Nature 2011, 478, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ergin, V.; Lin, L.; Stork, C.; Chen, L.; Zheng, S. Axonogenesis Is Coordinated by Neuron-Specific Alternative Splicing Programming and Splicing Regulator PTBP2. Neuron 2019, 101, 690–706.e10. [Google Scholar] [CrossRef]
- Curran, B.M.; Moese, E.R.; Ma, L. Molecular and Cellular Mechanisms of Axon Morphogenesis. In Wiring the Nervous System: Mechanisms of Axonal and Dendritic Remodelling in Health and Disease; Taylor & Francis Grioup: Abingdon, UK, 2024; pp. 3–43. [Google Scholar] [CrossRef]
- Niwa, H. Mechanisms of Stem Cell Self-Renewal. In Essentials of Stem Cell Biology, 2nd ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 73–80. [Google Scholar] [CrossRef]
- Tian, Z.; Yu, T.; Liu, J.; Wang, T.; Higuchi, A. Introduction to Stem Cells. Prog. Mol. Biol. Transl. Sci. 2023, 199, 3–32. [Google Scholar] [CrossRef]
- Aboul-Soud, M.A.M.; Alzahrani, A.J.; Mahmoud, A. Induced Pluripotent Stem Cells (IPSCs)-Roles in Regenerative Therapies, Disease Modelling and Drug Screening. Cells 2021, 10, 2319. [Google Scholar] [CrossRef]
- Jiménez, A.; Estudillo, E.; Guzmán-Ruiz, M.A.; Herrera-Mundo, N.; Victoria-Acosta, G.; Cortés-Malagón, E.M.; López-Ornelas, A. Nanotechnology to Overcome Blood–Brain Barrier Permeability and Damage in Neurodegenerative Diseases. Pharmaceutics 2025, 17, 281. [Google Scholar] [CrossRef]
- Vandana, J.J.; Manrique, C.; Lacko, L.A.; Chen, S. Human Pluripotent-Stem-Cell-Derived Organoids for Drug Discovery and Evaluation. Cell Stem Cell 2023, 30, 571–591. [Google Scholar] [CrossRef] [PubMed]
- Porter, R.J.; Murray, G.I.; McLean, M.H. Current Concepts in Tumour-Derived Organoids. Br. J. Cancer 2020, 123, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Su, S.; Cui, X.; Shen, X.; Zeng, Y.; Wu, W.; Chen, J.; Chen, F.; He, C.; Liu, J.; et al. Nerve Fibers in Breast Cancer Tissues Indicate Aggressive Tumor Progression. Medicine 2014, 93, e172. [Google Scholar] [CrossRef]
- Erin, N.; Duymuş, Ö.; Öztürk, S.; Demir, N. Activation of Vagus Nerve by Semapimod Alters Substance P Levels and Decreases Breast Cancer Metastasis. Regul. Pept. 2012, 179, 101–108. [Google Scholar] [CrossRef]
- Szpunar, M.J.; Belcher, E.K.; Dawes, R.P.; Madden, K.S. Sympathetic Innervation, Norepinephrine Content, and Norepinephrine Turnover in Orthotopic and Spontaneous Models of Breast Cancer. Brain Behav. Immun. 2016, 53, 223–233. [Google Scholar] [CrossRef]
- Austin, M.; Elliott, L.; Nicolaou, N.; Grabowska, A.; Hulse, R.P. Breast Cancer Induced Nociceptor Aberrant Growth and Collateral Sensory Axonal Branching. Oncotarget 2017, 8, 76606–76621. [Google Scholar] [CrossRef]
- Restaino, A.C.; Vermeer, P.D. Neural Regulations of the Tumor Microenvironment. FASEB BioAdvances 2021, 4, 29–42. [Google Scholar] [CrossRef]
- Lee, A.; Fraser, S.P.; Djamgoz, M.B.A. Propranolol Inhibits Neonatal Nav1.5 Activity and Invasiveness of MDA-MB-231 Breast Cancer Cells: Effects of Combination with Ranolazine. J. Cell. Physiol. 2019, 234, 23066–23081. [Google Scholar] [CrossRef]
- Le, T.T.; Payne, S.L.; Buckwald, M.N.; Hayes, L.A.; Parker, S.R.; Burge, C.B.; Oudin, M.J. Sensory Nerves Enhance Triple-Negative Breast Cancer Invasion and Metastasis via the Axon Guidance Molecule PlexinB3. NPJ Breast Cancer 2022, 8, 116. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.X.; Wang, B.; Yao, Y.N.; Pan, Z.J.; Shen, Q.; Zhou, J.Y. Autonomic Nervous Infiltration Positively Correlates with Pathological Risk Grading and Poor Prognosis in Patients with Lung Adenocarcinoma. Thorac. Cancer 2016, 7, 588–598. [Google Scholar] [CrossRef]
- Garramona, F.T.; Cunha, T.F.; Vieira, J.S.; Borges, G.; Santos, G.; de Castro, G.; Ugrinowitsch, C.; Brum, P.C. Increased Sympathetic Nervous System Impairs Prognosis in Lung Cancer Patients: A Scoping Review of Clinical Studies. Lung Cancer Manag. 2024, 12, LMT63. [Google Scholar] [CrossRef] [PubMed]
- Fnu, T.; Shi, P.; Zhang, W.; Chung, S.S.W.; Damoci, C.B.; Fang, Y.; Chen, Q.-Y.; Saqi, A.; Huang, Y.; Wu, X.; et al. Sympathetic Neurons Promote Small Cell Lung Cancer through the Β2-Adrenergic Receptor. Cancer Discov. 2025, 15, 616–632. [Google Scholar] [CrossRef] [PubMed]
- Peinado, P.; Stazi, M.; Ballabio, C.; Margineanu, M.B.; Li, Z.; Colón, C.I.; Hsieh, M.S.; Pal Choudhuri, S.; Stastny, V.; Hamilton, S.; et al. Intrinsic Electrical Activity Drives Small-Cell Lung Cancer Progression. Nature 2025, 639, 765–775. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, L.; Shen, Z.; Wang, L.; Niu, X.; Wei, Y.; Sun, S.; Zhao, J. Mechanisms of Neural Infiltration-Mediated Tumor Metabolic Reprogramming Impacting Immunotherapy Efficacy in Non-Small Cell Lung Cancer. J. Exp. Clin. Cancer Res. 2024, 43, 284. [Google Scholar] [CrossRef]
- Yang, D.; Qu, F.; Cai, H.; Chuang, C.H.; Lim, J.S.; Jahchan, N.; Grüner, B.M.; Kuo, C.S.; Kong, C.; Oudin, M.J.; et al. Axon-like Protrusions Promote Small Cell Lung Cancer Migration and Metastasis. eLife 2019, 8, e50616. [Google Scholar] [CrossRef]
- Shurin, M.R.; Wheeler, S.E.; Shurin, G.V.; Zhong, H.; Zhou, Y. Schwann Cells in the Normal and Pathological Lung Microenvironment. Front. Mol. Biosci. 2024, 11, 1365760. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Perineural Invasion of Prostate Carcinoma Cells Is Associated with Reduced Apoptotic Index—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/8826950/ (accessed on 2 March 2025).
- Magnon, C.; Hall, S.J.; Lin, J.; Xue, X.; Gerber, L.; Freedland, S.J.; Frenette, P.S. Autonomic Nerve Development Contributes to Prostate Cancer Progression. Science 2013, 341, 1236361. [Google Scholar] [CrossRef]
- Reeves, F.A.; Battye, S.; Roth, H.; Peters, J.S.; Hovens, C.; Costello, A.J.; Corcoran, N.M. Prostatic Nerve Subtypes Independently Predict Biochemical Recurrence in Prostate Cancer. J. Clin. Neurosci. 2019, 63, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Sigorski, D.; Gulczyński, J.; Sejda, A.; Rogowski, W.; Iżycka-Świeszewska, E. Investigation of Neural Microenvironment in Prostate Cancer in Context of Neural Density, Perineural Invasion, and Neuroendocrine Profile of Tumors. Front. Oncol. 2021, 11, 710899. [Google Scholar] [CrossRef] [PubMed]
- Blasko, F.; Krivosikova, L.; Babal, P.; Breza, J.; Trebaticky, B.; Kuruc, R.; Mravec, B.; Janega, P. Innervation Density and Types of Nerves in Prostate Cancer. Neoplasma 2023, 70, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Zahalka, A.H.; Arnal-Estapé, A.; Maryanovich, M.; Nakahara, F.; Cruz, C.D.; Finley, L.W.S.; Frenette, P.S. Adrenergic Nerves Activate an Angio-Metabolic Switch in Prostate Cancer. Science 2017, 358, 321–326. [Google Scholar] [CrossRef]
- Liu, F.; Xu, H.; Chen, J.; Yang, B.; Zhao, L.; Ji, J.; Cao, Z.; Lyu, J.; Wang, F. Autonomic Nerve Regulation for Prostate Cancer: Study Based on the Tissue Transcriptional Analysis. Transl. Cancer Res. 2020, 9, 6755–6767. [Google Scholar] [CrossRef]
- Braadland, P.R.; Ramberg, H.; Grytli, H.H.; Urbanucci, A.; Nielsen, H.K.; Guldvik, I.J.; Engedal, A.; Ketola, K.; Wang, W.; Svindland, A.; et al. The Β2-Adrenergic Receptor Is a Molecular Switch for Neuroendocrine Transdifferentiation of Prostate Cancer Cells. Mol. Cancer Res. 2019, 17, 2154–2168. [Google Scholar] [CrossRef]
- Dwivedi, S.; Bautista, M.; Shrestha, S.; Elhasasna, H.; Chaphekar, T.; Vizeacoumar, F.S.; Krishnan, A. Sympathetic Signaling Facilitates Progression of Neuroendocrine Prostate Cancer. Cell Death Discov. 2021, 7, 364. [Google Scholar] [CrossRef]
- Di Donato, M.; Giovannelli, P.; Migliaccio, A.; Castoria, G. The Nerve Growth Factor-Delivered Signals in Prostate Cancer and Its Associated Microenvironment: When the Dialogue Replaces the Monologue. Cell Biosci. 2023, 13, 60. [Google Scholar] [CrossRef]
- Aloe, L.; Rocco, M.; Balzamino, B.; Micera, A. Nerve Growth Factor: A Focus on Neuroscience and Therapy. Curr. Neuropharmacol. 2015, 13, 294–303. [Google Scholar] [CrossRef]
- O’Keeffe, G.W.; Gutierrez, H.; Pandolfi, P.P.; Riccardi, C.; Davies, A.M. NGF-Promoted Axon Growth and Target Innervation Requires GITRL-GITR Signaling. Nat. Neurosci. 2008, 11, 135–142. [Google Scholar] [CrossRef]
- Di Donato, M.; Cernera, G.; Auricchio, F.; Migliaccio, A.; Castoria, G. Cross-Talk between Androgen Receptor and Nerve Growth Factor Receptor in Prostate Cancer Cells: Implications for a New Therapeutic Approach. Cell Death Discov. 2018, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Goda, M.; Atagi, S.; Amitani, K.; Hobara, N.; Kitamura, Y.; Kawasaki, H. Nerve Growth Factor Suppresses Prostate Tumor Growth. J. Pharmacol. Sci. 2010, 112, 463–466. [Google Scholar] [CrossRef]
- Sinha, S.; Fu, Y.Y.; Grimont, A.; Ketcham, M.; Lafaro, K.; Saglimbeni, J.A.; Askan, G.; Bailey, J.M.; Melchor, J.P.; Zhong, Y.; et al. PanIN Neuroendocrine Cells Promote Tumorigenesis via Neuronal Cross-Talk. Cancer Res. 2017, 77, 1868–1879. [Google Scholar] [CrossRef] [PubMed]
- Ferdoushi, A.; Griffin, N.; Marsland, M.; Xu, X.; Faulkner, S.; Gao, F.; Liu, H.; King, S.J.; Denham, J.W.; van Helden, D.F.; et al. Tumor Innervation and Clinical Outcome in Pancreatic Cancer. Sci. Rep. 2021, 11, 7390. [Google Scholar] [CrossRef]
- Saloman, J.L.; Albers, K.M.; Li, D.; Hartman, D.J.; Crawford, H.C.; Muha, E.A.; Rhim, A.D.; Davis, B.M. Ablation of Sensory Neurons in a Genetic Model of Pancreatic Ductal Adenocarcinoma Slows Initiation and Progression of Cancer. Proc. Natl. Acad. Sci. USA 2016, 113, 3078–3083. [Google Scholar] [CrossRef] [PubMed]
- Liddle, R.A. The Role of Transient Receptor Potential Vanilloid 1 (TRPV1) Channels in Pancreatitis. Biochim. Biophys. Acta 2007, 1772, 869–878. [Google Scholar] [CrossRef]
- Renz, B.W.; Tanaka, T.; Sunagawa, M.; Takahashi, R.; Jiang, Z.; Macchini, M.; Dantes, Z.; Valenti, G.; White, R.A.; Middelhoff, M.A.; et al. Cholinergic Signaling via Muscarinic Receptors Directly and Indirectly Suppresses Pancreatic Tumorigenesis and Cancer Stemness. Cancer Discov. 2018, 8, 1458–1473. [Google Scholar] [CrossRef] [PubMed]
- Târtea, E.A.; Petrescu, M.; Udriștoiu, I.; Gheorman, V.; Biciușcă, V.; Petrescu, A.R.; Ciurea, A.M.; Vere, C.C. Clinical Outcomes Depending on Sympathetic Innervation in Pancreatic Cancer. Cancers 2023, 15, 3040. [Google Scholar] [CrossRef]
- Guillot, J.; Dominici, C.; Lucchesi, A.; Nguyen, H.T.T.; Puget, A.; Hocine, M.; Rangel-Sosa, M.M.; Simic, M.; Nigri, J.; Guillaumond, F.; et al. Sympathetic Axonal Sprouting Induces Changes in Macrophage Populations and Protects against Pancreatic Cancer. Nat. Commun. 2022, 13, 1985. [Google Scholar] [CrossRef]
- Banh, R.S.; Biancur, D.E.; Yamamoto, K.; Sohn, A.S.W.; Walters, B.; Kuljanin, M.; Gikandi, A.; Wang, H.; Mancias, J.D.; Schneider, R.J.; et al. Neurons Release Serine to Support MRNA Translation in Pancreatic Cancer. Cell 2020, 183, 1202–1218.e25. [Google Scholar] [CrossRef]
- Thiel, V.; Renders, S.; Panten, J.; Dross, N.; Bauer, K.; Azorin, D.; Henriques, V.; Vogel, V.; Klein, C.; Leppä, A.-M.; et al. Characterization of Single Neurons Reprogrammed by Pancreatic Cancer. Nature 2025. [Google Scholar] [CrossRef] [PubMed]
- Schonkeren, S.L.; Thijssen, M.S.; Vaes, N.; Boesmans, W.; Melotte, V. The Emerging Role of Nerves and Glia in Colorectal Cancer. Cancers 2021, 13, 152. [Google Scholar] [CrossRef]
- Battaglin, F.; Jayachandran, P.; Strelez, C.; Lenz, A.; Algaze, S.; Soni, S.; Lo, J.H.; Yang, Y.; Millstein, J.; Zhang, W.; et al. Neurotransmitter Signaling: A New Frontier in Colorectal Cancer Biology and Treatment. Oncogene 2022, 41, 4769–4778. [Google Scholar] [CrossRef] [PubMed]
- Sadighparvar, S.; Darband, S.G.; Ghaderi-Pakdel, F.; Mihanfar, A.; Majidinia, M. Parasympathetic, but Not Sympathetic Denervation, Suppressed Colorectal Cancer Progression. Eur. J. Pharmacol. 2021, 913, 174626. [Google Scholar] [CrossRef]
- Wang, H.; Huo, R.; He, K.; Cheng, L.; Zhang, S.; Yu, M.; Zhao, W.; Li, H.; Xue, J. Perineural Invasion in Colorectal Cancer: Mechanisms of Action and Clinical Relevance. Cell. Oncol. 2024, 47, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Hilibrand, A.S.; Skiba, M.A.; Dates, A.N.; Calvillo-Miranda, V.G.; Kruse, A.C. The M3 Muscarinic Acetylcholine Receptor Can Signal through Multiple G Protein Families. Mol. Pharmacol. 2024, 105, 386–394. [Google Scholar] [CrossRef]
- Hering, N.A.; Liu, V.; Kim, R.; Weixler, B.; Droeser, R.A.; Arndt, M.; Pozios, I.; Beyer, K.; Kreis, M.E.; Seeliger, H. Blockage of Cholinergic Signaling via Muscarinic Acetylcholine Receptor 3 Inhibits Tumor Growth in Human Colorectal Adenocarcinoma. Cancers 2021, 13, 3220. [Google Scholar] [CrossRef]
- Kuol, N.; Davidson, M.; Karakkat, J.; Filippone, R.T.; Veale, M.; Luwor, R.; Fraser, S.; Apostolopoulos, V.; Nurgali, K. Blocking Muscarinic Receptor 3 Attenuates Tumor Growth and Decreases Immunosuppressive and Cholinergic Markers in an Orthotopic Mouse Model of Colorectal Cancer. Int. J. Mol. Sci. 2022, 24, 596. [Google Scholar] [CrossRef]
- Kamiya, A.; Hiyama, T.; Fujimura, A.; Yoshikawa, S. Sympathetic and Parasympathetic Innervation in Cancer: Therapeutic Implications. Clin. Auton. Res. 2021, 31, 165–178. [Google Scholar] [CrossRef]
- Gong, Z.; Zhang, Y.; Wang, W.; Li, X.; Wang, K.; You, X.; Wu, J. Netrin-1 Role in Nociceptive Neuron Sprouting through Activation of DCC Signaling in a Rat Model of Bone Cancer Pain. J. Integr. Neurosci. 2024, 23, 47. [Google Scholar] [CrossRef]
- Paradisi, A.; Mehlen, P. Netrin-1, a Missing Link between Chronic Inflammation and Tumor Progression. Cell Cycle 2010, 9, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Jarjour, A.A.; Durko, M.; Luk, T.L.; Marçal, N.; Shekarabi, M.; Kennedy, T.E. Autocrine Netrin Function Inhibits Glioma Cell Motility and Promotes Focal Adhesion Formation. PLoS ONE 2011, 6, e25408. [Google Scholar] [CrossRef]
- Abdullah, A.; Herdenberg, C.; Hedman, H. Netrin-1 Functions as a Suppressor of Bone Morphogenetic Protein (BMP) Signaling. Sci. Rep. 2021, 11, 8585. [Google Scholar] [CrossRef] [PubMed]
- Dun, X.P.; Parkinson, D.B. Role of Netrin-1 Signaling in Nerve Regeneration. Int. J. Mol. Sci. 2017, 18, 491. [Google Scholar] [CrossRef] [PubMed]
- Finci, L.; Zhang, Y.; Meijers, R.; Wang, J.H. Signaling Mechanism of the Netrin-1 Receptor DCC in Axon Guidance. Prog. Biophys. Mol. Biol. 2015, 118, 153–160. [Google Scholar] [CrossRef]
- Li, B.; Shen, K.; Zhang, J.; Jiang, Y.; Yang, T.; Sun, X.; Ma, X.; Zhu, J. Serum Netrin-1 as a Biomarker for Colorectal Cancer Detection. Cancer Biomark. 2020, 28, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Lu, T.; Chen, Z.; Liu, B.; Fan, D.; Li, C.; Wu, J.; He, L.; Zhu, X.; Du, Y.; et al. 5-Hydroxytryptamine Produced by Enteric Serotonergic Neurons Initiates Colorectal Cancer Stem Cell Self-Renewal and Tumorigenesis. Neuron 2022, 110, 2268–2282.e4. [Google Scholar] [CrossRef]
- Vermeer, P.D. Exosomal Induction of Tumor Innervation. Cancer Res. 2019, 79, 3529–3535. [Google Scholar] [CrossRef]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef]
- Kim, Y.; Rim, Y.A.; Yi, H.; Park, N.; Park, S.H.; Ju, J.H. The Generation of Human Induced Pluripotent Stem Cells from Blood Cells: An Efficient Protocol Using Serial Plating of Reprogrammed Cells by Centrifugation. Stem Cells Int. 2016, 2016, 1329459. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Okita, K.; Matsumura, Y.; Sato, Y.; Okada, A.; Morizane, A.; Okamoto, S.; Hong, H.; Nakagawa, M.; Tanabe, K.; Tezuka, K.I.; et al. A More Efficient Method to Generate Integration-Free Human IPS Cells. Nat. Methods 2011, 8, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; David, B.T.; Trawczynski, M.; Fessler, R.G. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev. Rep. 2020, 16, 3–32. [Google Scholar] [CrossRef]
- Iannielli, A.; Ugolini, G.S.; Cordiglieri, C.; Bido, S.; Rubio, A.; Colasante, G.; Valtorta, M.; Cabassi, T.; Rasponi, M.; Broccoli, V. Reconstitution of the Human Nigro-Striatal Pathway on-a-Chip Reveals OPA1-Dependent Mitochondrial Defects and Loss of Dopaminergic Synapses. Cell Rep. 2019, 29, 4646–4656.e4. [Google Scholar] [CrossRef]
- Carballo-Molina, O.A.; Sánchez-Navarro, A.; López-Ornelas, A.; Lara-Rodarte, R.; Salazar, P.; Campos-Romo, A.; Ramos-Mejía, V.; Velasco, I. Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons. Tissue Eng. Part A 2016, 22, 850–861. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Xie, Y.; Ordaz, J.D.; Huh, A.J.; Huang, N.; Wu, W.; Liu, N.; Chamberlain, K.A.; Sheng, Z.H.; Xu, X.M. Restoring Cellular Energetics Promotes Axonal Regeneration and Functional Recovery after Spinal Cord Injury. Cell Metab. 2020, 31, 623–641.e8. [Google Scholar] [CrossRef]
- de Jongh, R.; Spijkers, X.M.; Pasteuning-Vuhman, S.; Vulto, P.; Pasterkamp, R.J. Neuromuscular Junction-on-a-Chip: ALS Disease Modeling and Read-out Development in Microfluidic Devices. J. Neurochem. 2021, 157, 393–412. [Google Scholar] [CrossRef]
- Ayuso, J.M.; Rehman, S.; Farooqui, M.; Virumbrales-Muñoz, M.; Setaluri, V.; Skala, M.C.; Beebe, D.J. Microfluidic Tumor-on-a-Chip Model to Study Tumor Metabolic Vulnerability. Int. J. Mol. Sci. 2020, 21, 9075. [Google Scholar] [CrossRef]
- Moccia, C.; Haase, K. Engineering Breast Cancer On-Chip-Moving Toward Subtype Specific Models. Front. Bioeng. Biotechnol. 2021, 9, 694218. [Google Scholar] [CrossRef]
- Kallogjerovic, S.; Velázquez-Quesada, I.; Hadap, R.; Gligorijevic, B. Retrograde Tracing of Breast Cancer-Associated Sensory Neurons. J. Microsc. 2024. [Google Scholar] [CrossRef]
- Kirino, K.; Nakahata, T.; Taguchi, T.; Saito, M.K. Efficient Derivation of Sympathetic Neurons from Human Pluripotent Stem Cells with a Defined Condition. Sci. Rep. 2018, 8, 12865. [Google Scholar] [CrossRef]
- Winkler, F.; Venkatesh, H.S.; Amit, M.; Batchelor, T.; Demir, I.E.; Deneen, B.; Gutmann, D.H.; Hervey-Jumper, S.; Kuner, T.; Mabbott, D.; et al. Cancer Neuroscience: State of the Field, Emerging Directions. Cell 2023, 186, 1689–1707. [Google Scholar] [CrossRef] [PubMed]
- Besikcioglu, H.E.; Yurteri, Ü.; Munkhbaatar, E.; Ye, L.; Zhang, F.; Moretti, A.; Mota Reyes, C.; Özoğul, C.; Friess, H.; Ceyhan, G.O.; et al. Innervated Mouse Pancreas Organoids as an Ex Vivo Model to Study Pancreatic Neuropathy in Pancreatic Cancer. STAR Protoc. 2021, 2, 100935. [Google Scholar] [CrossRef]
- Beşikcioğlu, H.E.; Yurteri, Ü.; Ye, L.; Zhang, F.; Moretti, A.; Gürcinar, I.H.; Dogruöz, A.; Karakas, D.; Friess, H.; Ceyhan, G.O.; et al. Protocol for Whole-Mount Immunofluorescence Staining of ECM Gel-Embedded Innervated Pancreatic Organoids. STAR Protoc. 2024, 5, 103132. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Chen, X.; Ma, J.; Buhe, H.; Liu, Y.; Saiyin, H.; Ma, L. Construction of a Pancreatic Cancer Nerve Invasion System Using Brain and Pancreatic Cancer Organoids. J. Tissue Eng. 2023, 14. [Google Scholar] [CrossRef]
- Lei, C.; Sun, R.; Xu, G.; Tan, Y.; Feng, W.; McClain, C.J.; Deng, Z. Enteric VIP-Producing Neurons Maintain Gut Microbiota Homeostasis through Regulating Epithelium Fucosylation. Cell Host Microbe 2022, 30, 1417–1434.e8. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.; Sokratian, A.; Chavez, K.R.; King, S.; Swain, S.M.; Snyder, J.C.; West, A.B.; Liddle, R.A. Gut Mucosal Cells Transfer α-Synuclein to the Vagus Nerve. JCI Insight 2023, 8, e172192. [Google Scholar] [CrossRef]
- Li, Y.; Zou, J.; Fang, Y.; Zuo, J.; Wang, R.; Liang, S. Lung Tumor Organoids Migrate as Cell Clusters Containing Cancer Stem Cells under Hypoxic Condition. Biol. Cell 2025, 117, e2400081. [Google Scholar] [CrossRef]
- Sánchez, B.G.; Bort, A.; Vara-Ciruelos, D.; Díaz-Laviada, I. Androgen Deprivation Induces Reprogramming of Prostate Cancer Cells to Stem-Like Cells. Cells 2020, 9, 1441. [Google Scholar] [CrossRef]
- Prior, V.G.; Maksour, S.; Miellet, S.; Hulme, A.J.; Chen, Y.; Mirzaei, M.; Wu, Y.; Dottori, M.; O’Neill, G.M. Parsing the Effect of Co-Culture with Brain Organoids on Diffuse Intrinsic Pontine Glioma (DIPG) Using Quantitative Proteomics. Int. J. Biochem. Cell Biol. 2024, 174, 106617. [Google Scholar] [CrossRef]
- Tetzlaff, S.K.; Reyhan, E.; Layer, N.; Bengtson, C.P.; Heuer, A.; Schroers, J.; Faymonville, A.J.; Langeroudi, A.P.; Drewa, N.; Keifert, E.; et al. Characterizing and Targeting Glioblastoma Neuron-Tumor Networks with Retrograde Tracing. Cell 2025, 188, 390–411.e36. [Google Scholar] [CrossRef] [PubMed]
- Jacob, F.; Salinas, R.D.; Zhang, D.Y.; Nguyen, P.T.T.; Schnoll, J.G.; Wong, S.Z.H.; Thokala, R.; Sheikh, S.; Saxena, D.; Prokop, S.; et al. A Patient-Derived Glioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-Tumoral Heterogeneity. Cell 2020, 180, 188–204.e22. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, X.; Zhang, D.Y.; Zhang, Z.; Bhattarai, J.P.; Wang, Y.; Park, K.H.; Dong, W.; Hung, Y.-F.; Yang, Q.; et al. Brain-Wide Neuronal Circuit Connectome of Human Glioblastoma. Nature 2025. [Google Scholar] [CrossRef] [PubMed]
Tumor Organoid | Model of Innervation | Effect | Molecular Mechanism | Reference |
---|---|---|---|---|
Pancreas | PanIN organoids with rodent sensory neurons. KPC organoids with hiPSC-derived neural crest cells or DRG explants. Human brain organoids (hBrOs) and murine PC organoids (mPCOs). | PanIN proliferation. Increased βIII-Tubulin+ and GDNF+ cells. Anti-NGF treatment reduces neurite outgrowth. mPCOs selectively invade hBrOs and induce neural projection retraction and apoptosis. | SP/NK1-R/Stat3 signaling. NGF, GDNF, semaphorin 3A, and EPHA4. Neuroinflammatory markers. GDNF and BDNF secretion by mPCOs. | [56] [96] [98] |
Lung | LTOs under hypoxia and co-cultured with SH-SY5Y neuroblastoma spheroids. | Hypoxia induces EMT. LTOs migrate toward neuroblastoma spheroids and induce neurite outgrowth. | HIF-1α, VEGF, ZEB1 and SNAIL1. Wnt/Notch signaling. | [101] |
Glioma | Co-culture of DIPG with human cortical organoids. Patient-derived GBM organoids (GBOs) and brain slices. | DIPG cells downregulate the expression of ECM adhesion markers and increase the expression of proliferation proteins. Tumor cells engage in synaptic-like interactions with glutamatergic and cholinergic neurons, accelerating proliferation. | Versican, glypican-1 nBAF complex, β1 integrin downregulation. CHRM3 | [103] [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez, A.; López-Ornelas, A.; Gutiérrez-de la Cruz, N.; Puente-Rivera, J.; Mayen-Quinto, R.D.; Sánchez-Monciváis, A.; Ignacio-Mejía, I.; Albores-Méndez, E.M.; Vargas-Hernández, M.A.; Estudillo, E. The Use of Neurons Derived from Pluripotent Stem Cells to Study Nerve–Cancer Cell Interactions. Int. J. Mol. Sci. 2025, 26, 3057. https://doi.org/10.3390/ijms26073057
Jiménez A, López-Ornelas A, Gutiérrez-de la Cruz N, Puente-Rivera J, Mayen-Quinto RD, Sánchez-Monciváis A, Ignacio-Mejía I, Albores-Méndez EM, Vargas-Hernández MA, Estudillo E. The Use of Neurons Derived from Pluripotent Stem Cells to Study Nerve–Cancer Cell Interactions. International Journal of Molecular Sciences. 2025; 26(7):3057. https://doi.org/10.3390/ijms26073057
Chicago/Turabian StyleJiménez, Adriana, Adolfo López-Ornelas, Neptali Gutiérrez-de la Cruz, Jonathan Puente-Rivera, Rodolfo David Mayen-Quinto, Anahí Sánchez-Monciváis, Iván Ignacio-Mejía, Exsal M. Albores-Méndez, Marco Antonio Vargas-Hernández, and Enrique Estudillo. 2025. "The Use of Neurons Derived from Pluripotent Stem Cells to Study Nerve–Cancer Cell Interactions" International Journal of Molecular Sciences 26, no. 7: 3057. https://doi.org/10.3390/ijms26073057
APA StyleJiménez, A., López-Ornelas, A., Gutiérrez-de la Cruz, N., Puente-Rivera, J., Mayen-Quinto, R. D., Sánchez-Monciváis, A., Ignacio-Mejía, I., Albores-Méndez, E. M., Vargas-Hernández, M. A., & Estudillo, E. (2025). The Use of Neurons Derived from Pluripotent Stem Cells to Study Nerve–Cancer Cell Interactions. International Journal of Molecular Sciences, 26(7), 3057. https://doi.org/10.3390/ijms26073057