The Role of M6A LncRNA Modification in Papillary Thyroid Cancer
Abstract
:1. Introduction
2. Role of M6A Methylation and LncRNA in Cancer Pathogenesis
3. Involvement of M6A Methylation Regulators in Papillary Thyroid Cancer: Prognostic Values and Relationship to LncRNA
3.1. M6A Modifying Readers
3.1.1. HNRNPC
3.1.2. IGF2BP2
3.1.3. YTHDC2
3.2. M6A Modifying Writers
3.2.1. METTL3
3.2.2. METTL16
3.2.3. ZC3H13
3.3. M6A Modifying Erasers
3.3.1. FTO
3.3.2. ALKBH5
3.3.3. RBM15, KIAA1429, WTAP, YTHDF3
4. Identification of M6A-Associated LncRNAs Involved in Papillary Thyroid Cancer and Their Prognostic Values
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
M6A | N6-Methyladenosine |
TC | Thyroid Cancer |
PTC | Papillary Thyroid Cancer |
ATC | Anaplastic Thyroid Cancer |
lncRNA | Long Non-coding RNA |
TDS | Thyroid Differentiation Score |
mRNA | MicroRNA |
rRNA | Ribosomal RNA |
miRNA | MicroRNA |
circRNA | Circular RNA |
snRNA | Small Nuclear RNA |
HNRNPC | heterogeneous Nuclear Ribonucleoprotein C |
IGF2BP2 | Insulin-like Growth Factor 2 mRNA Binding Protein 2 |
YTHDC2 | YTH N6-methyladenosine RNA Binding Protein C2 |
METTL3 | Methyltransferase 3 |
METTL16 | Methyltransferase 16 |
ZC3H13 | Zinc Finger CCCH-Type Containing 13 |
FTO | Fat Mass and Obesity-Associated Protein |
ALKBH5 | AlkB Homolog 5 |
RBM15 | RNA Binding Motif Protein 15 |
References
- Correa, P.; Chen, V.W. Endocrine gland cancer. Cancer 1995, 75 (Suppl. S1), 338–352. [Google Scholar] [CrossRef]
- Rossi, E.D.; Pantanowitz, L.; Hornick, J.L. A worldwide journey of thyroid cancer incidence centred on tumour histology. Lancet Diabetes Endocrinol. 2021, 9, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Megwalu, U.C.; Moon, P.K. Thyroid Cancer Incidence and Mortality Trends in the United States: 2000-2018. Thyroid 2022, 32, 560–570. [Google Scholar] [CrossRef]
- Sebastian, S.O.; Gonzalez, J.M.R.; Paricio, P.P.; Perez, J.S.; Flores, D.P.; Madrona, A.P.; Romero, P.R.; Tebar, F.J. Papillary Thyroid Carcinoma: Prognostic Index for Survival Including the Histological Variety. Arch. Surg. 2000, 135, 272–277. [Google Scholar] [CrossRef]
- Lin, J.-D.; Hsueh, C.; Chao, T.-C. Long-Term Follow-Up of the Therapeutic Outcomes for Papillary Thyroid Carcinoma With Distant Metastasis. Medicine 2015, 94, e1063. [Google Scholar] [CrossRef]
- Brown, R.L.; de Souza, J.A.; Cohen, E.E. Thyroid cancer: Burden of illness and management of disease. J. Cancer 2011, 2, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Nagaiah, G.; Hossain, A.; Mooney, C.J.; Parmentier, J.; Remick, S.C. Anaplastic thyroid cancer: A review of epidemiology, pathogenesis, and treatment. J. Oncol. 2011, 2011, 542358. [Google Scholar] [CrossRef]
- Lyu, Y.S.; Hong, R.; Oh, J. Anaplastic Transformation in Papillary Thyroid Carcinoma: A Case Report. Ear Nose Throat J. 2024, 1455613231225872. [Google Scholar] [CrossRef]
- Quiros, R.M.; Ding, H.G.; Gattuso, P.; Prinz, R.A.; Xu, X. Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer 2005, 103, 2261–2268. [Google Scholar] [CrossRef]
- Lu, L.; Wang, J.R.; Henderson, Y.C.; Bai, S.; Yang, J.; Hu, M.; Shiau, C.-K.; Pan, T.; Yan, Y.; Tran, T.M.; et al. Anaplastic transformation in thyroid cancer revealed by single-cell transcriptomics. J. Clin. Investig. 2023, 11. [Google Scholar] [CrossRef]
- Limaiem, F.; Rehman, A.; Anastasopoulou, C.; Mazzoni, T. Papillary Thyroid Carcinoma; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Hong, S.; Xie, Y.; Cheng, Z.; Li, J.; He, W.; Guo, Z.; Zhang, Q.; Peng, S.; He, M.; Yu, S.; et al. Distinct molecular subtypes of papillary thyroid carcinoma and gene signature with diagnostic capability. Oncogene 2022, 41, 5121–5132. [Google Scholar] [CrossRef] [PubMed]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.-L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef] [PubMed]
- Murugan, A.K.; Munirajan, A.K.; Alzahrani, A.S. Long noncoding RNAs: Emerging players in thyroid cancer pathogenesis. Endocr. Relat. Cancer 2018, 25, R59–R82. [Google Scholar] [CrossRef]
- Feng, J.L.; Zheng, W.J.; Xu, L.; Zhou, Q.Y.; Chen, J. Identification of potential LncRNAs as papillary thyroid carcinoma biomarkers based on integrated bioinformatics analysis using TCGA and RNA sequencing data. Sci. Rep. 2023, 13, 4350. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Tian, J.; Guo, X.; Yang, Y.; Guan, R.; Qiu, M.; Li, Y.; Sun, X.; Zhen, Y.; Zhang, Y.; et al. Long noncoding RNA are aberrantly expressed in human papillary thyroid carcinoma. Oncol. Lett. 2016, 12, 544–552. [Google Scholar] [CrossRef]
- Dadafarin, S.; Carnazza, M.; Islam, H.K.; Moscatello, A.; Tiwari, R.K.; Geliebter, J. Noncoding RNAs in Papillary Thyroid Cancer: Interaction with Cancer-Associated Fibroblasts (CAFs) in the Tumor Microenvironment (TME) and Regulators of Differentiation and Lymph Node Metastasis. Adv. Exp. Med. Biol. 2021, 1350, 145–155. [Google Scholar] [CrossRef]
- Loscalzo, J.; Handy, D.E. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease (2013 Grover Conference series). Pulm. Circ. 2014, 4, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Kelly, T.K.; De Carvalho, D.D.; Jones, P.A. Epigenetic modifications as therapeutic targets. Nat. Biotechnol. 2010, 28, 1069–1078. [Google Scholar] [CrossRef]
- Moore, L.D.; Le, T.; Fan, G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef]
- Kulis, M.; Esteller, M. DNA Methylation and Cancer. In Advances in Genetics; Herceg, Z., Ushijima, T., Eds.; Academic Press: Cambridge, MA, USA, 2010; Volume 70, pp. 27–56. [Google Scholar]
- Audia, J.E.; Campbell, R.M. Histone Modifications and Cancer. Cold Spring Harb. Perspect. Biol. 2016, 8, a019521. [Google Scholar] [CrossRef]
- Jacob, D.R.; Guiblet, W.M.; Mamayusupova, H.; Shtumpf, M.; Ciuta, I.; Ruje, L.; Gretton, S.; Bikova, M.; Correa, C.; Dellow, E.; et al. Nucleosome reorganisation in breast cancer tissues. Clin. Epigenetics 2024, 16, 50. [Google Scholar] [CrossRef]
- Rodriguez-Casanova, A.; Costa-Fraga, N.; Bao-Caamano, A.; López-López, R.; Muinelo-Romay, L.; Diaz-Lagares, A. Epigenetic Landscape of Liquid Biopsy in Colorectal Cancer. Front. Cell Dev. Biol. 2021, 9, 622459. [Google Scholar] [CrossRef]
- Cusenza, V.Y.; Tameni, A.; Neri, A.; Frazzi, R. The lncRNA epigenetics: The significance of m6A and m5C lncRNA modifications in cancer. Front. Oncol. 2023, 13, 1063636. [Google Scholar] [CrossRef]
- Huang, W.; Chen, T.-Q.; Fang, K.; Zeng, Z.-C.; Ye, H.; Chen, Y.-Q. N6-methyladenosine methyltransferases: Functions, regulation, and clinical potential. J. Hematol. Oncol. 2021, 14, 117. [Google Scholar] [CrossRef]
- Niu, Y.; Zhao, X.; Wu, Y.-S.; Li, M.-M.; Wang, X.-J.; Yang, Y.-G. N6-methyl-adenosine (m6A) in RNA: An old modification with a novel epigenetic function. Genom. Proteom. Bioinform. 2013, 11, 8–17. [Google Scholar]
- Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.; Jacob-Hirsch, J.; Amariglio, N.; Kupiec, M. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012, 485, 201–206. [Google Scholar] [CrossRef]
- Desrosiers, R.; Friderici, K.; Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. USA 1974, 71, 3971–3975. [Google Scholar] [CrossRef]
- Meyer, K.D.; Jaffrey, S.R. Rethinking m6A readers, writers, and erasers. Annu. Rev. Cell Dev. Biol. 2017, 33, 319–342. [Google Scholar]
- Pan, J.; Huang, T.; Deng, Z.; Zou, C. Roles and therapeutic implications of m6A modification in cancer immunotherapy. Front. Immunol. 2023, 14, 1132601. [Google Scholar]
- Meyer, K.D.; Saletore, Y.; Zumbo, P.; Elemento, O.; Mason, C.E.; Jaffrey, S.R. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 2012, 149, 1635–1646. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.I.N.; Malla, W.A. m6A modification of RNA and its role in cancer, with a special focus on lung cancer. Genomics 2021, 113, 2860–2869. [Google Scholar] [CrossRef]
- Li, X.; Ding, Z.; Tong, Y. Correlations of m6A Methylation-Related lncRNAs with the Prognosis of Papillary Thyroid Carcinoma. Int. J. Gen. Med. 2024, 17, 775–790. [Google Scholar] [CrossRef]
- Chen, J.; Wang, C.; Fei, W.; Fang, X.; Hu, X. Epitranscriptomic m6A modification in the stem cell field and its effects on cell death and survival. Am. J. Cancer Res. 2019, 9, 752. [Google Scholar]
- Nombela, P.; Miguel-López, B.; Blanco, S. The role of m6A, m5C and Ψ RNA modifications in cancer: Novel therapeutic opportunities. Mol. Cancer 2021, 20, 18. [Google Scholar] [CrossRef]
- Zheng, G.; Dahl, J.A.; Niu, Y.; Fedorcsak, P.; Huang, C.-M.; Li, C.J.; Vågbø, C.B.; Shi, Y.; Wang, W.-L.; Song, S.-H. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 2013, 49, 18–29. [Google Scholar] [CrossRef]
- Mendel, M.; Chen, K.-M.; Homolka, D.; Gos, P.; Pandey, R.R.; McCarthy, A.A.; Pillai, R.S. Methylation of structured RNA by the m6A writer METTL16 is essential for mouse embryonic development. Mol. Cell 2018, 71, 986–1000.e11. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Sun, Y.; Jiang, S.; Li, J. N6-methyladenosine RNA methylation: From regulatory mechanisms to potential clinical applications. Front. Cell Dev. Biol. 2022, 10, 1055808. [Google Scholar] [CrossRef]
- Yan, H.; Bu, P. Non-coding RNA in cancer. Essays Biochem. 2021, 65, 625–639. [Google Scholar]
- Mitra, S.A.; Mitra, A.P.; Triche, T.J. A central role for long non-coding RNA in cancer. Front. Genet. 2012, 3, 20337. [Google Scholar] [CrossRef] [PubMed]
- Vadaie, N.; Morris, K.V. Long antisense non-coding RNAs and the epigenetic regulation of gene expression. Biomol. Concepts 2013, 4, 411–415. [Google Scholar] [PubMed]
- Ma, L.; Bajic, V.B.; Zhang, Z. On the classification of long non-coding RNAs. RNA Biol. 2013, 10, 924–933. [Google Scholar]
- Wang, Y.; Gong, G.; Xu, J.; Zhang, Y.; Wu, S.; Wang, S. Long noncoding RNA HOTAIR promotes breast cancer development by targeting ZEB1 via sponging miR-601. Cancer Cell Int. 2020, 20, 1–13. [Google Scholar]
- Cui, Y.; Fan, Y.; Zhao, G.; Zhang, Q.; Bao, Y.; Cui, Y.; Ye, Z.; Chen, G.; Piao, X.; Guo, F. Novel lncRNA PSMG3-AS1 functions as a miR-143-3p sponge to increase the proliferation and migration of breast cancer cells. Oncol. Rep. 2020, 43, 229–239. [Google Scholar]
- DeVaux, R.S.; Ropri, A.S.; Grimm, S.L.; Hall, P.A.; Herrera, E.O.; Chittur, S.V.; Smith, W.P.; Coarfa, C.; Behbod, F.; Herschkowitz, J.I. Long noncoding RNA BHLHE40-AS1 promotes early breast cancer progression through modulating IL-6/STAT3 signaling. J. Cell. Biochem. 2020, 121, 3465–3478. [Google Scholar]
- Wang, Z.; Yang, B.; Zhang, M.; Guo, W.; Wu, Z.; Wang, Y.; Jia, L.; Li, S.; Caesar-Johnson, S.J.; Demchok, J.A. lncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in cancer. Cancer Cell 2018, 33, 706–720.e709. [Google Scholar]
- Dinescu, S.; Ignat, S.; Lazar, A.D.; Constantin, C.; Neagu, M.; Costache, M. Epitranscriptomic signatures in lncRNAs and their possible roles in cancer. Genes 2019, 10, 52. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Luo, M.; Zhou, C.; Shi, X.; Yang, W.; Lu, Z.; Chen, Z.; Sun, N.; He, J. Novel long noncoding RNA NMR promotes tumor progression via NSUN2 and BPTF in esophageal squamous cell carcinoma. Cancer Lett. 2018, 430, 57–66. [Google Scholar]
- Sun, Z.; Xue, S.; Zhang, M.; Xu, H.; Hu, X.; Chen, S.; Liu, Y.; Guo, M.; Cui, H. Aberrant NSUN2-mediated m5C modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma. Oncogene 2020, 39, 6906–6919. [Google Scholar] [CrossRef]
- Klec, C.; Knutsen, E.; Schwarzenbacher, D.; Jonas, K.; Pasculli, B.; Heitzer, E.; Rinner, B.; Krajina, K.; Prinz, F.; Gottschalk, B. ALYREF, a novel factor involved in breast carcinogenesis, acts through transcriptional and post-transcriptional mechanisms selectively regulating the short NEAT1 isoform. Cell. Mol. Life Sci. 2022, 79, 391. [Google Scholar]
- Zhang, Y.; Huang, Y.-X.; Wang, D.-L.; Yang, B.; Yan, H.-Y.; Lin, L.-H.; Li, Y.; Chen, J.; Xie, L.-M.; Huang, Y.-S. LncRNA DSCAM-AS1 interacts with YBX1 to promote cancer progression by forming a positive feedback loop that activates FOXA1 transcription network. Theranostics 2020, 10, 10823. [Google Scholar]
- Wen, S.; Wei, Y.; Zen, C.; Xiong, W.; Niu, Y.; Zhao, Y. Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Mol. Cancer 2020, 19, 171. [Google Scholar]
- Dai, F.; Wu, Y.; Lu, Y.; An, C.; Zheng, X.; Dai, L.; Guo, Y.; Zhang, L.; Li, H.; Xu, W. Crosstalk between RNA m6A modification and non-coding RNA contributes to cancer growth and progression. Mol. Ther. Nucleic Acids 2020, 22, 62–71. [Google Scholar]
- He, Y.; Hu, H.; Wang, Y.; Yuan, H.; Lu, Z.; Wu, P.; Liu, D.; Tian, L.; Yin, J.; Jiang, K. ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation. Cell. Physiol. Biochem. 2018, 48, 838–846. [Google Scholar]
- Chen, S.; Zhou, L.; Wang, Y. ALKBH5-mediated m 6 A demethylation of lncRNA PVT1 plays an oncogenic role in osteosarcoma. Cancer Cell Int. 2020, 20, 34. [Google Scholar]
- Ge, L.; Zhang, N.; Chen, Z.; Song, J.; Wu, Y.; Li, Z.; Chen, F.; Wu, J.; Li, D.; Li, J. Level of N 6-methyladenosine in peripheral blood RNA: A novel predictive biomarker for gastric cancer. Clin. Chem. 2020, 66, 342–351. [Google Scholar]
- Du, J.; Hou, K.; Mi, S.; Ji, H.; Ma, S.; Ba, Y.; Hu, S.; Xie, R.; Chen, L. Malignant evaluation and clinical prognostic values of m6A RNA methylation regulators in glioblastoma. Front. Oncol. 2020, 10, 208. [Google Scholar]
- Lu, J.; Yang, Y.; Liu, X.; Chen, X.; Song, W.; Liu, Z. FTO-mediated LINC01134 stabilization to promote chemoresistance through miR-140-3p/WNT5A/WNT pathway in PDAC. Cell Death Dis. 2023, 14, 713. [Google Scholar]
- Hu, X.; Peng, W.-X.; Zhou, H.; Jiang, J.; Zhou, X.; Huang, D.; Mo, Y.-Y.; Yang, L. IGF2BP2 regulates DANCR by serving as an N6-methyladenosine reader. Cell Death Differ. 2020, 27, 1782–1794. [Google Scholar]
- Ni, W.; Yao, S.; Zhou, Y.; Liu, Y.; Huang, P.; Zhou, A.; Liu, J.; Che, L.; Li, J. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m 6 A reader YTHDF3. Mol. Cancer 2019, 18, 143. [Google Scholar]
- Wang, W.; Sun, B.; Xia, Y.; Sun, S.; He, C. RNA N6-methyladenosine-related gene contribute to clinical prognostic impact on patients with liver cancer. Front. Genet. 2020, 11, 306. [Google Scholar]
- Chen, D.H.; Zhang, J.G.; Wu, C.X.; Li, Q. Non-Coding RNA m6A Modification in Cancer: Mechanisms and Therapeutic Targets. Front. Cell Dev. Biol. 2021, 9, 778582. [Google Scholar] [CrossRef]
- Gu, Z.; Yang, Y.; Ma, Q.; Wang, H.; Zhao, S.; Qi, Y.; Li, Y. HNRNPC, a predictor of prognosis and immunotherapy response based on bioinformatics analysis, is related to proliferation and invasion of NSCLC cells. Respir. Res. 2022, 23, 362. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, G.; Chao, F.; Zhang, C.; Han, D.; Chen, G. HNRNPC Promotes Proliferation, Metastasis and Predicts Prognosis in Prostate Cancer. Cancer Manag. Res. 2021, 13, 7263–7276. [Google Scholar] [CrossRef]
- Mo, L.; Meng, L.; Huang, Z.; Yi, L.; Yang, N.; Li, G. An analysis of the role of HnRNP C dysregulation in cancers. Biomark. Res. 2022, 10, 19. [Google Scholar] [CrossRef]
- Hou, J.; Shan, H.; Zhang, Y.; Fan, Y.; Wu, B. m6A RNA methylation regulators have prognostic value in papillary thyroid carcinoma. Am. J. Otolaryngol. 2020, 41, 102547. [Google Scholar]
- Wang, X.; Fu, X.; Zhang, J.; Xiong, C.; Zhang, S.; Lv, Y. Identification and validation of m 6 A RNA methylation regulators with clinical prognostic value in Papillary thyroid cancer. Cancer Cell Int. 2020, 20, 203. [Google Scholar] [PubMed]
- Xu, N.; Chen, J.; He, G.; Gao, L.; Zhang, D. Prognostic values of m6A RNA methylation regulators in differentiated Thyroid Carcinoma. J. Cancer 2020, 11, 5187. [Google Scholar] [PubMed]
- Wang, W.; Shen, C.; Zhao, Y.; Sun, B.; Qiu, X.; Yin, S.; Chen, J.; Li, X. The Role of m6A RNA Methylation-Related lncRNAs in the Prognosis and Tumor Immune Microenvironment of Papillary Thyroid Carcinoma. Front. Cell Dev. Biol. 2021, 9, 719820. [Google Scholar] [CrossRef]
- Wei, L.-F.; Weng, X.-F.; Huang, X.-C.; Peng, Y.-H.; Guo, H.-P.; Xu, Y.-W. IGFBP2 in cancer: Pathological role and clinical significance. Oncol. Rep. 2021, 45, 427–438. [Google Scholar]
- Zeng, L.; Perks, C.M.; Holly, J.M.P. IGFBP-2/PTEN: A critical interaction for tumours and for general physiology? Growth Horm. IGF Res. 2015, 25, 103–107. [Google Scholar] [CrossRef]
- Zhang, B.; Hong, C.Q.; Luo, Y.H.; Wei, L.F.; Luo, Y.; Peng, Y.H.; Xu, Y.W. Prognostic value of IGFBP2 in various cancers: A systematic review and meta-analysis. Cancer Med. 2022, 11, 3035–3047. [Google Scholar] [CrossRef]
- Huang, J.; Sun, W.; Wang, Z.; Lv, C.; Zhang, T.; Zhang, D.; Dong, W.; Shao, L.; He, L.; Ji, X. FTO suppresses glycolysis and growth of papillary thyroid cancer via decreasing stability of APOE mRNA in an N6-methyladenosine-dependent manner. J. Exp. Clin. Cancer Res. 2022, 41, 42. [Google Scholar] [PubMed]
- Sa, R.; Liang, R.; Qiu, X.; He, Z.; Liu, Z.; Chen, L. Targeting IGF2BP2 promotes differentiation of radioiodine refractory papillary thyroid cancer via destabilizing RUNX2 mRNA. Cancers 2022, 14, 1268. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ding, Y.; Zhao, Y.; Li, X. m6A reader IGF2BP2 promotes lymphatic metastasis by stabilizing DPP4 in papillary thyroid carcinoma. Cancer Gene Ther. 2024, 31, 285–299. [Google Scholar]
- Sa, R.; Liang, R.; Qiu, X.; He, Z.; Liu, Z.; Chen, L. IGF2BP2-dependent activation of ERBB2 signaling contributes to acquired resistance to tyrosine kinase inhibitor in differentiation therapy of radioiodine-refractory papillary thyroid cancer. Cancer Lett. 2022, 527, 10–23. [Google Scholar]
- Hsu, P.J.; Zhu, Y.; Ma, H.; Guo, Y.; Shi, X.; Liu, Y.; Qi, M.; Lu, Z.; Shi, H.; Wang, J.; et al. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 2017, 27, 1115–1127. [Google Scholar] [CrossRef]
- Wu, X.; Chen, H.; Li, K.; Zhang, H.; Li, K.; Tan, H. The biological function of the N6-Methyladenosine reader YTHDC2 and its role in diseases. J. Transl. Med. 2024, 22, 490. [Google Scholar] [CrossRef]
- Sun, S.; Han, Q.; Liang, M.; Zhang, Q.; Zhang, J.; Cao, J. Downregulation of m(6) A reader YTHDC2 promotes tumor progression and predicts poor prognosis in non-small cell lung cancer. Thorac. Cancer 2020, 11, 3269–3279. [Google Scholar] [CrossRef]
- Tanabe, A.; Nakayama, T.; Kashiyanagi, J.; Yamaga, H.; Hirohashi, Y.; Torigoe, T.; Satomi, F.; Shima, H.; Maeda, H.; Kutomi, G.; et al. YTHDC2 Promotes Malignant Phenotypes of Breast Cancer Cells. J. Oncol. 2022, 2022, 9188920. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Chen, S.; Li, B.; Han, X.; Meng, B.; Zou, Y.; Chang, S. The N6-methyladenosine reader protein YTHDC2 promotes gastric cancer progression via enhancing YAP mRNA translation. Transl. Oncol. 2022, 16, 101308. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, S. YTHDC2 retards cell proliferation and triggers apoptosis in papillary thyroid Cancer by regulating CYLD-Mediated inactivation of akt signaling. Appl. Biochem. Biotechnol. 2024, 196, 588–603. [Google Scholar] [PubMed]
- Zeng, C.; Huang, W.; Li, Y.; Weng, H. Roles of METTL3 in cancer: Mechanisms and therapeutic targeting. J. Hematol. Oncol. 2020, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Peng, X.; Zhou, Q.; Tan, L.; Zhang, C.; Lin, S.; Long, M. METTL3-mediated m6A modification of STEAP2 mRNA inhibits papillary thyroid cancer progress by blocking the Hedgehog signaling pathway and epithelial-to-mesenchymal transition. Cell Death Dis. 2022, 13, 358. [Google Scholar]
- Ruan, X.; Tian, M.; Kang, N.; Ma, W.; Zeng, Y.; Zhuang, G.; Zhang, W.; Xu, G.; Hu, L.; Hou, X. Genome-wide identification of m6A-associated functional SNPs as potential functional variants for thyroid cancer. Am. J. Cancer Res. 2021, 11, 5402. [Google Scholar]
- Ma, C.; Luo, H.; Cao, J.; Zheng, X.; Zhang, J.; Zhang, Y.; Fu, Z. Identification of a novel tumor microenvironment–associated eight-gene signature for prognosis prediction in lung adenocarcinoma. Front. Mol. Biosci. 2020, 7, 571641. [Google Scholar]
- He, J.; Zhou, M.; Yin, J.; Wan, J.; Chu, J.; Jia, J.; Sheng, J.; Wang, C.; Yin, H.; He, F. METTL3 restrains papillary thyroid cancer progression via m6A/c-Rel/IL-8-mediated neutrophil infiltration. Mol. Ther. 2021, 29, 1821–1837. [Google Scholar]
- Ning, J.; Hou, X.; Hao, J.; Zhang, W.; Shi, Y.; Huang, Y.; Ruan, X.; Zheng, X.; Gao, M. METTL3 inhibition induced by M2 macrophage-derived extracellular vesicles drives anti-PD-1 therapy resistance via M6A-CD70-mediated immune suppression in thyroid cancer. Cell Death Differ. 2023, 30, 2265–2279. [Google Scholar] [PubMed]
- Zhou, X.; Chang, L.; Liang, Q.; Zhao, R.; Xiao, Y.; Xu, Z.; Yu, L. The m6A methyltransferase METTL3 drives thyroid cancer progression and lymph node metastasis by targeting LINC00894. Cancer Cell Int. 2024, 24, 47. [Google Scholar]
- He, T.; Xia, H.; Chen, B.; Duan, Z.; Huang, C. m6A writer METTL3-mediated lncRNA LINC01125 prevents the malignancy of papillary thyroid cancer. Crit. Rev.™ Immunol. 2023, 43. [Google Scholar]
- Dai, Y.-z.; Liu, Y.-d.; Li, J.; Chen, M.-t.; Huang, M.; Wang, F.; Yang, Q.-s.; Yuan, J.-h.; Sun, S.-h. METTL16 promotes hepatocellular carcinoma progression through downregulating RAB11B-AS1 in an m6A-dependent manner. Cell. Mol. Biol. Lett. 2022, 27, 41. [Google Scholar] [CrossRef]
- Ye, F.; Wu, J.; Zhang, F. METTL16 epigenetically enhances GPX4 expression via m6A modification to promote breast cancer progression by inhibiting ferroptosis. Biochem. Biophys. Res. Commun. 2023, 638, 1–6. [Google Scholar] [CrossRef]
- Wang, X.-K.; Zhang, Y.-W.; Wang, C.-M.; Li, B.; Zhang, T.-Z.; Zhou, W.-J.; Cheng, L.-j.; Huo, M.-Y.; Zhang, C.-H.; He, Y.-L. METTL16 promotes cell proliferation by up-regulating cyclin D1 expression in gastric cancer. J. Cell. Mol. Med. 2021, 25, 6602–6617. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Y.; Meng, X.; Wang, W.; Duan, F.; Chen, S.; Zhang, Y.; Sheng, Z.; Gao, Y.; Zhou, L. METTL16 inhibits papillary thyroid cancer tumorigenicity through m6A/YTHDC2/SCD1-regulated lipid metabolism. Cell. Mol. Life Sci. 2024, 81, 81. [Google Scholar]
- Liu, Y.; Wu, G.; Tao, X.; Dong, J.; Shi, T.; Shi, C. Investigating the mechanism of METTL16-dependent m6A modification regulating the SAMD11 protein signaling pathway to inhibit thyroid cancer phenotypes. Int. J. Biol. Macromol. 2024, 280 Pt 4, 136176. [Google Scholar] [CrossRef]
- Gong, P.-J.; Shao, Y.-C.; Yang, Y.; Song, W.-J.; He, X.; Zeng, Y.-F.; Huang, S.-R.; Wei, L.; Zhang, J.-W. Analysis of N6-Methyladenosine Methyltransferase Reveals METTL14 and ZC3H13 as Tumor Suppressor Genes in Breast Cancer. Front. Oncol. 2020, 10, 578963. [Google Scholar] [CrossRef]
- Lin, X.; Wang, F.; Chen, J.; Liu, J.; Lin, Y.-B.; Li, L.; Chen, C.-B.; Xu, Q. N6-methyladenosine modification of CENPK mRNA by ZC3H13 promotes cervical cancer stemness and chemoresistance. Mil. Med. Res. 2022, 9, 19. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, H.; Peng, H.; Yan, J.; Han, L.; Ye, G. ZC3H13 Inhibits the Progression of Hepatocellular Carcinoma through m(6)A-PKM2-Mediated Glycolysis and Enhances Chemosensitivity. J. Oncol. 2021, 2021, 1328444. [Google Scholar] [CrossRef]
- Xie, R.; Chen, W.; Lv, Y.; Xu, D.; Huang, D.; Zhou, T.; Zhang, S.; Xiong, C.; Yu, J. Overexpressed ZC3H13 suppresses papillary thyroid carcinoma growth through m6A modification-mediated IQGAP1 degradation. J. Formos. Med. Assoc. 2023, 122, 738–746. [Google Scholar]
- Jia, G.; Fu, Y.; Zhao, X.; Dai, Q.; Zheng, G.; Yang, Y.; Yi, C.; Lindahl, T.; Pan, T.; Yang, Y.G.; et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 2011, 7, 885–887. [Google Scholar] [CrossRef]
- Li, Y.; Su, R.; Deng, X.; Chen, Y.; Chen, J. FTO in cancer: Functions, molecular mechanisms, and therapeutic implications. Trends Cancer 2022, 8, 598–614. [Google Scholar] [CrossRef]
- Zheng, Q.K.; Ma, C.; Ullah, I.; Hu, K.; Ma, R.J.; Zhang, N.; Sun, Z.G. Roles of N6-Methyladenosine Demethylase FTO in Malignant Tumors Progression. OncoTargets Ther. 2021, 14, 4837–4846. [Google Scholar] [CrossRef]
- Zeng, X.; Lu, Y.; Zeng, T.; Liu, W.; Huang, W.; Yu, T.; Tang, X.; Huang, P.; Li, B.; Wei, H. RNA demethylase FTO participates in malignant progression of gastric cancer by regulating SP1-AURKB-ATM pathway. Commun. Biol. 2024, 7, 800. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Lin, Z.; Wan, A.; Chen, H.; Liang, H.; Sun, L.; Wang, Y.; Li, X.; Xiong, X.-f.; Wei, B.; et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol. Cancer 2019, 18, 46. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wu, D.; Ning, J.; Liu, W.; Zhang, D. Changes of N6-methyladenosine modulators promote breast cancer progression. BMC Cancer 2019, 19, 326. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Wang, Q.; Liu, A.; Zhu, J.; Feng, J. ALKBH5 Holds Prognostic Values and Inhibits the Metastasis of Colon Cancer. Pathol. Oncol. Res. 2020, 26, 1615–1623. [Google Scholar] [CrossRef]
- Cho, S.H.; Ha, M.; Cho, Y.H.; Ryu, J.H.; Yang, K.; Lee, K.H.; Han, M.-E.; Oh, S.-O.; Kim, Y.H. ALKBH5 gene is a novel biomarker that predicts the prognosis of pancreatic cancer: A retrospective multicohort study. Ahbps 2018, 22, 305–309. [Google Scholar] [CrossRef]
- Qu, J.; Yan, H.; Hou, Y.; Cao, W.; Liu, Y.; Zhang, E.; He, J.; Cai, Z. RNA demethylase ALKBH5 in cancer: From mechanisms to therapeutic potential. J. Hematol. Oncol. 2022, 15, 8. [Google Scholar] [CrossRef]
- Ji, X.; Lv, C.; Huang, J.; Dong, W.; Sun, W.; Zhang, H. ALKBH5-induced circular RNA NRIP1 promotes glycolysis in thyroid cancer cells by targeting PKM2. Cancer Sci. 2023, 114, 2318. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Chen, W.; He, Y.; Wu, S.; Li, X.; Hou, B.; Wang, S.; He, Y.; Jiang, H.; et al. Analysis of the prognostic significance and potential mechanisms of lncRNAs associated with m6A methylation in papillary thyroid carcinoma. Int. Immunopharmacol. 2021, 101 Pt B, 108286. [Google Scholar] [CrossRef]
- Su, Y.; Xu, B.; Li, J.; Shen, Q.; Lei, Z.; Ma, M.; Zhang, F.; Hu, T. Identification of m6A-associated LncRNAs as predict factors for the immune infiltration and prognosis of thyroid cancer. Ann. Med. 2023, 55, 1298–1316. [Google Scholar] [CrossRef]
- DeAngelis, J.T.; Farrington, W.J.; Tollefsbol, T.O. An overview of epigenetic assays. Mol. Biotechnol. 2008, 38, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Tumino, D.; Frasca, F.; Newbold, K. Updates on the Management of Advanced, Metastatic, and Radioiodine Refractory Differentiated Thyroid Cancer. Front. Endocrinol. 2017, 8, 312. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
Upregulated or Downregulated | Role in PTC and Relationship to Prognosis | Number of Correlated lncRNA | |
---|---|---|---|
HNRNPC | Upregulated | - No evidence for relationship to prognosis in PTC - Increased expression related to poor prognosis in DTC | 3 |
IGF2BP2 | Upregulated | - Increased expression related to poor prognosis and inversely related to disease free survival - Involved in differentiation and metastasis - Overexpression linked with decreased cisplatin sensitivity | 9 |
YTHDC2 | Downregulated | - Inhibits proliferation and apoptosis of PTC - No evidence for relationship to PTC prognosis | Unknown |
METTL3 | Downregulated | - Mixed results for relationship to PTC prognosis - Low levels correlated with poor immune checkpoint blockade - Overexpression linked with improved anti-PD-1 response | 13, including LINC00894 |
METTL16 | Mixed, mostly downregulated | - No evidence for relationship to PTC prognosis | Unknown |
ZC3H13 | Downregulated | - Inhibits cell proliferation, invasion, and migration - Mixed results for relationship to PTC prognosis | 10 |
FTO | Downregulated | - Low levels related to poor prognosis and decreased overall survival rate - May be involved in same pathway as IGF2BP2 | 11 |
ALKBH5 | Downregulated | - No evidence for relationship to prognosis in PTC - Decreased expression related to poor prognosis in DTC | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klausner, M.S.; Greenberg, C.A.; Noruzi, K.A.; Tiwari, R.K.; Geliebter, J. The Role of M6A LncRNA Modification in Papillary Thyroid Cancer. Int. J. Mol. Sci. 2025, 26, 2833. https://doi.org/10.3390/ijms26072833
Klausner MS, Greenberg CA, Noruzi KA, Tiwari RK, Geliebter J. The Role of M6A LncRNA Modification in Papillary Thyroid Cancer. International Journal of Molecular Sciences. 2025; 26(7):2833. https://doi.org/10.3390/ijms26072833
Chicago/Turabian StyleKlausner, Michelle S., Caylee A. Greenberg, Kaleb A. Noruzi, Raj K. Tiwari, and Jan Geliebter. 2025. "The Role of M6A LncRNA Modification in Papillary Thyroid Cancer" International Journal of Molecular Sciences 26, no. 7: 2833. https://doi.org/10.3390/ijms26072833
APA StyleKlausner, M. S., Greenberg, C. A., Noruzi, K. A., Tiwari, R. K., & Geliebter, J. (2025). The Role of M6A LncRNA Modification in Papillary Thyroid Cancer. International Journal of Molecular Sciences, 26(7), 2833. https://doi.org/10.3390/ijms26072833