The Effect of Non-Immersive Virtual Reality Exergames versus Traditional Physiotherapy in Parkinson’s Disease Older Patients: Preliminary Results from a Randomized-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subejcts
2.2. Intervention
2.3. Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jankovic, J.; Tan, E.K. Parkinson’s disease: Etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 2020, 91, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Tinelli, M.; Kanavos, P.; Grimaccia, F. The Value of Early Diagnosis and Treatment in Parkinson’s Disease: A Literature Review of the Potential Clinical and Socioeconomic Impact of Targeting Unmet Needs in Parkinson’s Disease. 2016. Available online: https://www.lse.ac.uk/business/consulting/reports/the-value-of-early-diagnosis (accessed on 30 September 2022).
- Gustavsson, A.; Svensson, M.; Jacobi, F.; Allgulander, C.; Alonso, J.; Beghi, E.; CDBE2010 Study Group. Cost of disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 2011, 21, 718–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dibble, L.E.; Cavanaugh, J.T.; Earhart, G.M.; Ellis, T.D.; Ford, M.P.; Foreman, K.B. Charting the progression of disability in parkinson disease: Study protocol for a prospective longitudinal cohort study. BMC Neurol. 2010, 10, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, T.; Rochester, L. Mobilizing Parkinson’s Disease: The Future of Exercise. J. Park. Dis. 2018, 8, S95–S100. [Google Scholar] [CrossRef] [Green Version]
- Keus, S.; Hendriks, E.; Bloem, B. KNGF Guidelines for physical therapy in patients with Parkinson’s disease. Dutch J. Physiother. 2004, 114, C.3.8. [Google Scholar]
- Zheng, Y.; Meng, Z.; Zhi, X.; Liang, Z. Dual-task training to improve cognitive impairment and walking function in Parkinson’s disease patients: A brief review. Sports Med. Health Sci. 2021, 3, 202–206. [Google Scholar] [CrossRef]
- Zawadka-Kunikowska, M.; Klawe, J.J.; Tafil-Klawe, M.; Bejtka, M.; Rzepiński, Ł.; Cieślicka, M. Cognitive Function and Postural Control Strategies in Relation to Disease Progression in Patients with Parkinson’s Disease. Int. J. Environ. Res. Public Health 2022, 19, 12694. [Google Scholar] [CrossRef]
- Hasegawa, N.; Maas, K.C.; Shah, V.V.; Carlson-Kuhta, P.; Nutt, J.G.; Horak, F.B.; Asaka, T.; Mancini, M. Functional limits of stability and standing balance in people with Parkinson’s disease with and without freezing of gait using wearable sensors. Gait Posture 2021, 87, 123–129. [Google Scholar] [CrossRef]
- Sehm, B.; Taubert, M.; Conde, V.; Weise, D.; Classen, J.; Dukart, J.; Draganski, B.; Villringer, A.; Ragert, P. Structural brain plasticity in Parkinson’s disease induced by balance training. Neurobiol. Aging 2014, 35, 232–239. [Google Scholar] [CrossRef]
- Robinson, A.G.; Dennett, A.M.; Snowdon, D.A. Treadmill training may be an effective form of task-specific training for improving mobility in people with Parkinson’s disease and multiple sclerosis: A systematic review and meta-analysis. Physiotherapy 2019, 105, 174–186. [Google Scholar] [CrossRef]
- Gaßner, H.; Steib, S.; Klamroth, S.; Pasluosta, C.F.; Adler, W.; Eskofier, B.M.; Pfeifer, K.; Winkler, J.; Klucken, J. Perturbation Treadmill Training Improves Clinical Characteristics of Gait and Balance in Parkinson’s Disease. J. Park. Dis. 2019, 9, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Canning, C.G.; Allen, N.E.; Nackaerts, E.; Paul, S.S.; Nieuwboer, A.; Gilat, M. Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nat. Rev. Neurol. 2020, 16, 409–425. [Google Scholar] [CrossRef] [PubMed]
- Abd-Alrazaq, A.; Alhuwail, D.; Al-Jafar, E.; Ahmed, A.; Shuweihdi, F.; Reagu, S.M.; Househ, M. The Effectiveness of Serious Games in Improving Memory Among Older Adults with Cognitive Impairment: Systematic Review and Meta-analysis. JMIR Serious Games 2022, 10, e35202. [Google Scholar] [CrossRef] [PubMed]
- Voinescu, A.; Sui, J.; Fraser, S.D. Virtual reality in neurorehabilitation: An umbrella review of meta-analyses. J. Clin. Med. 2021, 10, 1478. [Google Scholar] [CrossRef]
- Neri, L.; Adorante, G.; Brighetti, G.; Franciosi, E. Postural Rehabilitation through Kinect-Based Biofeedback. In Proceedings of the 2013 International Conference on Virtual Rehabilitation (ICVR), Philadelphia, PA, USA, 14 November 2013; pp. 218–219. [Google Scholar]
- Torre, M.M.; Temprado, J.J. Effects of Exergames on Brain and Cognition in Older Adults: A Review Based on a New Categorization of Combined Training Intervention. Front. Aging Neurosci. 2022, 14, 859715. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, C.; Zhao Wang, L.; Guo, J.; Zhang, L.; Li, Y.; Sun, Y.; Zhang, L.; Li, Z.; Zhu, W. Effect of Exergame Training on Working Memory and Executive Function in Older Adults. Sustainability 2022, 14, 10631. [Google Scholar] [CrossRef]
- do Mendes, F.A.; Pompeua, J.E.; Lobo, A.M.; da Silva, K.G.; Oliveira, T.D.; Zomignani, A.P.; Piemonte, M.E.P. Motor learning, retention and transfer after virtual-reality-based training in Parkinson’s disease—Effect of motor and cognitive demands of games: A longitudinal, controlled clinical study. Physiotherapy 2012, 98, 217–223. [Google Scholar] [CrossRef]
- Pompeu, J.E.; do Mendes, F.A.; da Silva, K.G.; Lobo, A.M.; Oliveira, T.D.; Zomignani, A.P.; Piemonte, M.E.P. Effect of Nintendo Wii (TM)-based motor and cognitive training on activities of daily living in patients with Parkinson’s disease: A randomised clinical trial. Physiotherapy 2012, 98, 196–204. [Google Scholar] [CrossRef]
- Zettergren, K.K.; Antunes, M.S.; Canhao, J.M.; Lavallee, C. The effects of Nintendo Wii Fit on gait speed, balance and functional mobility on idiopathic Parkinson’s disease: A case study. Gerontologist 2011, 51, 70. [Google Scholar]
- de Melo Cerqueira, T.M.; de Moura, J.A.; de Lira, J.O.; Leal, J.C.; D’Amelio, M.; do Santos Mendes, F.A. Cognitive and motor effects of Kinect-based games training in people with and without Parkinson disease: A preliminary study. Physiother. Res. Int. 2019, 25, e1807. [Google Scholar] [CrossRef]
- Stojan, R.; Voelcker-Rehage, C. A Systematic Review on the Cognitive Benefits and Neurophysiological Correlates of Exergaming in Healthy Older Adults. J. Clin. Med. 2019, 8, 734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoehn, M.; Yahr, M. Parkinsonism: Onset, progression and mortality. Neurology 1967, 17, 427–442. [Google Scholar] [CrossRef] [PubMed]
- Holden, M.K.; Gill, K.M.; Magliozzi, M.R. Gait assesment for neurologically imparired. Standards for outcome assessment. Phys. Ther. 1986, 66, 1530–1539. [Google Scholar] [CrossRef] [PubMed]
- van Swieten, J.C.; Koudstaal, P.J.; Visser, M.C.; Schouten, H.J.A.; van Gijn, J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 1988, 19, 604–607. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, P.; Mecocci, P.; Benedetti, C.; Ercolani, S.; Bregnocchi, M.; Menculini, G.; Catani, M.; Senin, U.; Cherubini, A. Validation of the five-item geriatric depression scale in elderly subjects in three different settings. J. Am. Geriatr. Soc. 2003, 51, 694–698. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-mental state. A pratical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Morris, J.C. Clinical Dementia Rating: A Reliable and Valid Diagnostic and Staging Measure for Dementia of the Alzheimer Type. Int. Psychogeriatr. 1997, 9, 173–176. [Google Scholar] [CrossRef]
- Jutai, J.; Day, H. Psychosocial Impact of Assistive devices Scale (PIADS). Technol. Disabil. 2002, 14, 107–111. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Tinetti, M.E. Performance-oriented assessment of mobility problems in elderly patients. J. Am. Geriatr. Soc. 1986, 34, 119–126. [Google Scholar] [CrossRef]
- Ware, J.E.; Kosinski, M.; Keller, S.D. SF-12: How to Score the SF-12 Physical and Mental Health Summary Scales, 3rd ed.; QualityMetric Incorporated: Lincoln, RI, USA, 1998. [Google Scholar]
- Ruggiero, C.; Mariani, T.; Gugliotta, R.; Gasperini, B.; Patacchini, F.; Nguyen, H.N.; Zampi, E.; Serra, R.; Dell’aquila, G.; Cirinei, E.; et al. Validation of the Italian version of the falls efficacy scale international (FES-I) and the SHORT FES-I in community dwelling older persons. Arch. Gerontol. Geriatr. 2009, 49, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, R.; Maranesi, E.; Di Rosa, M.; Luzi, R.; Casoni, E.; Rinaldi, N.; Baldoni, R.; Lattanzio, F.; Di Donna, V.; Pelliccioni, G.; et al. Rehabilitation of older people with Parkinson’s disease: An innovative protocol for RCT study to evaluate the potential of robotic-based technologies. BMC Neurol. 2020, 20, 186. [Google Scholar] [CrossRef] [PubMed]
- Maranesi, E.; Di Donna, V.; Pelliccioni, G.; Cameriere, V.; Casoni, E.; Baldoni, R.; Benadduci, M.; Rinaldi, N.; Fantechi, L.; Giammarchi, C.; et al. Acceptability and Preliminary Results of Technology-Assisted Balance Training in Parkinson’s Disease. Int. J. Environ. Res. Public Health 2022, 19, 2655. [Google Scholar] [CrossRef]
- Marotta, N.; Calafiore, D.; Curci, C.; Lippi, L.; Ammendolia, V.; Ferraro, F.; Invernizzi, M.; de Sire, A. Integrating virtual reality and exergaming in cognitive rehabilitation of patients with Parkinson disease: A systematic review of randomized controlled trials. Eur. J. Phys. Rehabil. Med. 2022. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Raîche, M.; Hébert, R.; Prince, F.; Corriveau, H. Screening older adults at risk of falling with the Tinetti balance scale. Lancet 2000, 356, 1001–1002. [Google Scholar] [CrossRef]
- Lamotte, G.; Rafferty, M.R.; Prodoehl, J.; Kohrt, W.M.; Comella, C.L.; Simuni, T.; Corcos, D.M. Effects of endurance exercise training on the motor and non-motor features of Parkinson’s disease: A review. J. Park. Dis. 2015, 5, 21–41. [Google Scholar]
- Chuang, C.S.; Chen, Y.W.; Zeng, B.Y.; Hung, C.M.; Tu, Y.K.; Tai, Y.C.; Wu, Y.C.; Hsu, C.W.; Lei, W.T.; Wu, S.L.; et al. Effects of modern technology (exergame and virtual reality) assisted rehabilitation vs conventional rehabilitation in patients with Parkinson’s disease: A network meta-analysis of randomised controlled trials. Physiotherapy 2022, 117, 35–42. [Google Scholar] [CrossRef]
- Smania, N.; Corato, E.; Tinazzi, M.; Stanzani, C.; Fiaschi, A.; Girardi, P.; Gandolfi, M. Effect of balance training on pos-tural instability in patients with idiopathic Parkinson’s disease. Neurorehabilit. Neural Repair 2010, 24, 826–834. [Google Scholar] [CrossRef]
- Padala, K.P.; Padala, P.R.; Burke, W.J. Wii-Fit as an adjunct for mild cognitive impairment: Clinical perspectives. J. Am. Geriatr. Soc. 2011, 59, 932–933. [Google Scholar] [CrossRef]
- Ware, J.E., Jr.; Kosinski, M.; Keller, S.D. A 12-item short-form health survey: Construction of scales and preliminary tests of relia-bility and validity. Med. Care 1996, 34, 220–233. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, C.S.; Magalhães, B.; Lima, A.; Nóbrega, P.; Silva, M.; Santos, C. Impact of Exergames on the Mental Health of Older Adults: A Systematic Review and GRADE Evidence Synthesis. Games Health J. 2022, 11, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Sveistrup, H. Motor rehabilitation using virtual reality. J. Neuroeng. Rehabil. 2004, 1, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sveistrup, H.; McComas, J.; Thornton, M.; Marshall, S.; Finestone, H.; McCormick, A.; Babulic, K.; Mayhew, A. Experi-mental studies of virtual reality-delivered compared to conventional exercise programs for rehabilitation. CyberPsychol. Behav. 2003, 6, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, R.; Maranesi, E.; Riccardi, G.R.; Di Donna, V.; Pelliccioni, P.; Luzi, R.; Lattanzio, F.; Pelliccioni, G. Non-Immersive Virtual Reality for Rehabilitation of the Older People: A Systematic Review into Efficacy and Effectiveness. J. Clin. Med. 2019, 8, 1882. [Google Scholar] [CrossRef]
CG n = 14 | TG n = 16 | p | |
---|---|---|---|
Gender, n (%) | 0.153 | ||
Female | 5 (35.8%) | 10 (62.5) | |
Male | 9 (64.2%) | 6 (37.5%) | |
Age, mean ± SD | 75.5 ± 5.4 | 72.7 ± 6.3 | 0.131 |
Marital status, n (%) | 0.891 | ||
Married | 12 (85.7%) | 14 (87.5%) | |
Widowed | 2 (14.3%) | 2 (12.5%) | |
Educational level, n (%) | 0.204 | ||
Primary education | 5 (35.7%) | 10 (62.5%) | |
Secondary education | 7 (50%) | 4 (25%) | |
University or more | 2 (14.3%) | 2 (12.5%) | |
Hoehn and Yahr score, mean ± SD | 2.3 ± 0.9 | 2.0 ± 0.8 | 0.187 |
Rankin scale score, mean ± SD | 1.6 ± 0.7 | 1.2 ± 0.9 | 0.201 |
GDS, mean ± SD | 2.5 ± 1.2 | 2.5 ± 1.4 | 0.987 |
FAC, mean ± SD | 4.1 ± 1.2 | 4.6 ± 2.4 | 0.052 |
MMSE, mean ± SD | 26.6 ± 1.9 | 27.0 ± 1.8 | 0.295 |
CG | p-Value | TG | p-Value | p-Value CG vs. TG | ||||
---|---|---|---|---|---|---|---|---|
T0 | T1 | T0 | T1 | T0 | T1 | |||
BI | 90.3 ± 3.9 | 87.6 ± 4.5 | 0.251 | 91.88 ± 2.4 | 94.3 ± 3.7 | 0.281 | 0.687 | 0.367 |
POMA | ||||||||
POMA Total | 22.2 ± 1.2 | 23.3 ± 1.6 | 0.208 | 24.6 ± 0.9 | 25.9 ± 0.7 | 0.010 ^ | 0.142 | 0.034 * |
POMA Gait | 9.7 ± 0.5 | 9.7 ± 0.8 | 0.905 | 10.9 ± 0.4 | 0.185 | 0.352 | 0.003 * | |
POMA Balance | 12.4 ± 0.7 | 13.5 ± 0.8 | 0.017 ^ | 13.8 ± 0.5 | 14.7 ± 0.4 | 0.004 ^ | 0.249 | 0.034 * |
SF-12 | 11.4 ± 0.2 | |||||||
SF-12-Tot | 30.3 ± 0.7 | 30.3 ± 0.7 | 0.651 | 31.6 ± 0.7 | 30.1 ± 0.6 | 0.055 | 0.476 | 0.094 |
PCS-12 | 13.2 ± 0.6 | 13.2 ± 0.5 | 0.856 | 13.8 ± 0.4 | 13.6 ± 0.3 | 0.786 | 0.303 | 0.953 |
MCS-12 | 17.1 ± 0.4 | 17.1 ± 0.4 | 0.692 | 17.8 ± 0.5 | 16.5 ± 0.4 | 0.022 ^ | 0.750 | 0.034 * |
FES-I | 12.1 ± 1.6 | 14.1 ± 1.8 | 0.750 | 13.9 ± 1.1 | 13.3 ± 1.4 | 0.898 | 0.425 | 0.312 |
Gait Speed [m/s] | 1.6 ± 0.8 | 1.7 ± 0.9 | 0.140 | 1.8 ± 0.7 | 1.8 ± 0.1 | 0.472 | 0.623 | 0.350 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maranesi, E.; Casoni, E.; Baldoni, R.; Barboni, I.; Rinaldi, N.; Tramontana, B.; Amabili, G.; Benadduci, M.; Barbarossa, F.; Luzi, R.; et al. The Effect of Non-Immersive Virtual Reality Exergames versus Traditional Physiotherapy in Parkinson’s Disease Older Patients: Preliminary Results from a Randomized-Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 14818. https://doi.org/10.3390/ijerph192214818
Maranesi E, Casoni E, Baldoni R, Barboni I, Rinaldi N, Tramontana B, Amabili G, Benadduci M, Barbarossa F, Luzi R, et al. The Effect of Non-Immersive Virtual Reality Exergames versus Traditional Physiotherapy in Parkinson’s Disease Older Patients: Preliminary Results from a Randomized-Controlled Trial. International Journal of Environmental Research and Public Health. 2022; 19(22):14818. https://doi.org/10.3390/ijerph192214818
Chicago/Turabian StyleMaranesi, Elvira, Elisa Casoni, Renato Baldoni, Ilaria Barboni, Nadia Rinaldi, Barbara Tramontana, Giulio Amabili, Marco Benadduci, Federico Barbarossa, Riccardo Luzi, and et al. 2022. "The Effect of Non-Immersive Virtual Reality Exergames versus Traditional Physiotherapy in Parkinson’s Disease Older Patients: Preliminary Results from a Randomized-Controlled Trial" International Journal of Environmental Research and Public Health 19, no. 22: 14818. https://doi.org/10.3390/ijerph192214818
APA StyleMaranesi, E., Casoni, E., Baldoni, R., Barboni, I., Rinaldi, N., Tramontana, B., Amabili, G., Benadduci, M., Barbarossa, F., Luzi, R., Di Donna, V., Scendoni, P., Pelliccioni, G., Lattanzio, F., Riccardi, G. R., & Bevilacqua, R. (2022). The Effect of Non-Immersive Virtual Reality Exergames versus Traditional Physiotherapy in Parkinson’s Disease Older Patients: Preliminary Results from a Randomized-Controlled Trial. International Journal of Environmental Research and Public Health, 19(22), 14818. https://doi.org/10.3390/ijerph192214818