Metabonomic Insights into the Sperm Activation Mechanisms in Ricefield Eel (Monopterus albus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Sample Collection
2.3. Metabolite Extraction
2.4. Metabolite Detection
2.5. Data Analysis
3. Results
3.1. Composition Analysis of the Sperm in Ricefield Eels
3.2. Principal Component Analysis (PCA)
3.3. Orthogonal Projections to Latent Structures-Discrimination Analysis (OPLS-DA)
3.4. Differential Metabolite Analysis in the Sperm Motility Activation
3.5. KEGG Pathway Analysis for Differential Metabolites
4. Discussion
4.1. Composition Analysis of Metabolites in Ricefield Eel Sperm
4.2. Analysis of Up-Regulated Metabolites in the Post-Activated Sperm
4.3. Analysis of Down-Regulated Metabolites in the Post-Activated Sperm
4.4. KEGG Pathway Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bedford, J.M. Sperm Capacitation and Fertilization in Mammals. Biol. Reprod. 1970, 2, 128–158. [Google Scholar] [CrossRef]
- Yanagimachi, R. In vitro Capacitation of Golden Hamster Spermatozoa by Homologous and Heterologous Blood Sera. Biol. Reprod. 1970, 3, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Zadmajid, V.; Myers, J.N.; Sørensen, S.R.; Butts, I.A.E. Ovarian fluid and its impacts on spermatozoa performance in fish: A review. Theriogenology 2019, 132, 144–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzyuba, V.; Shelton, W.L.; Kholodnyy, V.; Boryshpolets, S.; Cosson, J.; Dzyuba, B. Fish sperm biology in relation to urogenital system structure. Theriogenology 2019, 132, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Kitano, T.; Iwao, Y.; Kondo, M. Diversity and commonality in animals. Modulation of sperm motility and function prior to fertilization. In Reproductive and Developmental Strategies; Springer: Tokyo, Japan, 2018; Volume 10, pp. 437–462. [Google Scholar]
- de Jonge, C.J. Biological basis for human capacitation. Hum. Reprod. Updat. 2005, 11, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Ulloa-Rodríguez, P.; Figueroa, E.; Diaz, J.Q.; Lee-Estevez, M.; Short, S.E.; Farías, J.G. Mitochondria in teleost spermatozoa. Mitochondrion 2017, 34, 49–55. [Google Scholar] [CrossRef]
- Alavi, S.M.H.; Cosson, J. Sperm motility in fishes. (II) Effects of ions and osmolality: A review. Cell Biol. Int. 2006, 30, 1–14. [Google Scholar] [CrossRef]
- Alavi, S.M.H.; Cosson, J.; Bondarenko, O.; Linhart, O. Sperm motility in fishes: (III) diversity of regulatory signals from membrane to the axoneme. Theriogenology 2019, 136, 143–165. [Google Scholar] [CrossRef]
- Chi, W.; Gao, Y.; Hu, Q.; Guo, W.; Li, D. Genome-wide analysis of brain and gonad transcripts reveals changes of key sex reversal-related genes expression and signaling pathways in three stages of Monopterus albus. PLoS ONE 2017, 12, e0173974. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, C.; Chen, X.; Guan, G. Identification of gonadal soma-derived factor involvement in Monopterus albus (protogynous rice field eel) sex change. Mol. Biol. Rep. 2016, 43, 629–637. [Google Scholar] [CrossRef]
- Cheng, H.; Guo, Y.; Yu, Q.; Zhou, R. The rice field eel as a model system for vertebrate sexual development. Cytogenet. Genome Res. 2003, 101, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Gallego, V.; Herranz-Jusdado, J.G.; Rozenfeld, C.; Pérez, L.; Asturiano, J.F. Subjective and objective assessment of fish sperm motility: When the technique and technicians matter. Fish Physiol. Biochem. 2018, 44, 1457–1467. [Google Scholar] [CrossRef]
- Caldeira, C.; Soler, C. Fish Sperm Assessment Using Software and Cooling Devices. J. Vis. Exp. 2018, 137, e56823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bujak, R.; Struck-Lewicka, W.; Markuszewski, M.J.; Kaliszan, R. Metabolomics for laboratory diagnostics. J. Pharm. Biomed. Anal. 2015, 113, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Han, R.; Yu, J.; Zhu, M.; Zhang, Y.; Gong, Y.; Li, Z. Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis, L.). Food Chem. 2019, 271, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Zhang, J.; Xu, Z.; Xu, Y.; Xu, A.; Chen, W.; Miao, C.; Liu, S.; Wang, Z.; Jia, R. Metabolomic Profiling of Human Spermatozoa in Idiopathic Asthenozoospermia Patients Using Gas Chromatography-Mass Spectrometry. BioMed Res. Int. 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Paiva, C.P.; Amaral, A.; Rodríguez, M.; Canyellas, N.; Correig, X.; Ballesca, J.L.; Ramalho-Santos, J.; Oliva, R. Identification of endogenous metabolites in human sperm cells using proton nuclear magnetic resonance (1 H-NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Andrology 2015, 3, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Butts, I.A.; Hilmarsdottir, G.S.; Zadmajid, V.; Gallego, V.; Støttrup, J.G.; Jacobsen, C.; Krüger-Johnsen, M.; Politis, S.N.; Asturiano, J.F.; Holst, L.K.; et al. Dietary amino acids impact sperm performance traits for a catadromous fish, Anguilla anguilla reared in captivity. Aquaculture 2020, 518, 734602. [Google Scholar] [CrossRef]
- Patel, A.B.; Srivastava, S.; Phadke, R.S.; Govil, G. Identification of Low-Molecular-Weight Compounds in Goat Epididymis Using Multinuclear Nuclear Magnetic Resonance. Anal. Biochem. 1999, 266, 205–215. [Google Scholar] [CrossRef]
- Bellezza, I.; Minelli, A. Adenosine in sperm physiology. Mol. Asp. Med. 2017, 55, 102–109. [Google Scholar] [CrossRef]
- Miki, K. Energy metabolism and sperm function. Soc. Reprod. Fertil. Suppl. 2007, 65, 309–325. [Google Scholar] [PubMed]
- Watanabe, H.; Takeda, R.; Hirota, K.; Kondoh, G. Lipid raft dynamics linked to sperm competency for fertilization in mice. Genes Cells 2017, 56, 334–500. [Google Scholar] [CrossRef] [Green Version]
- Amaral, A.; Castillo, J.; Estanyol, J.M.; Ballescà, J.L.; Ramalho-Santos, J.; Oliva, R. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol. Cell. Proteom. 2012, 12, 330–342. [Google Scholar] [CrossRef] [Green Version]
- Jeulin, C. Role of free L-carnitine and acetyl-L-carnitine in post-gonadal maturation of mammalian spermatozoa. Hum. Reprod. Updat. 1996, 2, 87–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, C.M.; Blackman, M.R.; Wang, C.; Swerdloff, R.S. The Role of Carnitine in the Male Reproductive System. Ann. N. Y. Acad. Sci. 2004, 1033, 177–188. [Google Scholar] [CrossRef]
- de Lamirande, E.; Gagnon, C. A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int. J. Androl. 1993, 16, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Clarkson, J.S. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. Reprod. Fertil. 1987, 81, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; MacKenzie, K.R.; Putluri, N.; Maletić-Savatić, M.; Bellen, H.J. The Glia-Neuron Lactate Shuttle and Elevated ROS Promote Lipid Synthesis in Neurons and Lipid Droplet Accumulation in Glia via APOE/D. Cell Metab. 2017, 26, 719–737.e6. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Ren, Z.; Fan, X.; Pan, Y.; Lv, S.; Pan, C.; Lei, A.; Zeng, W. Cysteine protects rabbit spermatozoa against reactive oxygen species-induced damages. PLoS ONE 2017, 12, e0181110. [Google Scholar] [CrossRef] [Green Version]
- Çoyan, K.; Başpinar, N.; Bucak, M.N.; Akalın, P.P.; Ataman, M.B.; ÖMÜR, A.D.; Güngör, S.; Küçükgünay, S.; Özkalp, B.; Sariözkan, S. Influence of methionine and dithioerythritol on sperm motility, lipid peroxidation and antioxidant capacities during liquid storage of ram semen. Res. Veter Sci. 2010, 89, 426–431. [Google Scholar] [CrossRef]
- Arya, A.; Al-Obaidi, M.M.J.; Shahid, N.; Noordin, M.I.; Looi, C.Y.; Wong, W.F.; Khaing, S.L.; Mustafa, M.R. Synergistic effect of quercetin and quinic acid by alleviating structural degeneration in the liver, kidney and pancreas tissues of STZ-induced diabetic rats: A mechanistic study. Food Chem. Toxicol. 2014, 71, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.-Y.; Moon, E.; Kim, S.Y.; Lee, K.R. Quinic acid derivatives from Pimpinella brachycarpa exert anti-neuroinflammatory activity in lipopolysaccharide-induced microglia. Bioorganic Med. Chem. Lett. 2013, 23, 2140–2144. [Google Scholar] [CrossRef] [PubMed]
- Pero, R.W.; Lund, H.; Leanderson, T. Antioxidant metabolism induced by quinic acid increased urinary excretion of tryptophan and nicotinamide. Phytother. Res. 2009, 23, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Lahnsteiner, F.; Berger, B.; Weismann, T. Sperm metabolism of the telost fishes Chalcalburnus chalcoides and Oncorhynchus mykiss and its relation to motility and viability. J. Exp. Zool. 1999, 284, 454–465. [Google Scholar] [CrossRef]
- Rubinstein, S.; Breitbart, H. Role of spermine in mammalian sperm capacitation and acrosome reaction. Biochem. J. 1991, 278, 25–28. [Google Scholar] [CrossRef]
- Chai, N.; Zhang, H.; Li, L.; Lin, Y.; Wang, L.; Yan, J.; Nikolaevna, S.E.; Zhao, Y. Spermidine prevents heart injury in neonatal rats exposed to intrauterine hypoxia by inhibiting oxidative stress and mitochondrial fragmentation. Oxid. Med. Cell Longev. 2019, 2019, 5406468. [Google Scholar]
- Dean, M.; Deutsch, S.; Iseli, C.; Bucher, P.; Antonarakis, S.E.; Scott, H.S. The Human ATP-Binding Cassette (ABC) Transporter Superfamily. Genome Res. 2001, 11, 1156–1166. [Google Scholar] [CrossRef]
- Fraser, L.R. Mouse sperm capacitation in vitro involves loss of a surface-associated inhibitory component. Reprod. Fertil. 1984, 72, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Oikawa, T.; Itahashi, T.; Yajima, R.; Numabe, T. Glutathione treatment of Japanese Black bull sperm prior to intracytoplasmic sperm injection promotes embryo development. J. Reprod. Dev. 2018, 64, 303–309. [Google Scholar] [CrossRef] [Green Version]
Compounds | Class | Average Content (CPS) |
---|---|---|
L-phenylalanine | Amino acid metabolomics | 374,765,000.00 |
DL-leucine | Amino acid metabolomics | 316,850,000.00 |
L-leucine | Amino acid metabolomics | 312,960,000.00 |
LysoPC | Lipids others phospholipid | 305,792,833.33 |
L-tryptophan | Amino acid metabolomics | 165,811,666.67 |
Adenine | Nucleotide metabolomics | 161,918,333.33 |
Hypoxanthine | Nucleotide metabolomics | 144,711,666.67 |
7-methylguanine | Nucleotide metabolomics | 132,558,333.33 |
Shikimic acid | Organic acid and its derivatives | 130,220,000.00 |
L-tyrosine | Amino acid metabolomics | 122,846,666.67 |
Choline chloride | Others | 116,896,666.67 |
L-valine | Amino acid metabolomics | 111,735,000.00 |
2-nonanone | Ketones | 101,428,333.33 |
Cis-3-hexenylacetate | Fatty acyls | 97,867,000.00 |
Nicotinamide | Co others enzyme factor and vitamin | 72,400,500.00 |
Methylcysteine | Amino acid metabolomics | 70,355,333.33 |
Acetyl-L-carnitine | Camitine | 70,314,000.00 |
L-glutamic acid | Amino acid metabolomics | 69,354,000.00 |
Oleamide | Lipids fatty acids | 68,706,833.33 |
Group Name | Total Sig Metabolites | Down-Regulated | Up-Regulated |
---|---|---|---|
Q vs. Z | 134 | 131 | 3 |
Z vs. H | 1 | 1 | 0 |
Q vs. H | 94 | 92 | 2 |
Metabolites | Class | VIP Value | FC (H/Q) | Type |
---|---|---|---|---|
S-sulfo-L-cysteine | Amino acids | 1.25 | 2.56 | up |
L-asparagine anhydrous | Amino acids | 1.17 | 2.47 | up |
Qinic acid | Organic acid | 1.29 | 2.29 × 105 | down |
Aspirin | Organic acid | 1.28 | 0.21 | down |
7,8-dihydro-L-biopterin | Pteridines | 1.27 | 0.25 | down |
Citric acid | Amino acid metabolomics | 1.25 | 0.26 | down |
Glycylphenylalanine | Amino acid metabolomics | 1.26 | 0.27 | down |
Dihydrotachysterol | Hormones | 1.27 | 0.27 | down |
Taurochenodesoxycholic acid | Bile acids | 1.22 | 0.29 | down |
1-methyluric acid | Organic acid | 1.28 | 0.31 | down |
Dl-glyceraldehyde-3-phosphate | Organic acid | 1.23 | 0.31 | down |
N-acetyl-L-glutamic acid | Amino acid metabolomics | 1.27 | 0.32 | down |
Isoquinoline | Benzene and substituted derivatives | 1.28 | 0.33 | down |
Indoxyl sulfuric acid | Organic acid | 1.28 | 0.35 | down |
Flavin adenine dinucleotide | Nucleotide metabolomics | 1.17 | 0.37 | down |
Furfural | Organic acid | 1.28 | 0.37 | down |
Spermidine | Polyamine | 1.26 | 0.38 | down |
3,3′,5-triiodo-L-thyronine | Hormones | 1.22 | 0.38 | down |
Nicotinic acid | Co others enzyme Factor | 1.20 | 0.38 | down |
Inosine diphosphate (IDP) | Nucleotide metabolomics | 1.22 | 0.39 | down |
Palmitoylcarnitine | Camitine | 1.25 | 0.39 | down |
Hydroquinone | Phenols | 1.19 | 0.39 | down |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Liu, Y.; Zhou, L.; Xu, S.; Ye, C.; Tian, H.; Li, Z.; Hu, G. Metabonomic Insights into the Sperm Activation Mechanisms in Ricefield Eel (Monopterus albus). Genes 2020, 11, 1259. https://doi.org/10.3390/genes11111259
Zhang H, Liu Y, Zhou L, Xu S, Ye C, Tian H, Li Z, Hu G. Metabonomic Insights into the Sperm Activation Mechanisms in Ricefield Eel (Monopterus albus). Genes. 2020; 11(11):1259. https://doi.org/10.3390/genes11111259
Chicago/Turabian StyleZhang, Huiying, Yang Liu, Lingling Zhou, Shaohua Xu, Cheng Ye, Haifeng Tian, Zhong Li, and Guangfu Hu. 2020. "Metabonomic Insights into the Sperm Activation Mechanisms in Ricefield Eel (Monopterus albus)" Genes 11, no. 11: 1259. https://doi.org/10.3390/genes11111259
APA StyleZhang, H., Liu, Y., Zhou, L., Xu, S., Ye, C., Tian, H., Li, Z., & Hu, G. (2020). Metabonomic Insights into the Sperm Activation Mechanisms in Ricefield Eel (Monopterus albus). Genes, 11(11), 1259. https://doi.org/10.3390/genes11111259