The Synthesis and Spectroscopic Characterization of Structural Changes in Hydrophobic Silica Aerogels upon Encapsulation of the LCC ICCG Enzyme
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dorcheh, A.S.; Abbasi, M.H. Silica Aerogel; Synthesis, Properties and Characterization. J. Mater. Process. Technol. 2008, 199, 10–26. [Google Scholar] [CrossRef]
- El Rassy, H.; Maury, S.; Buisson, P.; Pierre, A.C. Hydrophobic Silica Aerogel–Lipase Biocatalysts: Possible Interactions between the Enzyme and the Gel. J. Non. Cryst. Solids 2004, 350, 23–30. [Google Scholar] [CrossRef]
- Ficanha, A.M.M.; Antunes, A.; Oro, C.E.D.; Dallago, R.M.; Mignoni, M.L. Immobilization of Candida Antarctica B (Calb) in Silica Aerogel: Morphological Characteristics and Stability. Biointerface Res. Appl. Chem. 2020, 10, 6744–6756. [Google Scholar] [CrossRef]
- Ganonyan, N.; Bar, G.; Gvishi, R.; Avnir, D. Gradual Hydrophobization of Silica Aerogel for Controlled Drug Release. RSC Adv. 2021, 11, 7824–7838. [Google Scholar] [CrossRef]
- Coteţ, L.C.; Mǎicǎneanu, A.; Forţ, C.I.; Danciu, V. Alpha-Cypermethrin Pesticide Adsorption on Carbon Aerogel and Xerogel. J. Sep. Sci. 2013, 48, 2649–2658. [Google Scholar] [CrossRef]
- Aghgonbad, F.; Mahdi, S. Immobilization of Pectinase Enzyme on Hydrophilic Silica Aerogel and Its Magnetic Nanocomposite. J. Chem. Chem. Eng. 2022, 41, 3282–3292. [Google Scholar] [CrossRef]
- Yashim, M.M.; Sainorudin, M.H.; Mohammad, M.; Fudholi, A.; Asim, N.; Razali, H.; Sopian, K. Recent Advances on Lightweight Aerogel as a Porous Receiver Layer for Solar Thermal Technology Application. Sol. Energy Mater. Sol. Cells 2021, 228, 111131. [Google Scholar] [CrossRef]
- Qin, G.; Yao, Y.; Wei, W.; Zhang, T. Preparation of Hydrophobic Granular Silica Aerogels and Adsorption of Phenol from Water. Appl. Surf. Sci. 2013, 280, 806–811. [Google Scholar] [CrossRef]
- Wang, D.; McLaughlin, E.; Pfeffer, R.; Lin, Y.S. Adsorption of Oils from Pure Liquid and Oil-Water Emulsion on Hydrophobic Silica Aerogels. Sep. Purif. Technol. 2012, 99, 28–35. [Google Scholar] [CrossRef]
- Rossi, B.; Campia, P.; Merlini, L.; Brasca, M.; Pastori, N.; Farris, S.; Melone, L.; Punta, C.; Galante, Y.M. An Aerogel Obtained from Chemo-Enzymatically Oxidized Fenugreek Galactomannans as a Versatile Delivery System. Carbohydr. Polym. 2016, 144, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Aegerter, M.A.; Leventis, N.; Koebel, M.; Steiner, S.A., III. Springer Handbook of Aerogels; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Buisson, P.; Hernandez, C.; Pierre, M.; Pierre, A.C. Encapsulation of Lipases in Aerogels. J. Non. Cryst. Solids 2001, 285, 295–302. [Google Scholar] [CrossRef]
- Soares, C.M.F.; dos Santos, O.A.; de Castro, H.F.; de Moraes, F.F.; Zanin, G.M. Characterization of Sol-Gel Encapsulated Lipase Using Tetraethoxysilane as Precursor. J. Mol. Catal. B Enzym. 2006, 39, 69–76. [Google Scholar] [CrossRef]
- Maury, S.; Buisson, P.; Perrard, A.; Pierre, A.C. Compared Esterification Kinetics of the Lipase from Burkholderia Cepacia Either Free or Encapsulated in a Silica Aerogel. J. Mol. Catal. B Enzym. 2005, 32, 193–203. [Google Scholar] [CrossRef]
- Kawachi, Y.; Kugimiya, S.I.; Nakamura, H.; Kato, K. Enzyme Encapsulation in Silica Gel Prepared by Polylysine and Its Catalytic Activity. Appl. Surf. Sci. 2014, 314, 64–70. [Google Scholar] [CrossRef]
- Mohidem, N.A.; Bin Mat, H. Catalytic Activity and Stability of Laccase Entrapped in Sol-Gel Silica with Additives. J. Sol-Gel Sci. Technol. 2012, 61, 96–103. [Google Scholar] [CrossRef]
- Kato, K.; Kawachi, Y.; Nakamura, H. Silica-Enzyme-Ionic Liquid Composites for Improved Enzymatic Activity. J. Asian Ceram. Soc. 2014, 2, 33–40. [Google Scholar] [CrossRef]
- Abaházi, E.; Boros, Z.; Poppe, L. Additives Enhancing the Catalytic Properties of Lipase from Burkholderia Cepacia Immobilized on Mixed-Function-Grafted Mesoporous Silica Gel. Molecules 2014, 19, 9818–9837. [Google Scholar] [CrossRef] [PubMed]
- Ellerby, L.M.; Nishida, C.R.; Nishida, F.; Yamanaka, S.A.; Dunn, B.; Valentine, J.S.; Zink, J.I. Encapsulation of Proteins in Transparent Porous Silicate Glasses Prepared by the Sol-Gel Method. Science 1992, 255, 1113–1115. [Google Scholar] [CrossRef]
- Ganonyan, N.; Benmelech, N.; Bar, G.; Gvishi, R.; Avnir, D. Entrapment of Enzymes in Silica Aerogels. Mater. Today 2020, 33, 24–35. [Google Scholar] [CrossRef]
- Avnir, D.; Braun, S.; Lev, O.; Ottolenghi, M. Enzymes and Other Proteins Entrapped in Sol-Gel Materials. Chem. Mat. 1994, 6, 1605–1614. [Google Scholar] [CrossRef]
- Imam, H.T.; Marr, P.C.; Marr, A.C. Enzyme Entrapment, Biocatalyst Immobilization without Covalent Attachment. Green Chem. 2021, 23, 4980–5005. [Google Scholar] [CrossRef]
- Pierre, A.; Buisson, P. Influence of the Porous Texture of Silica Gels on the Enzymatic Activity of Lipases in Esterification Reactions. J. Mol. Catal. B Enzym. 2001, 11, 639–647. [Google Scholar] [CrossRef]
- Barbosa, O.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Glutaraldehyde in Biocatalysts: A Useful Crosslinker and a Versatile Tool in Enzyme Immobilization. RSC Adv. 2014, 4, 1583–1600. [Google Scholar] [CrossRef]
- Sheldon, R.A.; van Pelt, S. Enzyme Immobilisation in Biocatalysis: Why, What and How. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef]
- Barboza-Carmona, J.D.; Wenzel, M.; Eckert, L.; Enke, D.; Matysik, J.; Céspedes-Camacho, I.F. A Spectroscopic Insight of the Porous Structure of Hydrophobic Silica Aerogels by Hyperpolarized 129Xe NMR. J. Sol-Gel. Sci. Technol. 2022, 101, 176–184. [Google Scholar] [CrossRef]
- Tournier, V.; Topham, C.M.; Gilles, A. An Engineered PET Depolymerase to Break Down and Recycle Plastic Bottles. Nature 2020, 580, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Marten, E.; Müller, R.-J.; Deckwer, W.-D. Studies on the Enzymatic Hydrolysis of Polyesters. II. Aliphatic–Aromatic Copolyesters. Polym. Degrad. Stab. 2005, 88, 371–381. [Google Scholar] [CrossRef]
- Kawai, F.; Kawabata, T.; Oda, M. Current Knowledge on Enzymatic PET Degradation and Its Possible Application to Waste Stream Management and Other Fields. Appl. Microbiol. Biotechnol. 2019, 103, 4253–4268. [Google Scholar] [CrossRef] [PubMed]
- Austin, H.P.; Allen, M.D.; Donohoe, B.S.; Rorrer, N.A.; Kearns, F.L.; Silveira, R.L.; Pollard, B.C.; Dominick, G.; Duman, R.; El Omari, K.; et al. Characterization and Engineering of a Plastic-Degrading Aromatic Polyesterase. Proc. Natl. Acad. Sci. USA 2018, 115, E4350–E4357. [Google Scholar] [CrossRef] [PubMed]
- Kirstein, I.V.; Gomiero, A.; Vollertsen, J. Microplastic Pollution in Drinking Water. Curr. Opin. Toxicol. 2021, 28, 70–75. [Google Scholar] [CrossRef]
- Astorga, A.; Montero-Cordero, A.; Golfin-Duarte, G.; García-Rojas, A.; Vega-Bolaños, H.; Arias-Zumbado, F.; Solís-Adolio, D.; Ulate, K. Microplastics found in the World Heritage Site Cocos Island National Park, Costa Rica. Mar. Fish. Sci. 2022, 35, 403–420. [Google Scholar] [CrossRef]
- Ivar do Sul, J.A.; Costa, M.F. The Present and Future of Microplastic Pollution in the Marine Environment. Environ. Pollut. 2014, 185, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Guzmán, L.; Alpízar-Villalobos, C.; Gatgens-García, J.; Jiménez-Huezo, G.; Rodríguez-Arias, M.; Molina, H.; Villalobos, J.; Paniagua, S.A.; Vega-Baudrit, J.R.; Rojas-Jimenez, K. Microplastic Ingestion by a Herring Opisthonema sp. in the Pacific Coast of Costa Rica. Reg. Stud. Mar. Sci. 2020, 38, 101367. [Google Scholar] [CrossRef]
- Kutralam-Muniasamy, G.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Shruti, V.C. Review of Current Trends, Advances and Analytical Challenges for Microplastics Contamination in Latin America. Environ. Pollut. 2020, 267, 115463. [Google Scholar] [CrossRef] [PubMed]
- La Vars, S.M.; Johnston, M.R.; Hayles, J.; Gascooke, J.R.; Brown, M.H.; Leterme, S.C.; Ellis, A.V. 29Si{1H} CP-MAS NMR Comparison and ATR-FTIR Spectroscopic Analysis of the Diatoms Chaetoceros Muelleri and Thalassiosira Pseudonana Grown at Different Salinities. Anal. Bioanal. Chem. 2013, 405, 3359–3365. [Google Scholar] [CrossRef]
- Maciel, G.E. Silica Surfaces: Characterization. eMagRes 2007, 2007. [Google Scholar] [CrossRef]
- Al-Oweini, R.; El-Rassy, H. Synthesis and Characterization by FTIR Spectroscopy of Silica Aerogels Prepared Using Several Si(OR)4 and R′′Si(OR′)3 Precursors. J. Mol. Struct. 2009, 919, 140–145. [Google Scholar] [CrossRef]
- Nah, H.-Y.; Kim, Y.; Kim, T.; Lee, K.-Y.; Parale, V.G.; Lim, C.-H.; Seo, J.-Y.; Park, H.-H. Comparisonal Studies of Surface Modification Reaction Using Various Silylating Agents for Silica Aerogel. J. Sol-Gel. Sci. Technol. 2020, 96, 346–359. [Google Scholar] [CrossRef]
- Mazaheri, O.; Lin, Z.; Xu, W.; Mohankumar, M.; Wang, T.; Zavabeti, A.; Caruso, F. Assembly of Silicate–Phenolic Network Coatings with Tunable Properties for Controlled Release of Small Molecules. Adv. Mater. 2024, 36, 2413349. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.Z.; Liu, G.; Song, D.S.; Liu, J.H.; Zhou, Y.L.; Ou, J.M.; Sun, S.Z. Fourier Transform Infrared Spectroscopic Study of Truffles. Guang Pu Xue Yu Guang Pu Fen Xi/Spectrosc. Spectr. Anal. 2006, 26, 1445–1448. [Google Scholar] [CrossRef]
- Jung, H.N.R.; Lee, Y.K.; Parale, V.G.; Cho, H.H.; Mahadik, D.B.; Park, H.H. Hydrophobic Silica Composite Aerogels Using Poly(Methyl Methacrylate) by Rapid Supercritical Extraction Process. J. Sol-Gel Sci. Technol. 2017, 83, 692–697. [Google Scholar] [CrossRef]
- Arrondo JL, R.; Muga, A.; Castresana, J.; Goñi, F.M. Quantitative studies of the structure of proteins in solution by Fourier-transform Infrared Spectroscopy. Prog. Biophys. Mol. Biol. 1993, 59, 23–56. [Google Scholar] [CrossRef]
- Zhu, J.; Ren, W.; Guo, F.; Wang, H.; Yu, Y. Structural Elucidation of Lignin, Hemicelluloses and LCC from Both Bamboo Fibers and Parenchyma Cells. Int. J. Biol. Macromol. 2024, 274, 133341. [Google Scholar] [CrossRef] [PubMed]
- Yokogawa, H.; Yokoyama, M. Hydrophobic Silica Aerogels. J. Non-Cryst. Solids 1995, 186, 23–29. [Google Scholar] [CrossRef]
- Marzouk, S.; Rachdi, F.; Fourati, M.; Bouaziz, J. Synthesis and Grafting of Silica Aerogels. Colloids Surf. A. Physicochem. Eng. Asp. 2004, 234, 109–116. [Google Scholar] [CrossRef]
- Rao, A.V.; Haranath, D. Effect of Methyltrimethoxysilane as a Synthesis Component on the Hydrophobicity and Some Physical Properties of Silica Aerogels. Prog. Biophys. Mol. Biol. 1999, 30, 267–273.45. [Google Scholar]
- Sarawade, P.B.; Kim, J.K.; Hilonga, A.; Kim, H.T. Production of Low-Density Sodium Silicate-Based Hydrophobic Silica Aerogel Beads by a Novel Fast Gelation Process and Ambient Pressure Drying Process. Solid State Sci. 2010, 12, 911–918. [Google Scholar] [CrossRef]
- Ma, Z.; Dunn, B.C.; Turpin, G.C.; Eyring, E.M.; Ernst, R.D.; Pugmire, R.J. Solid State NMR Investigation of Silica Aerogel Supported Fischer-Tropsch Catalysts. Fuel Process. Technol. 2007, 88, 29–33. [Google Scholar] [CrossRef]
- Glaser, R.H.; Wilkes, G.L.; Bronnimann, C.E. Solid-State 29Si NMR of TEOS-Based Multifunctional Sol-Gel Materials. J. Non. Cryst. Solids 1989, 113, 73–87. [Google Scholar] [CrossRef]
- Fauré, N.E.; Halling, P.J.; Wimperis, S. A Solid-State NMR Study of the Immobilization of α-Chymotrypsin on Mesoporous Silica. J. Phys. Chem. C 2014, 118, 1042–1048. [Google Scholar] [CrossRef]
- Pawsey, S.; Kalebaila, K.K.; Moudrakovski, I.; Ripmeester, J.A.; Brock, S.L. Pore Structure and Interconnectivity of CdS Aerogels and Xerogels by Hyperpolarized Xenon NMR. J. Phys. Chem. C 2010, 114, 13187–13195. [Google Scholar] [CrossRef]
- Zhou, B.; Komulainen, S.; Vaara, J.; Telkki, V.V. Characterization of Pore Structures of Hydrated Cements and Natural Shales by 129Xe NMR Spectroscopy. Microporous Mesoporous Mater. 2017, 253, 49–54. [Google Scholar] [CrossRef]
- Wenzel, M.; Eckert, L.; Müller, K.; Solonenko, D.; Wiebeler, C.; Zahn, D.R.T.; Enke, D.; Matysik, J. Spectroscopic Insight into Post-Synthetic Surface Modification of Porous Glass Beads as a Silica Model System. Phys. Chem. Chem. Phys. 2022, 24, 14488–14497. [Google Scholar] [CrossRef]
- Telkki, V.V.; Lounila, J.; Jokisaari, J. Determination of Pore Sizes and Volumes of Porous Materials by 129Xe NMR of Xenon Gas Dissolved in a Medium. J. Phys. Chem. B 2005, 109, 24343–24351. [Google Scholar] [CrossRef]
- Demarquay, J.; Fraissard, J. 129Xe NMR of xenon adsorbed on zeolites: Relationship between the chemical shift and the void space. Chem. Phys. Lett. 1987, 136, 314–318. [Google Scholar] [CrossRef]
- Geiger, Y.; Gottlieb, H.E.; Akbey, Ü.; Oschkinat, H.; Goobes, G. Studying the Conformation of a Silaffin-Derived Pentalysine Peptide Embedded in Bioinspired Silica Using Solution and Dynamic Nuclear Polarization Magic-Angle Spinning NMR. J. Am. Chem. Soc. 2016, 138, 5561–5567. [Google Scholar] [CrossRef] [PubMed]
- Weiland, E.; Springuel-Huet, M.-A.; Nossov, A.; Gedeon, A. 129Xe NMR: Review of Recent Insights into Porous Materials. Microporous Mesoporous Mater. 2016, 225, 41–65. [Google Scholar] [CrossRef]
- Smitha, S.; Shajesh, P.; Aravind, P.R.; Kumar, S.R.; Pillai, P.K.; Warrier, K.G.K. Effect of Aging Time and Concentration of Aging Solution on the Porosity Characteristics of Subcritically Dried Silica Aerogels. Microporous Mesoporous Mater. 2006, 91, 286–292. [Google Scholar] [CrossRef]
- Gao, X.; Esteves, R.; Nahar, L.; Nowaczyk, J.; Arachchige, I. Direct Cross-Linking of Au/Ag Alloy Nanoparticles into Monolithic Aerogels for Application in Surface Enhanced Raman Scattering. ACS Appl. Mater. Interfaces 2016, 8, 13076–13085. [Google Scholar] [CrossRef] [PubMed]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Sing, K. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 6013–6619. [Google Scholar] [CrossRef]
- Puente-Urbina, A.; Hollenbach, J.; Céspedes-Camacho, I.F.; Matysik, J.; Valle-Bourrouet, G. Effect of Pretreatment Temperature on the Surface Modification of Diatomite with Trimethylchlorosilane. J. Porous Mat. 2016, 23, 1439–1449. [Google Scholar] [CrossRef]
Sample | BET Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Average Contact Angle (°) |
---|---|---|---|
A024 | 338 | 1.061 ± 0.007 | 128.56 |
A0E24 | 330 | 0.996 ± 0.005 | 148.37 |
Sample | Functionalization Agent | Aging Time (h) | Enzyme Solution (mL) |
---|---|---|---|
A024 | TMES 1:1 | 24 | 0 |
A0E24 | TMES 1:1 | 24 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alpízar-Rojas, T.; Barboza-Carmona, J.D.; Butenschön, E.; Musabirova, G.; Castellón, E.; Matysik, J.; Céspedes-Camacho, I.F. The Synthesis and Spectroscopic Characterization of Structural Changes in Hydrophobic Silica Aerogels upon Encapsulation of the LCC ICCG Enzyme. Gels 2025, 11, 92. https://doi.org/10.3390/gels11020092
Alpízar-Rojas T, Barboza-Carmona JD, Butenschön E, Musabirova G, Castellón E, Matysik J, Céspedes-Camacho IF. The Synthesis and Spectroscopic Characterization of Structural Changes in Hydrophobic Silica Aerogels upon Encapsulation of the LCC ICCG Enzyme. Gels. 2025; 11(2):92. https://doi.org/10.3390/gels11020092
Chicago/Turabian StyleAlpízar-Rojas, Tatiana, Juan Diego Barboza-Carmona, Erik Butenschön, Guzel Musabirova, Erick Castellón, Jörg Matysik, and Isaac F. Céspedes-Camacho. 2025. "The Synthesis and Spectroscopic Characterization of Structural Changes in Hydrophobic Silica Aerogels upon Encapsulation of the LCC ICCG Enzyme" Gels 11, no. 2: 92. https://doi.org/10.3390/gels11020092
APA StyleAlpízar-Rojas, T., Barboza-Carmona, J. D., Butenschön, E., Musabirova, G., Castellón, E., Matysik, J., & Céspedes-Camacho, I. F. (2025). The Synthesis and Spectroscopic Characterization of Structural Changes in Hydrophobic Silica Aerogels upon Encapsulation of the LCC ICCG Enzyme. Gels, 11(2), 92. https://doi.org/10.3390/gels11020092