Multimodality Assessment for Durable Mechanical Circulatory Support Implantation
Abstract
1. Introduction
2. Durable Mechanical Circulatory Support
- Inflow cannula: Connects the apex of left ventricle (LV) to the pump.
- Outflow graft: Directs the blood to the ascending aorta.
- Pump itself and its parameters as pump speed (PS), pump power (PP), and pulsatility index (PI): PS represents the pump’s revolutions per minutes, adjustable in order to reduce or increase the device flow (pump flow, PF). PP is the energy applied by the motor in order to achieve a certain value of PS and PF. PI represents the flow fluctuations through the time.
- External controller: Allows real-time monitoring of DMCS functionality through key parameters.
- Driveline (DL): Links the controller to the batteries.
3. Cardiac Assessment
4. Systemic Assessment
5. Complications Related to DMCS Implantation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726, Erratum in Eur. Heart J. 2021, 42, 4901. https://doi.org/10.1093/eurheartj/ehab670. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Leiro, M.G.; Metra, M.; Lund, L.H.; Milicic, D.; Costanzo, M.R.; Filippatos, G.; Gustafsson, F.; Tsui, S.; Barge-Caballero, E.; De Jonge, N.; et al. Advanced heart failure: A position statement of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 1505–1535. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.R.; Goldstein, D.J.; Uriel, N.; Cleveland, J.C., Jr.; Yuzefpolskaya, M.; Salerno, C.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Ewald, G.A.; et al. MOMENTUM 3 Investigators. Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in Heart Failure. N. Engl. J. Med. 2018, 378, 1386–1395. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, F.; Ben Avraham, B.; Chioncel, O.; Hasin, T.; Grupper, A.; Shaul, A.; Nalbantgil, S.; Hammer, Y.; Mullens, W.; Tops, L.F.; et al. HFA of the ESC position paper on the management of LVAD-supported patients for the non-LVAD specialist healthcare provider Part 3: At the hospital and discharge. ESC Heart Fail. 2021, 8, 4425–4443, Erratum in ESC Heart Fail. 2022, 9, 2061. https://doi.org/10.1002/ehf2.13889. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Geavlete, O.; Antohi, L.; Ben-Avraham, B.; Ben Gal, T. Durable Therapies in Advanced Chronic Heart Failure; Council for Cardiology Practice: Sophia Antipolis, France, 2023. [Google Scholar]
- Cameli, M.; Aboumarie, H.S.; Pastore, M.C.; Caliskan, K.; Cikes, M.; Garbi, M.; Lim, H.S.; Muraru, D.; Mandoli, G.E.; Pergola, V.; et al. Multimodality imaging for the evaluation and management of patients with long-term (durable) left ventricular assist devices. Eur. Heart J. Cardiovasc. Imaging 2024, 25, e217–e240. [Google Scholar] [CrossRef] [PubMed]
- Jones, N.; Burns, A.T.; Prior, D.L. Echocardiographic Assessment of the Right Ventricle-State of the Art. Heart Lung Circ. 2019, 28, 1339–1350. [Google Scholar] [CrossRef] [PubMed]
- Leibundgut, G.; Rohner, A.; Grize, L.; Bernheim, A.; Kessel-Schaefer, A.; Bremerich, J.; Zellweger, M.; Buser, P.; Handke, M. Dynamic assessment of right ventricular volumes and function by real-time three-dimensional echocardiography: A comparison study with magnetic resonance imaging in 100 adult patients. J. Am. Soc. Echocardiogr. 2010, 23, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, C.; Chan, J.; Bricknell, K.; Strudwick, M.; Marwick, T.H. Reproducibility of right ventricular volumes and ejection fraction using real-time three-dimensional echocardiography: Comparison with cardiac MRI. Chest 2007, 131, 1844–1851. [Google Scholar] [CrossRef] [PubMed]
- Molina, E.J.; Ahmed, S.; Jain, A.; Lam, P.H.; Rao, S.; Hockstein, M.; Kadakkal, A.; Hofmeyer, M.; Rodrigo, M.E.; Najjar, S.S.; et al. Outcomes in patients with smaller body surface area after HeartMate 3 left ventricular assist device implantation. Artif. Organs 2022, 46, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Grinstein, J.; Belkin, M.N.; Kalantari, S.; Bourque, K.; Salerno, C.; Pinney, S. Adverse Hemodynamic Consequences of Continuous Left Ventricular Mechanical Support: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023, 82, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Nass, N.; McConnell, M.V.; Goldhaber, S.Z.; Chyu, S.; Solomon, S.D. Recovery of regional right ventricular function after thrombolysis for pulmonary embolism. Am. J. Cardiol. 1999, 83, 804–806. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Z.; Low, S.W.; Pasha, A.K.; Howe, C.L.; Lee, K.S.; Suryanarayana, P.G. Comparison of tricuspid annular plane systolic excursion with fractional area change for the evaluation of right ventricular systolic function: A meta-analysis. Open Heart 2018, 5, e000667. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rossetto, L.; Di Lisi, D.; Madaudo, C.; Sinagra, F.P.; Di Palermo, A.; Triolo, O.F.; Gambino, G.; Ortello, A.; Galassi, A.R.; Novo, G. Right ventricle involvement in patients with breast cancer treated with chemotherapy. Cardiooncology 2024, 10, 24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gumus, F.; Sarıcaoglu, C.; Inan, M.B.; Akar, A.R. Right Ventricular Strain to Assess Early Right Heart Failure in the Left Ventricular Assist Device Candidate. Curr. Heart Fail. Rep. 2019, 16, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Bellavia, D.; Iacovoni, A.; Scardulla, C.; Moja, L.; Pilato, M.; Kushwaha, S.S.; Senni, M.; Clemenza, F.; Agnese, V.; Falletta, C.; et al. Prediction of right ventricular failure after ventricular assist device implant: Systematic review and meta-analysis of observational studies. Eur. J. Heart Fail. 2017, 19, 926–946. [Google Scholar] [CrossRef] [PubMed]
- Cameli, M.; Lisi, M.; Righini, F.M.; Tsioulpas, C.; Bernazzali, S.; Maccherini, M.; Sani, G.; Ballo, P.; Galderisi, M.; Mondillo, S. Right ventricular longitudinal strain correlates well with right ventricular stroke work index in patients with advanced heart failure referred for heart transplantation. J. Card. Fail. 2012, 18, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Truby, L.K.; Garan, A.R.; Givens, R.C.; Wayda, B.; Takeda, K.; Yuzefpolskaya, M.; Colombo, P.C.; Naka, Y.; Takayama, H.; Topkara, V.K. Aortic Insufficiency During Contemporary Left Ventricular Assist Device Support: Analysis of the INTERMACS Registry. JACC Heart Fail. 2018, 6, 951–960. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saeed, D.; Feldman, D.; Banayosy, A.E.; Birks, E.; Blume, E.; Cowger, J.; Hayward, C.; Jorde, U.; Kremer, J.; MacGowan, G.; et al. The 2023 International Society for Heart and Lung Transplantation Guidelines for Mechanical Circulatory Support: A 10-Year Update. J. Heart Lung Transpl. 2023, 42, e1–e222. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, K.; Homma, S.; Han, J.; Takayama, H.; Colombo, P.C.; Yuzefpolskaya, M.; Garan, A.R.; Farr, M.A.; Kurlansky, P.; Di Tullio, M.R.; et al. Prevalence, Predictors, and Prognostic Value of Residual Tricuspid Regurgitation in Patients with Left Ventricular Assist Device. J. Am. Heart Assoc. 2018, 7, e008813. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parlati, A.L.M.; Nardi, E.; Marzano, F.; Madaudo, C.; Di Santo, M.; Cotticelli, C.; Agizza, S.; Abbellito, G.M.; Perrone Filardi, F.; Del Giudice, M.; et al. Advancing Cardiovascular Diagnostics: The Expanding Role of CMR in Heart Failure and Cardiomyopathies. J. Clin. Med. 2025, 14, 865. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Joshi, S.B.; Connelly, K.A.; Jimenez-Juan, L.; Hansen, M.; Kirpalani, A.; Dorian, P.; Mangat, I.; Al-Hesayen, A.; Crean, A.M.; Wright, G.A.; et al. Potential clinical impact of cardiovascular magnetic resonance assessment of ejection fraction on eligibility for cardioverter defibrillator implantation. J. Cardiovasc. Magn. Reson. 2012, 14, 69. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, R.J.; Fieno, D.S.; Parrish, T.B.; Harris, K.; Chen, E.L.; Simonetti, O.; Bundy, J.; Finn, J.P.; Klocke, F.J.; Judd, R.M. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 1999, 100, 1992–2002. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.J.; Wu, E.; Rafael, A.; Chen, E.L.; Parker, M.A.; Simonetti, O.; Klocke, F.J.; Bonow, R.O.; Judd, R.M. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 2000, 343, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Lee, S.E.; Yang, Q.; Sadras, V.; Patel, S.; Yang, H.J.; Sharif, B.; Kali, A.; Cokic, I.; Xie, G.; et al. Multicenter Study on the Diagnostic Performance of Native-T1 Cardiac Magnetic Resonance of Chronic Myocardial Infarctions at 3T. Circ. Cardiovasc. Imaging 2020, 13, e009894, Erratum in Circ. Cardiovasc. Imaging 2021, 14, e000073. https://doi.org/10.1161/HCI.0000000000000073. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Messroghli, D.R.; Moon, J.C.; Ferreira, V.M.; Grosse-Wortmann, L.; He, T.; Kellman, P.; Mascherbauer, J.; Nezafat, R.; Salerno, M.; Schelbert, E.B.; et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J. Cardiovasc. Magn. Reson. 2017, 19, 75, Erratum in J. Cardiovasc. Magn. Reson. 2018, 20, 9. https://doi.org/10.1186/s12968-017-0408-9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dass, S.; Suttie, J.J.; Piechnik, S.K.; Ferreira, V.M.; Holloway, C.J.; Banerjee, R.; Mahmod, M.; Cochlin, L.; Karamitsos, T.D.; Robson, M.D.; et al. Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ. Cardiovasc. Imaging 2012, 5, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Sado, D.M.; Maestrini, V.; Piechnik, S.K.; Banypersad, S.M.; White, S.K.; Flett, A.S.; Robson, M.D.; Neubauer, S.; Ariti, C.; Arai, A.; et al. Noncontrast myocardial T1 mapping using cardiovascular magnetic resonance for iron overload. J. Magn. Reson. Imaging 2015, 41, 1505–1511. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.C.; Piehler, K.M.; Kang, I.A.; Kadakkal, A.; Kellman, P.; Schwartzman, D.S.; Mulukutla, S.R.; Simon, M.A.; Shroff, S.G.; Kuller, L.H.; et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur. Heart J. 2014, 35, 657–664. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Banypersad, S.M.; Fontana, M.; Maestrini, V.; Sado, D.M.; Captur, G.; Petrie, A.; Piechnik, S.K.; Whelan, C.J.; Herrey, A.S.; Gillmore, J.D.; et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur. Heart J. 2015, 36, 244–251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raman, S.V.; Tran, T.; Simonetti, O.P.; Sun, B. Dynamic computed tomography to determine cardiac output in patients with left ventricular assist devices. J. Thorac. Cardiovasc. Surg. 2009, 137, 1213–1217. [Google Scholar] [CrossRef] [PubMed]
- Arjomandi Rad, A.; Fleet, B.; Zubarevich, A.; Nanchahal, S.; Naruka, V.; Subbiah Ponniah, H.; Vardanyan, R.; Sardari Nia, P.; Loubani, M.; Moorjani, N.; et al. Left ventricular assist device implantation and concomitant mitral valve surgery: A systematic review and meta-analysis. Artif. Organs 2024, 48, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.A.; Tsiouris, A.; Nemeh, H.W.; Hodari, A.; Karam, J.; Brewer, R.J.; Paone, G. Impact of concomitant cardiac procedures performed during implantation of long-term left ventricular assist devices. J. Heart Lung Transpl. 2013, 32, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Gheorghiade, M.; Follath, F.; Ponikowski, P.; Barsuk, J.H.; Blair, J.E.; Cleland, J.G.; Dickstein, K.; Drazner, M.H.; Fonarow, G.C.; Jaarsma, T.; et al. European Society of Cardiology; European Society of Intensive Care Medicine. Assessing and grading congestion in acute heart failure: A scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur. J. Heart Fail. 2010, 12, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Mueller, H.S.; Chatterjee, K.; Davis, K.B.; Fifer, M.A.; Franklin, C.; Greenberg, M.A.; Labovitz, A.J.; Shah, P.K.; Tuman, K.J.; Weil, M.H.; et al. ACC expert consensus document. Present use of bedside right heart catheterization in patients with cardiac disease. J. Am. Coll. Cardiol. 1998, 32, 840–864. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, K. The Swan-Ganz catheters: Past, present, and future. A viewpoint. Circulation 2009, 119, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.S.; Gustafsson, F. Pulmonary artery pulsatility index: Physiological basis and clinical application. Eur. J. Heart Fail. 2020, 22, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Maeda, S.; Toda, K.; Shimamura, K.; Nakamoto, K.; Igeta, M.; Sakata, Y.; Sawa, Y.; Miyagawa, S. Preoperative higher right ventricular stroke work index increases the risk of de novo aortic insufficiency after continuous-flow left ventricular assist device implantation. J. Artif. Organs 2024, 27, 222–229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gumus, F.; Durdu, M.S.; Cakici, M.; Kurklu, T.S.T.; Inan, M.B.; Dincer, I.; Sirlak, M.; Akar, A.R. Right ventricular free wall longitudinal strain and stroke work index for predicting right heart failure after left ventricular assist device therapy. Interact. Cardiovasc. Thorac. Surg. 2019, 28, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Dorken Gallastegi, A.; Ergi, G.D.; Kahraman, Ü.; Yağmur, B.; Çinar, E.; Karapolat, H.; Nalbantgil, S.; Engin, Ç.; Yağdi, T.; Özbaran, M. Prognostic Value of Cardiopulmonary Exercise Test Parameters in Ventricular Assist Device Therapy. ASAIO J. 2022, 68, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Maharaj, V.; Agdamag, A.C.; Duval, S.; Edmiston, J.; Charpentier, V.; Fraser, M.; Hall, A.; Schultz, J.; John, R.; Shaffer, A.; et al. Hypotension on cardiopulmonary stress test predicts 90 day mortality after LVAD implantation in INTERMACS 3-6 patients. ESC Heart Fail. 2022, 9, 3496–3504. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stevens, L.A.; Coresh, J.; Greene, T.; Levey, A.S. Assessing kidney function--measured and estimated glomerular filtration rate. N. Engl. J. Med. 2006, 354, 2473–2483. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.A.; Schmid, C.H.; Greene, T.; Zhang, Y.L.; Beck, G.J.; Froissart, M.; Hamm, L.L.; Lewis, J.B.; Mauer, M.; Navis, G.J.; et al. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations for estimating GFR levels above 60 mL/min/1.73 m2. Am. J. Kidney Dis. 2010, 56, 486–495. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Metra, M.; Cotter, G.; Gheorghiade, M.; Dei Cas, L.; Voors, A.A. The role of the kidney in heart failure. Eur. Heart J. 2012, 33, 2135–2142. [Google Scholar] [CrossRef] [PubMed]
- Cauthen, C.A.; Lipinski, M.J.; Abbate, A.; Appleton, D.; Nusca, A.; Varma, A.; Goudreau, E.; Cowley, M.J.; Vetrovec, G.W. Relation of blood urea nitrogen to long-term mortality in patients with heart failure. Am. J. Cardiol. 2008, 101, 1643–1647. [Google Scholar] [CrossRef] [PubMed]
- Klein, L.; Massie, B.M.; Leimberger, J.D.; O’Connor, C.M.; Piña, I.L.; Adams, K.F., Jr.; Califf, R.M.; Gheorghiade, M.; OPTIME-CHF Investigators. Admission or changes in renal function during hospitalization for worsening heart failure predict postdischarge survival: Results from the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF). Circ. Heart Fail. 2008, 1, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Thakkar, H.; Edwards, R.G.; Wilkie, M.; White, T.; Grubb, A.O.; Price, C.P. Serum cystatin C measured by automated immunoassay: A more sensitive marker of changes in GFR than serum creatinine. Kidney Int. 1995, 47, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Ix, J.H.; Shlipak, M.G.; Chertow, G.M.; Whooley, M.A. Association of cystatin C with mortality, cardiovascular events, and incident heart failure among persons with coronary heart disease: Data from the Heart and Soul Study. Circulation 2007, 115, 173–179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Boer, I.H.; Katz, R.; Cao, J.J.; Fried, L.F.; Kestenbaum, B.; Mukamal, K.; Rifkin, D.E.; Sarnak, M.J.; Shlipak, M.G.; Siscovick, D.S.e.t.al. Cystatin C, albuminuria, and mortality among older adults with diabetes. Diabetes Care 2009, 32, 1833–1838. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jackson, C.E.; Solomon, S.D.; Gerstein, H.C.; Zetterstrand, S.; Olofsson, B.; Michelson, E.L.; Granger, C.B.; Swedberg, K.; Pfeffer, M.A.; Yusuf, S.; et al. Albuminuria in chronic heart failure: Prevalence and prognostic importance. Lancet 2009, 374, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.M.; Granger, C.B.; Johansson, P.A.; Kosolcharoen, P.; McMurray, J.J.; Michelson, E.L.; Murray, D.R.; Olofsson, B.; Pfeffer, M.A.; Solomon, S.D.; et al. CHARM Investigators. Efficacy and safety of angiotensin receptor blockade are not modified by aspirin in patients with chronic heart failure: A cohort study from the Candesartan in Heart failure-Assessment of Reduction in Mortality and morbidity (CHARM) programme. Eur. J. Heart Fail. 2010, 12, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Moghazi, S.; Jones, E.; Schroepple, J.; Arya, K.; McClellan, W.; Hennigar, R.A.; O’Neill, W.C. Correlation of renal histopathology with sonographic findings. Kidney Int. 2005, 67, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Hanamura, K.; Tojo, A.; Kinugasa, S.; Asaba, K.; Fujita, T. The resistive index is a marker of renal function, pathology, prognosis, and responsiveness to steroid therapy in chronic kidney disease patients. Int. J. Nephrol. 2012, 2012, 139565. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iida, N.; Seo, Y.; Sai, S.; Machino-Ohtsuka, T.; Yamamoto, M.; Ishizu, T.; Kawakami, Y.; Aonuma, K. Clinical Implications of Intrarenal Hemodynamic Evaluation by Doppler Ultrasonography in Heart Failure. JACC Heart Fail. 2016, 4, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Haufe, S.E.; Riedmüller, K.; Haberkorn, U. Nuclear medicine procedures for the diagnosis of acute and chronic renal failure. Nephron Clin. Pract. 2006, 103, c77–c84. [Google Scholar] [CrossRef] [PubMed]
- Simon-Zoula, S.C.; Hofmann, L.; Giger, A.; Vogt, B.; Vock, P.; Frey, F.J.; Boesch, C. Non-invasive monitoring of renal oxygenation using BOLD-MRI: A reproducibility study. NMR Biomed. 2006, 19, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Brinjikji, W.; Huston, J., 3rd; Rabinstein, A.A.; Kim, G.M.; Lerman, A.; Lanzino, G. Contemporary carotid imaging: From degree of stenosis to plaque vulnerability. J. Neurosurg. 2016, 124, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Castelli, G.; Desai, K.M.; Cantone, R.E. Peripheral Neuropathy: Evaluation and Differential Diagnosis. Am. Fam. Physician 2020, 102, 732–739. [Google Scholar] [PubMed]
- Fung, T.H.; Patel, B.; Wilmot, E.G.; Amoaku, W.M. Diabetic retinopathy for the non-ophthalmologist. Clin. Med. 2022, 22, 112–116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klein, A.L.; Abbara, S.; Agler, D.A.; Appleton, C.P.; Asher, C.R.; Hoit, B.; Hung, J.; Garcia, M.J.; Kronzon, I.; Oh, J.K.; et al. American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with pericardial disease: Endorsed by the Society for Cardiovascular Magnetic Resonance and Society of Cardiovascular Computed Tomography. J. Am. Soc. Echocardiogr. 2013, 26, 965–1012.e15. [Google Scholar] [CrossRef] [PubMed]
- Faehnrich, J.A.; Noone, R.B., Jr.; White, W.D.; Leone, B.J.; Hilton, A.K.; Sreeram, G.M.; Mark, J.B. Effects of positive-pressure ventilation, pericardial effusion, and cardiac tamponade on respiratory variation in transmitral flow velocities. J. Cardiothorac. Vasc. Anesth. 2003, 17, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.R.; Kiernan, M.S.; Choudhary, G.; Levine, D.J.; Sodha, N.R.; Ehsan, A.; Yousefzai, R. Right Ventricular Failure Post-Implantation of Left Ventricular Assist Device: Prevalence, Pathophysiology, and Predictors. ASAIO J. 2020, 66, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Cordtz, J.; Nilsson, J.C.; Hansen, P.B.; Sander, K.; Olesen, P.S.; Boesgaard, S.; Gustafsson, F. Right ventricular failure after implantation of a continuous-flow left ventricular assist device: Early haemodynamic predictors. Eur. J. Cardiothorac. Surg. 2014, 45, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Kang, G.; Ha, R.; Banerjee, D. Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J. Heart Lung Transpl. 2016, 35, 67–73, Erratum in J. Heart Lung Transpl. 2017, 36, 1272. https://doi.org/10.1016/j.healun.2017.09.001. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.W.; Jamil, A.; Mazurek, J.A.; Urgo, K.A.; Wald, J.; Birati, E.Y.; Han, Y. Right Ventricular Global Longitudinal Strain as a Predictor of Acute and Early Right Heart Failure Post Left Ventricular Assist Device Implantation. ASAIO J. 2022, 68, 333–339. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stricagnoli, M.; Sciaccaluga, C.; Mandoli, G.E.; Rizzo, L.; Sisti, N.; Aboumarie, H.S.; Benfari, G.; Maritan, L.; Tsioulpas, C.; Bernazzali, S.; et al. Clinical, echocardiographic and hemodynamic predictors of right heart failure after LVAD placement. Int. J. Cardiovasc. Imaging 2022, 38, 561–570. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Uriel, N.; Sayer, G.; Addetia, K.; Fedson, S.; Kim, G.H.; Rodgers, D.; Kruse, E.; Collins, K.; Adatya, S.; Sarswat, N.; et al. Hemodynamic Ramp Tests in Patients with Left Ventricular Assist Devices. JACC Heart Fail. 2016, 4, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Grinstein, J.; Kruse, E.; Sayer, G.; Fedson, S.; Kim, G.H.; Sarswat, N.; Adatya, S.; Ota, T.; Jeevanandam, V.; Mor-Avi, V.; et al. Novel echocardiographic parameters of aortic insufficiency in continuous-flow left ventricular assist devices and clinical outcome. J. Heart Lung Transpl. 2016, 35, 976–985. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bouabdallaoui, N.; El-Hamamsy, I.; Pham, M.; Giraldeau, G.; Parent, M.C.; Carrier, M.; Rouleau, J.L.; Ducharme, A. Aortic regurgitation in patients with a left ventricular assist device: A contemporary review. J. Heart Lung Transpl. 2018, 37, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Bashir, H.; Mendez-Hirata, G.; Schmidt, C.W.; Wong, A.; Muuse, J.; Egnaczyk, G.F.; Kereiakes, D.J.; Seshiah, P.; Guddeti, R.R.; El-Hangouche, N.; et al. Transcatheter Aortic Valve Replacement for Aortic Regurgitation in Patients with Left Ventricular Assist Devices: An Institutional Experience. J. Soc. Cardiovasc. Angiogr. Interv. 2025, 4, 103662. [Google Scholar] [CrossRef] [PubMed]


| Indications | Contraindications |
|---|---|
| LVEF < 25% and unable to exercise for HF or, if able to perform cardio-pulmonary exercise testing, doing so with peak VO2 < 12 mL/kg/min and/or <50% predicted value | Severe right ventricle dysfunction |
| ≥3 HF hospitalizations in previous 12 months without an obvious precipitating cause | Pulmonary vascular resistances > 6 WU |
| Dependence on IV inotropic therapy or temporary MCS | Contraindications to long term anticoagulation |
| Progressive end-organ dysfunction (worsening renal and/or hepatic function, type II pulmonary hypertension, or cardiac cachexia) due to reduced perfusion and not to inadequately low ventricular filling pressure (PCWP ≥ 20 mmHg and SBP ≤ 90 mmHg or cardiac index ≤ 2 L/min/m2 | Intractable ventricular arrhythmias |
| Active infection | |
| Severe systemic disorders | |
| Severe renal dysfunction | |
| Neuropsychiatric illness | |
| Severely insulin-dependent diabetes mellitus | |
| Liver cirrhosis | |
| Extreme frailty | |
| Poor social support | |
| Pregnancy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martini, L.; Pagliaro, A.; Righini, F.M.; Mapelli, M.; Madaudo, C.; Ghionzoli, N.; Sciaccaluga, C.; Bernazzali, S.; Maccherini, M.; Valente, S.; et al. Multimodality Assessment for Durable Mechanical Circulatory Support Implantation. Diagnostics 2025, 15, 2886. https://doi.org/10.3390/diagnostics15222886
Martini L, Pagliaro A, Righini FM, Mapelli M, Madaudo C, Ghionzoli N, Sciaccaluga C, Bernazzali S, Maccherini M, Valente S, et al. Multimodality Assessment for Durable Mechanical Circulatory Support Implantation. Diagnostics. 2025; 15(22):2886. https://doi.org/10.3390/diagnostics15222886
Chicago/Turabian StyleMartini, Luca, Antonio Pagliaro, Francesca Maria Righini, Massimo Mapelli, Cristina Madaudo, Nicolò Ghionzoli, Carlotta Sciaccaluga, Sonia Bernazzali, Massimo Maccherini, Serafina Valente, and et al. 2025. "Multimodality Assessment for Durable Mechanical Circulatory Support Implantation" Diagnostics 15, no. 22: 2886. https://doi.org/10.3390/diagnostics15222886
APA StyleMartini, L., Pagliaro, A., Righini, F. M., Mapelli, M., Madaudo, C., Ghionzoli, N., Sciaccaluga, C., Bernazzali, S., Maccherini, M., Valente, S., Mandoli, G. E., Parlati, A. L. M., & Cameli, M. (2025). Multimodality Assessment for Durable Mechanical Circulatory Support Implantation. Diagnostics, 15(22), 2886. https://doi.org/10.3390/diagnostics15222886

