EEG Correlates of Cognitive Functions in a Child with ASD and White Matter Signal Abnormalities: A Case Report with Two-and-a-Half-Year Follow-Up
Abstract
1. Introduction
2. Case Presentation
2.1. Case Report
2.2. Study Design
2.3. Data Collection
2.4. Statistical Analysis
2.5. Results
2.5.1. Sensory Profile
2.5.2. ASD Symptoms and Cognitive, Speech–Language, Sensorimotor, and Socio-Emotional Profiles
2.5.3. EEG Findings
- N Frequency range—normalized theta, alpha, or beta frequency range;
- Frequency range—theta, alpha, or beta frequency range;
- task—task 2 (listening to a story) or task 3 (watching and listening to a cartoon);
- el—one of the 19 EEG measuring points (Fp1 …Cz);
- Rest—resting state.
- RFrequency range—the relative contribution of the frequency range to the total signal (Rtheta, Ralpha, and Rbeta);
- MFrequency range—the mean normalized spectral power;
- task—task 2 (listening to a story) or task 3 (watching and listening to a cartoon).
2.5.4. Correlations
3. Discussion
3.1. Sensory Profile
3.2. ASD Symptoms and Cognitive, Speech–Language, Sensorimotor, and Socio-Emotional Profiles
3.3. EEG Findings
3.4. Correlations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASD | Autism spectrum disorder |
WMSAs | White matter signal abnormalities |
WM | White matter |
EEG | Electroencephalography |
FA | Fractional anisotropy |
ToM | Theory of mind |
MD | Mean diffusivity |
DTI | Diffusion tensor imaging |
ADHD | Attention-deficit hyperactivity disorder |
CR | Corona radiata |
DLD | Developmental language disorder |
fMRI | Functional magnetic resonance imaging |
CT | Computed tomography |
PET | Positron emission tomography |
EEG | Electroencephalography |
ADOS | Autism Diagnostic Observation Schedule |
IEPSP | Institute for Experimental Phonetics and Speech Pathology |
BERA | Brain stem evoked response audiometry |
MRT | Magnetic resonance tomography |
KSAFA | Kostic’s selective auditory filter amplifier |
RTČ-P | Developmental Test Čuturić |
REVISK | Serbian adaptation of the Wechsler Intelligence Scale for Children—Revised |
ADOS-2 | Autism Diagnostic Observation Schedule—Second Edition |
SEPAC | The Scale for Evaluation of Psychophysiological Abilities of Children |
EOG | Electrooculograms |
ICA | Independent component analysis |
FFT | Fast Fourier transform |
VIQ | Verbal intelligence quotient |
PIQ | Performance intelligence quotient |
TIQ | Total intelligence quotient |
ESLD | Estimated speech–language development |
ESMD | Estimated sensorimotor development |
ESED | Estimated socio-emotional development |
References
- Whitehouse, A. Commentary: A spectrum for all? A response to Green et al.(2023), neurodiversity, autism and health care. Child Adolesc. Ment. Health 2023, 28, 443–445. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.; Wang, R.; van der Kouwe, A.; Takahashi, E. White and gray matter fiber pathways in autism spectrum disorder revealed by ex vivo diffusion MR tractography. Brain Behav. 2016, 6, e00483. [Google Scholar] [CrossRef] [PubMed]
- Bach, B.; Vestergaard, M. Differential Diagnosis of ICD-11 Personality Disorder and Autism Spectrum Disorder in Adolescents. Children 2023, 10, 992. [Google Scholar] [CrossRef] [PubMed]
- Amaral, D.G. Examining the causes of autism. In Cerebrum: The Dana Forum on Brain Science; Dana Foundation: New York, NY, USA, 2017. [Google Scholar] [CrossRef][Green Version]
- Wolff, J.J.; Gu, H.; Gerig, G.; Elison, J.T.; Styner, M.; Gouttard, S.; Botteron, K.N.; Dager, S.R.; Dawson, G.; Estes, A.M. Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. Am. J. Psychiatry 2012, 169, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Schaer, M.; Ottet, M.-C.; Scariati, E.; Dukes, D.; Franchini, M.; Eliez, S.; Glaser, B. Decreased frontal gyrification correlates with altered connectivity in children with autism. Front. Hum. Neurosci. 2013, 7, 750. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-J.; Hyung, B.; Paquola, C.; Bernhardt, B.C. The superficial white matter in autism and its role in connectivity anomalies and symptom severity. Cereb. Cortex 2019, 29, 4415–4425. [Google Scholar] [CrossRef]
- Thapar, A.; Riglin, L. The importance of a developmental perspective in Psychiatry: What do recent genetic-epidemiological findings show? Mol. Psychiatry 2020, 25, 1631–1639. [Google Scholar] [CrossRef]
- Fields, R.D. Neuroscience. Change in the brain’s white matter. Science 2010, 330, 768–769. [Google Scholar] [CrossRef]
- Buyanova, I.S.; Arsalidou, M. Cerebral white matter myelination and relations to age, gender, and cognition: A selective review. Front. Hum. Neurosci. 2021, 15, 662031. [Google Scholar] [CrossRef]
- Fields, R.D. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 2008, 31, 361–370. [Google Scholar] [CrossRef]
- Pryweller, J.R.; Schauder, K.B.; Anderson, A.W.; Heacock, J.L.; Foss-Feig, J.H.; Newsom, C.R.; Loring, W.A.; Cascio, C.J. White matter correlates of sensory processing in autism spectrum disorders. NeuroImage Clin. 2014, 6, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Koshiyama, D.; Fukunaga, M.; Okada, N.; Morita, K.; Nemoto, K.; Usui, K.; Yamamori, H.; Yasuda, Y.; Fujimoto, M.; Kudo, N. White matter microstructural alterations across four major psychiatric disorders: Mega-analysis study in 2937 individuals. Mol. Psychiatry 2020, 25, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, C.C.; Evans, D.W.; Myers, S.M.; Moore, G.J.; Michael, A.M. A comparison of structural brain imaging findings in autism spectrum disorder and attention-deficit hyperactivity disorder. Neuropsychol. Rev. 2016, 26, 25–43. [Google Scholar] [CrossRef] [PubMed]
- Di, X.; Azeez, A.; Li, X.; Haque, E.; Biswal, B.B. Disrupted focal white matter integrity in autism spectrum disorder: A voxel-based meta-analysis of diffusion tensor imaging studies. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2018, 82, 242–248. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, L.; Gong, G.; Cao, Q.; Liu, J. Identify aberrant white matter microstructure in ASD, ADHD and other neurodevelopmental disorders: A meta-analysis of diffusion tensor imaging studies. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2022, 113, 110477. [Google Scholar] [CrossRef]
- Shukla, D.K.; Keehn, B.; Müller, R.A. Tract-specific analyses of diffusion tensor imaging show widespread white matter compromise in autism spectrum disorder. J. Child Psychol. Psychiatry 2011, 52, 286–295. [Google Scholar] [CrossRef]
- Ameis, S.H.; Lerch, J.P.; Taylor, M.J.; Lee, W.; Viviano, J.D.; Pipitone, J.; Nazeri, A.; Croarkin, P.E.; Voineskos, A.N.; Lai, M.-C. A diffusion tensor imaging study in children with ADHD, autism spectrum disorder, OCD, and matched controls: Distinct and non-distinct white matter disruption and dimensional brain-behavior relationships. Am. J. Psychiatry 2016, 173, 1213–1222. [Google Scholar] [CrossRef]
- Wang, Y.; Olson, I.R. The original social network: White matter and social cognition. Trends Cogn. Sci. 2018, 22, 504–516. [Google Scholar] [CrossRef]
- Basser, P.J. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 1995, 8, 333–344. [Google Scholar] [CrossRef]
- Werring, D.; Brassat, D.; Droogan, A.; Clark, C.; Symms, M.; Barker, G.; MacManus, D.; Thompson, A.; Miller, D. The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: A serial diffusion MRI study. Brain 2000, 123, 1667–1676. [Google Scholar] [CrossRef]
- Ewing-Cobbs, L.; Hasan, K.; Prasad, M.; Kramer, L.; Bachevalier, J. Corpus callosum diffusion anisotropy correlates with neuropsychological outcomes in twins disconcordant for traumatic brain injury. Am. J. Neuroradiol. 2006, 27, 879–881. [Google Scholar] [CrossRef] [PubMed]
- Frazier, T.W.; Hardan, A.Y. A meta-analysis of the corpus callosum in autism. Biol. Psychiatry 2009, 66, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Qiu, T.; Ke, X.; Xiao, X.; Xiao, T.; Liang, F.; Zou, B.; Huang, H.; Fang, H.; Chu, K. Autism spectrum disorder as early neurodevelopmental disorder: Evidence from the brain imaging abnormalities in 2–3 years old toddlers. J. Autism Dev. Disord. 2014, 44, 1633–1640. [Google Scholar] [CrossRef] [PubMed]
- Paul, L.K. Developmental malformation of the corpus callosum: A review of typical callosal development and examples of developmental disorders with callosal involvement. J. Neurodev. Disord. 2011, 3, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Righi, G.; Tierney, A.L.; Tager-Flusberg, H.; Nelson, C.A. Functional connectivity in the first year of life in infants at risk for autism spectrum disorder: An EEG study. PLoS ONE 2014, 9, e105176. [Google Scholar] [CrossRef]
- Karalunas, S.L.; Nigg, J.T. Heterogeneity and subtyping in attention-deficit/hyperactivity disorder—Considerations for emerging research using person-centered computational approaches. Biol. Psychiatry 2020, 88, 103–110. [Google Scholar] [CrossRef]
- Aduen, P.A.; Day, T.N.; Kofler, M.J.; Harmon, S.L.; Wells, E.L.; Sarver, D.E. Social problems in ADHD: Is it a skills acquisition or performance problem? J. Psychopathol. Behav. Assess. 2018, 40, 440–451. [Google Scholar] [CrossRef]
- Soriano-Mas, C.; Pujol, J.; Ortiz, H.; Deus, J.; López-Sala, A.; Sans, A. Age-related brain structural alterations in children with specific language impairment. Hum. Brain Mapp. 2009, 30, 1626–1636. [Google Scholar] [CrossRef]
- Krishnan, S.; Cler, G.J.; Smith, H.J.; Willis, H.E.; Asaridou, S.S.; Healy, M.P.; Papp, D.; Watkins, K.E. Quantitative MRI reveals differences in striatal myelin in children with DLD. eLife 2022, 11, e74242. [Google Scholar] [CrossRef]
- Jäncke, L.; Siegenthaler, T.; Preis, S.; Steinmetz, H. Decreased white-matter density in a left-sided fronto-temporal network in children with developmental language disorder: Evidence for anatomical anomalies in a motor-language network. Brain Lang. 2007, 102, 91–98. [Google Scholar] [CrossRef]
- Bathelt, J.; Scerif, G.; Nobre, A.; Astle, D. Whole-brain white matter organization, intelligence, and educational attainment. Trends Neurosci. Educ. 2019, 15, 38–47. [Google Scholar] [CrossRef]
- Clayden, J.D.; Jentschke, S.; Munoz, M.; Cooper, J.M.; Chadwick, M.J.; Banks, T.; Clark, C.A.; Vargha-Khadem, F. Normative development of white matter tracts: Similarities and differences in relation to age, gender, and intelligence. Cereb. Cortex 2012, 22, 1738–1747. [Google Scholar] [CrossRef]
- Mazoyer, B.; Crivello, F.; Joliot, M.; Mazoyer, B. Biological underpinnings of anatomic consistency and variability in the human brain. In Handbook of Medical Imaging: Processing and Analysis Management; Academic Press: Cambridge, MA, USA, 2000; p. 449. [Google Scholar] [CrossRef]
- Erol, A.; Hunyadi, B. Tensors for neuroimaging: A review on applications of tensors to unravel the mysteries of the brain. In Tensors for Data Processing; Academic Press: Cambridge, MA, USA, 2022; pp. 427–482. [Google Scholar] [CrossRef]
- Chatterjee, D.; Gavas, R.; Samanta, R.; Saha, S.K. Electroencephalogram-based cognitive performance evaluation for mental arithmetic task. In Cognitive Computing for Human-Robot Interaction; Elsevier: Amsterdam, The Netherlands, 2021; pp. 85–101. [Google Scholar] [CrossRef]
- Nunez, P.L.; Srinivasan, R.; Fields, R.D. EEG functional connectivity, axon delays and white matter disease. Clin. Neurophysiol. 2015, 126, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Biasiucci, A.; Franceschiello, B.; Murray, M.M. Electroencephalography. Curr. Biol. 2019, 29, R80–R85. [Google Scholar] [CrossRef] [PubMed]
- Lushchekina, E.; Podreznaya, E.; Lushchekin, V.; Strelets, V. A comparative EEG study in normal and autistic children. Neurosci. Behav. Physiol. 2012, 42, 236–243. [Google Scholar] [CrossRef]
- Dawson, G.; Klinger, L.G.; Panagiotides, H.; Lewy, A.; Castelloe, P. Subgroups of autistic children based on social behavior display distinct patterns of brain activity. J. Abnorm. Child Psychol. 1995, 23, 569–583. [Google Scholar] [CrossRef] [PubMed]
- Orekhova, E.; Stroganova, T.; Nygren, G.; Tsetlin, M.; Posikera, I.; Gillberg, C.; Elam, M. Excess of high frequency electroencephalogram oscillations in boys with autism. Biol. Psychiatry 2007, 62, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Daoust, A.-M.; Limoges, É.; Bolduc, C.; Mottron, L.; Godbout, R. EEG spectral analysis of wakefulness and REM sleep in high functioning autistic spectrum disorders. Clin. Neurophysiol. 2004, 115, 1368–1373. [Google Scholar] [CrossRef] [PubMed]
- Elhabashy, H.; Raafat, O.; Afifi, L.; Raafat, H.; Abdullah, K. Quantitative EEG in autistic children. Egypt. J. Neurol. Psychiatry Neurosurg. 2015, 52, 176. [Google Scholar]
- Coben, R.; Clarke, A.R.; Hudspeth, W.; Barry, R.J. EEG power and coherence in autistic spectrum disorder. Clin. Neurophysiol. 2008, 119, 1002–1009. [Google Scholar] [CrossRef]
- Van Diessen, E.; Senders, J.; Jansen, F.E.; Boersma, M.; Bruining, H. Increased power of resting-state gamma oscillations in autism spectrum disorder detected by routine electroencephalography. Eur. Arch. Psychiatry Clin. Neurosci. 2015, 265, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Murias, M.; Webb, S.J.; Greenson, J.; Dawson, G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol. Psychiatry 2007, 62, 270–273. [Google Scholar] [CrossRef]
- Wang, J.; Barstein, J.; Ethridge, L.E.; Mosconi, M.W.; Takarae, Y.; Sweeney, J.A. Resting state EEG abnormalities in autism spectrum disorders. J. Neurodev. Disord. 2013, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.M.; Taquet, M.; Vega, C.; Jeste, S.S.; Fernández, I.S.; Tan, J.; Nelson, C.A.; Sahin, M.; Warfield, S.K. Brain functional networks in syndromic and non-syndromic autism: A graph theoretical study of EEG connectivity. BMC Med. 2013, 11, 54. [Google Scholar] [CrossRef]
- Mak-Fan, K.M.; Morris, D.; Vidal, J.; Anagnostou, E.; Roberts, W.; Taylor, M.J. White matter and development in children with an autism spectrum disorder. Autism 2013, 17, 541–557. [Google Scholar] [CrossRef] [PubMed]
- Yuk, V.; Dunkley, B.T.; Anagnostou, E.; Taylor, M.J. Alpha connectivity and inhibitory control in adults with autism spectrum disorder. Mol. Autism 2020, 11, 95. [Google Scholar] [CrossRef]
- Jaime, M.; McMahon, C.M.; Davidson, B.C.; Newell, L.C.; Mundy, P.C.; Henderson, H.A. Brief report: Reduced temporal-central EEG alpha coherence during joint attention perception in adolescents with autism spectrum disorder. J. Autism Dev. Disord. 2016, 46, 1477–1489. [Google Scholar] [CrossRef]
- Maksimović, S.; Jeličić, L.; Marisavljević, M.; Fatić, S.; Gavrilović, A.; Subotić, M. Can EEG Correlates Predict Treatment Efficacy in Children with Overlapping ASD and SLI Symptoms: A Case Report. Diagnostics 2022, 12, 1110. [Google Scholar] [CrossRef] [PubMed]
- Maksimović, S.; Stanojević, N.; Fatić, S.; Punišić, S.; Adamović, T.; Petrović, N.; Nenadović, V. Multidisciplinary speech and language therapy approach in a child with multiple disabilities including blindness due to retinopathy of prematurity: A case study with a one year follow-up. Logop. Phoniatr. Vocol. 2021, 48, 98–110. [Google Scholar] [CrossRef]
- Dunn, W. Child Sensory Profile–2 User’s Manual; Pearson: Bloomington, MN, USA, 2014. [Google Scholar]
- Lord, C.; Rutter, M.; DiLavore, P.; Risi, S.; Gotham, K.; Bishop, S. Autism diagnostic observation schedule: ADOS-2. West Psychol. J. Psychoeduc. Assess. 2012, 32, 88–92. [Google Scholar]
- Čuturić, N. Ljestvica Psihičkog Razvoja Rane Dječje Dobi Brunet-Lezine: Priručnik; Zavod za Produktivnost Dela SR Slovenije: Ljubljana, Slovenija, 1973. [Google Scholar]
- Biro, M. Priručnik za REVISK (II Revidirano i Dopunjeno Izdanje); Društvo Psihologa Srbije: Beograd, Serbia, 1998. [Google Scholar]
- Bogavac, I.; Jeličić, L.; Nenadović, V.; Subotić, M.; Janjić, V. The speech and language profile of a child with turner syndrome—A case study. Clin. Linguist. Phon. 2021, 36, 565–578. [Google Scholar] [CrossRef] [PubMed]
- Jeličić, L.; Sovilj, M.; Bogavac, I.; Drobnjak, A.e.; Gouni, O.; Kazmierczak, M.; Subotić, M. The Impact of Maternal Anxiety on Early Child Development During the COVID-19 Pandemic. Front. Psychol. 2021, 12, 792053. [Google Scholar] [CrossRef]
- Rakonjac, M.; Cuturilo, G.; Stevanovic, M.; Jelicic, L.; Subotic, M.; Jovanovic, I.; Drakulic, D. Differences in speech and language abilities between children with 22q11. 2 deletion syndrome and children with phenotypic features of 22q11. 2 deletion syndrome but without microdeletion. Res. Dev. Disabil. 2016, 55, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Shlens, J. A tutorial on independent component analysis. arXiv 2014, arXiv:1404.2986. [Google Scholar]
- Pfeiffer, B.; Clark, G.F.; Arbesman, M. Effectiveness of cognitive and occupation-based interventions for children with challenges in sensory processing and integration: A systematic review. Am. J. Occup. Ther. 2018, 72, 7201190020p1–7201190020p9. [Google Scholar] [CrossRef]
- Camarata, S.; Miller, L.J.; Wallace, M.T. Evaluating sensory integration/sensory processing treatment: Issues and analysis. Front. Integr. Neurosci. 2020, 14, 55. [Google Scholar] [CrossRef]
- Kashefimehr, B.; Kayihan, H.; Huri, M. The effect of sensory integration therapy on occupational performance in children with autism. OTJR: Occup. Particip. Health 2018, 38, 75–83. [Google Scholar] [CrossRef]
- May-Benson, T.A.; Koomar, J.A. Systematic review of the research evidence examining the effectiveness of interventions using a sensory integrative approach for children. Am. J. Occup. Ther. 2010, 64, 403–414. [Google Scholar] [CrossRef]
- Liu, T.; ElGarhy, S. Psychomotor training program as a treatment intervention for children with autism spectrum disorder. In Physical Education Research: Role of School Programs, Children’s Attitudes and Health Implications; Nova Publishers: New York, NY, USA, 2014; pp. 73–89. [Google Scholar]
- De Barros, I.M.; Coutinho, D.J.G. The contribution of psychomotricity in the development of autistic children: A literature review. Rev. Ibero Am. Humanid. Ciênc. Educ. 2023, 9, 230–242. [Google Scholar]
- Swanson, M.R.; Hazlett, H.C. White matter as a monitoring biomarker for neurodevelopmental disorder intervention studies. J. Neurodev. Disord. 2019, 11, 33. [Google Scholar] [CrossRef]
- Maenner, M.J.; Shaw, K.A.; Baio, J.; Washington, A.; Patrick, M.; DiRienzo, M.; Christensen, D.L.; Wiggins, L.D.; Pettygrove, S.; Andrews, J.G. Prevalence of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveill. Summ. 2020, 69, 1. [Google Scholar] [CrossRef]
- Van Naarden Braun, K.; Christensen, D.; Doernberg, N.; Schieve, L.; Rice, C.; Wiggins, L.; Schendel, D.; Yeargin-Allsopp, M. Trends in the prevalence of autism spectrum disorder, cerebral palsy, hearing loss, intellectual disability, and vision impairment, metropolitan Atlanta, 1991–2010. PLoS ONE 2015, 10, e0124120. [Google Scholar] [CrossRef] [PubMed]
- Charman, T.; Pickles, A.; Simonoff, E.; Chandler, S.; Loucas, T.; Baird, G. IQ in children with autism spectrum disorders: Data from the Special Needs and Autism Project (SNAP). Psychol. Med. 2011, 41, 619–627. [Google Scholar] [CrossRef]
- Maenner, M.J.; Shaw, K.A.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Esler, A.; Furnier, S.M.; Hallas, L.; Hall-Lande, J.; Hudson, A.; et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2018. MMWR Surveill. Summ. 2021, 70, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Girault, J.B.; Cornea, E.; Goldman, B.D.; Knickmeyer, R.C.; Styner, M.; Gilmore, J.H. White matter microstructural development and cognitive ability in the first 2 years of life. Hum. Brain Mapp. 2019, 40, 1195–1210. [Google Scholar] [CrossRef] [PubMed]
- O’Muircheartaigh, J.; Dean III, D.C.; Ginestet, C.E.; Walker, L.; Waskiewicz, N.; Lehman, K.; Dirks, H.; Piryatinsky, I.; Deoni, S.C. White matter development and early cognition in babies and toddlers. Hum. Brain Mapp. 2014, 35, 4475–4487. [Google Scholar] [CrossRef]
- Swanson, M.R.; Wolff, J.J.; Elison, J.T.; Gu, H.; Hazlett, H.C.; Botteron, K.; Styner, M.; Paterson, S.; Gerig, G.; Constantino, J. Splenium development and early spoken language in human infants. Dev. Sci. 2017, 20, e12360. [Google Scholar] [CrossRef]
- Deoni, S.C.; O’Muircheartaigh, J.; Elison, J.T.; Walker, L.; Doernberg, E.; Waskiewicz, N.; Dirks, H.; Piryatinsky, I.; Dean, D.C.; Jumbe, N. White matter maturation profiles through early childhood predict general cognitive ability. Brain Struct. Funct. 2016, 221, 1189–1203. [Google Scholar] [CrossRef]
- Hofstetter, S.; Friedmann, N.; Assaf, Y. Rapid language-related plasticity: Microstructural changes in the cortex after a short session of new word learning. Brain Struct. Funct. 2017, 222, 1231–1241. [Google Scholar] [CrossRef]
- Schlaug, G.; Marchina, S.; Norton, A. Evidence for plasticity in white-matter tracts of patients with chronic Broca’s aphasia undergoing intense intonation-based speech therapy. Ann. N. Y. Acad. Sci. 2009, 1169, 385–394. [Google Scholar] [CrossRef]
- Scholz, J.; Klein, M.C.; Behrens, T.E.; Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci. 2009, 12, 1370–1371. [Google Scholar] [CrossRef]
- Subramaniam, K.; Gill, J.; Fisher, M.; Mukherjee, P.; Nagarajan, S.; Vinogradov, S. White matter microstructure predicts cognitive training-induced improvements in attention and executive functioning in schizophrenia. Schizophr. Res. 2018, 193, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Tymofiyeva, O.; Gaschler, R. Training-induced neural plasticity in youth: A systematic review of structural and functional MRI studies. Front. Hum. Neurosci. 2021, 14, 497245. [Google Scholar] [CrossRef] [PubMed]
- Weyandt, L.L.; Clarkin, C.M.; Holding, E.Z.; May, S.E.; Marraccini, M.E.; Gudmundsdottir, B.G.; Shepard, E.; Thompson, L. Neuroplasticity in Children and Adolescents in Response to Treatment Intervention: A Systematic Review of the Literature. Clin. Transl. Neurosci. 2020, 4, 21. [Google Scholar] [CrossRef]
- Hoekzema, E.; Carmona, S.; Ramos-Quiroga, J.A.; Barba, E.; Bielsa, A.; Tremols, V.; Rovira, M.; Soliva, J.C.; Casas, M.; Bulbena, A. Training-induced neuroanatomical plasticity in ADHD: A tensor-based morphometric study. Hum. Brain Mapp. 2011, 32, 1741–1749. [Google Scholar] [CrossRef]
- Iuculano, T.; Rosenberg-Lee, M.; Richardson, J.; Tenison, C.; Fuchs, L.; Supekar, K.; Menon, V. Cognitive tutoring induces widespread neuroplasticity and remediates brain function in children with mathematical learning disabilities. Nat. Commun. 2015, 6, 8453. [Google Scholar] [CrossRef]
- Maximo, J.O.; Murdaugh, D.L.; O’Kelley, S.; Kana, R.K. Changes in intrinsic local connectivity after reading intervention in children with autism. Brain Lang. 2017, 175, 11–17. [Google Scholar] [CrossRef]
- Saaybi, S.; AlArab, N.; Hannoun, S.; Saade, M.; Tutunji, R.; Zeeni, C.; Shbarou, R.; Hourani, R.; Boustany, R.-M. Pre-and post-therapy assessment of clinical outcomes and white matter integrity in autism spectrum disorder: Pilot study. Front. Neurol. 2019, 10, 877. [Google Scholar] [CrossRef]
- Andrews, D.S.; Lee, J.K.; Harvey, D.J.; Waizbard-Bartov, E.; Solomon, M.; Rogers, S.J.; Nordahl, C.W.; Amaral, D.G. A longitudinal study of white matter development in relation to changes in autism severity across early childhood. Biol. Psychiatry 2021, 89, 424–432. [Google Scholar] [CrossRef]
- Waizbard-Bartov, E.; Ferrer, E.; Young, G.S.; Heath, B.; Rogers, S.; Wu Nordahl, C.; Solomon, M.; Amaral, D.G. Trajectories of autism symptom severity change during early childhood. J. Autism Dev. Disord. 2021, 51, 227–242. [Google Scholar] [CrossRef]
- Haesen, B.; Boets, B.; Wagemans, J. A review of behavioural and electrophysiological studies on auditory processing and speech perception in autism spectrum disorders. Res. Autism Spectr. Disord. 2011, 5, 701–714. [Google Scholar] [CrossRef]
- Holland, S.K.; Vannest, J.; Mecoli, M.; Jacola, L.M.; Tillema, J.-M.; Karunanayaka, P.R.; Schmithorst, V.J.; Yuan, W.; Plante, E.; Byars, A.W. Functional MRI of language lateralization during development in children. Int. J. Audiol. 2007, 46, 533–551. [Google Scholar] [CrossRef] [PubMed]
- Olulade, O.A.; Seydell-Greenwald, A.; Chambers, C.E.; Turkeltaub, P.E.; Dromerick, A.W.; Berl, M.M.; Gaillard, W.D.; Newport, E.L. The neural basis of language development: Changes in lateralization over age. Proc. Natl. Acad. Sci. USA 2020, 117, 23477–23483. [Google Scholar] [CrossRef] [PubMed]
- Groen, W.B.; Zwiers, M.P.; van der Gaag, R.-J.; Buitelaar, J.K. The phenotype and neural correlates of language in autism: An integrative review. Neurosci. Biobehav. Rev. 2008, 32, 1416–1425. [Google Scholar] [CrossRef]
- Jolliffe, T.; Baron-Cohen, S. Linguistic processing in high-functioning adults with autism or Asperger’s syndrome. Is global coherence impaired? Psychol. Med. 2000, 30, 1169–1187. [Google Scholar] [CrossRef]
- Baird, G.; Norbury, C.F. Social (pragmatic) communication disorders and autism spectrum disorder. Arch. Dis. Child. 2016, 101, 745–751. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, C.; Lewis, J.D.; Elsabbagh, M. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLoS ONE 2017, 12, e0175870. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.; Da Fonseca, D.; Esteves, F.; Deruelle, C. Motivational approach and avoidance in autism spectrum disorder: A comparison between real photographs and cartoons. Res. Autism Spectr. Disord. 2015, 17, 13–24. [Google Scholar] [CrossRef]
- Rosset, D.B.; Rondan, C.; Da Fonseca, D.; Santos, A.; Assouline, B.; Deruelle, C. Typical emotion processing for cartoon but not for real faces in children with autistic spectrum disorders. J. Autism Dev. Disord. 2008, 38, 919–925. [Google Scholar] [CrossRef]
- Grelotti, D.J.; Klin, A.J.; Gauthier, I.; Skudlarski, P.; Cohen, D.J.; Gore, J.C.; Volkmar, F.R.; Schultz, R.T. fMRI activation of the fusiform gyrus and amygdala to cartoon characters but not to faces in a boy with autism. Neuropsychologia 2005, 43, 373–385. [Google Scholar] [CrossRef]
- Ressler, K.J. Amygdala activity, fear, and anxiety: Modulation by stress. Biol. Psychiatry 2010, 67, 1117–1119. [Google Scholar] [CrossRef] [PubMed]
- Čeponienė, R.; Lepistö, T.; Shestakova, A.; Vanhala, R.; Alku, P.; Näätänen, R.; Yaguchi, K. Speech–sound-selective auditory impairment in children with autism: They can perceive but do not attend. Proc. Natl. Acad. Sci. USA 2003, 100, 5567–5572. [Google Scholar] [CrossRef] [PubMed]
- Dunn, M.A.; Gomes, H.; Gravel, J. Mismatch negativity in children with autism and typical development. J. Autism Dev. Disord. 2008, 38, 52–71. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.S.; Sharp, J. Fascination and isolation: A grounded theory exploration of unusual sensory experiences in adults with Asperger syndrome. J. Autism Dev. Disord. 2013, 43, 891–910. [Google Scholar] [CrossRef]
- Quandt, F.; Fischer, F.; Schröder, J.; Heinze, M.; Lettow, I.; Frey, B.M.; Kessner, S.S.; Schulz, M.; Higgen, F.L.; Cheng, B. Higher white matter hyperintensity lesion load is associated with reduced long-range functional connectivity. Brain Commun. 2020, 2, fcaa111. [Google Scholar] [CrossRef]
- Chan, A.S.; Han, Y.M.; Sze, S.L.; Cheung, M.-C.; Leung, W.W.-M.; Chan, R.C.; To, C.Y. Disordered connectivity associated with memory deficits in children with autism spectrum disorders. Res. Autism Spectr. Disord. 2011, 5, 237–245. [Google Scholar] [CrossRef]
- Sperdin, H.F.; Coito, A.; Kojovic, N.; Rihs, T.A.; Jan, R.K.; Franchini, M.; Plomp, G.; Vulliemoz, S.; Eliez, S.; Michel, C.M. Early alterations of social brain networks in young children with autism. eLife 2018, 7, e31670. [Google Scholar] [CrossRef]
- Huberty, S.; Carter Leno, V.; van Noordt, S.J.; Bedford, R.; Pickles, A.; Desjardins, J.A.; Webb, S.J.; Team, B.; Elsabbagh, M. Association between spectral electroencephalography power and autism risk and diagnosis in early development. Autism Res. 2021, 14, 1390–1403. [Google Scholar] [CrossRef]
- Lefebvre, A.; Delorme, R.; Delanoë, C.; Amsellem, F.; Beggiato, A.; Germanaud, D.; Bourgeron, T.; Toro, R.; Dumas, G. Alpha waves as a neuromarker of autism spectrum disorder: The challenge of reproducibility and heterogeneity. Front. Neurosci. 2018, 12, 662. [Google Scholar] [CrossRef]
- Shephard, E.; Tye, C.; Ashwood, K.L.; Azadi, B.; Asherson, P.; Bolton, P.F.; McLoughlin, G. Resting-state neurophysiological activity patterns in young people with ASD, ADHD, and ASD+ ADHD. J. Autism Dev. Disord. 2018, 48, 110–122. [Google Scholar] [CrossRef]
- Dickinson, A.; DiStefano, C.; Senturk, D.; Jeste, S.S. Peak alpha frequency is a neural marker of cognitive function across the autism spectrum. Eur. J. Neurosci. 2018, 47, 643–651. [Google Scholar] [CrossRef]
- Jan, R.K.; Rihs, T.A.; Kojovic, N.; Sperdin, H.F.; Franchini, M.; Custo, A.; Tomescu, M.I.; Michel, C.M.; Schaer, M. Neural processing of dynamic animated social interactions in young children with autism spectrum disorder: A high-density electroencephalography study. Front. Psychiatry 2019, 10, 582. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, R.A.; Segers, M.; Ferber, S.; Barense, M.D.; Camarata, S.; Wallace, M.T. Keeping time in the brain: Autism spectrum disorder and audiovisual temporal processing. Autism Res. 2016, 9, 720–738. [Google Scholar] [CrossRef] [PubMed]
- Bolton, T.A.; Jochaut, D.; Giraud, A.L.; Van De Ville, D. Brain dynamics in ASD during movie-watching show idiosyncratic functional integration and segregation. Hum. Brain Mapp. 2018, 39, 2391–2404. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Al Khalili, Y. Neuroanatomy, Occipital Lobe; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Karunanayaka, P.R.; Holland, S.K.; Schmithorst, V.J.; Solodkin, A.; Chen, E.E.; Szaflarski, J.P.; Plante, E. Age-related connectivity changes in fMRI data from children listening to stories. Neuroimage 2007, 34, 349–360. [Google Scholar] [CrossRef]
- Jochaut, D.; Lehongre, K.; Saitovitch, A.; Devauchelle, A.-D.; Olasagasti, I.; Chabane, N.; Zilbovicius, M.; Giraud, A.-L. Atypical coordination of cortical oscillations in response to speech in autism. Front. Hum. Neurosci. 2015, 9, 171. [Google Scholar] [CrossRef]
Sensory Profile | Time and Age (in Months) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
t0 | t1 | t2 | t3 | t4 | |||||||
38 | 44 | 54 | 60 | 66 | |||||||
Score | SD | Score | SD | Score | SD | Score | SD | Score | SD | ||
Quadrants | Seeking | 53 | +1 | 50 | +1 | 39 | 36 | 32 | |||
Avoiding | 40 | 40 | 38 | 31 | 24 | ||||||
Sensitivity | 68 | +2 | 65 | +2 | 61 | +2 | 47 | +1 | 35 | ||
Registration | 66 | +2 | 65 | +2 | 57 | +2 | 50 | +1 | 42 | ||
Sensory section | Auditory | 15 | 14 | 14 | 13 | 11 | |||||
Visual | 5 | −1 | 5 | −1 | 5 | −1 | 7 | −1 | 9 | ||
Tactile | 42 | +2 | 42 | +2 | 38 | +2 | 34 | +2 | 23 | +1 | |
Body position | 23 | +2 | 23 | +2 | 21 | +2 | 17 | +1 | 12 | ||
Movement | 38 | +2 | 38 | +2 | 24 | +2 | 18 | +1 | 17 | +1 | |
Oral | 38 | +2 | 32 | +1 | 23 | 16 | 10 | ||||
Behavioral section | Conduct | 15 | 15 | 13 | 11 | 8 | −1 | ||||
Social-Emotional | 30 | 30 | 30 | 24 | 20 | ||||||
Attentional | 40 | +2 | 40 | +2 | 40 | +2 | 32 | +2 | 27 | +1 |
Assessment Points | Data | ||||
---|---|---|---|---|---|
t0 | t1 | t2 | t3 | t4 | |
Age (in Months) | 38 | 44 | 54 | 60 | 66 |
Sensory profile 2 (Number of standard deviations) | 16 | 15 | 13 | 9 | 4 |
Cognitive assessment (TIQ) Age in months | 70 | 68 | 66 | 63 | 59 |
SEPAC- Estimated speech–language development (ESLD) Age in months | 7 | 14 | 20 | 20 | 27 |
SEPAC- estimated sensorimotor development (ESMD) Age in months | 12 | 23 | 26 | 27 | 33 |
SEPAC- estimated socio-emotional development (ESED) Age in months | 10 | 11 | 36 | 36 | 42 |
ADOS score | 32 | 32 | 31 | 29 | 29 |
EEG Theta/Alpha Frequency Range | Sensory Profile | TIQ | ESLD | ESMD | ESED | ADOS | |
---|---|---|---|---|---|---|---|
RThetaC | Pearson Correlation | −0.990 | −0.994 | 0.944 | 0.889 | 0.896 | −0.913 |
Sig. (2-tailed) | 0.001 | 0.001 | 0.016 | 0.044 | 0.040 | 0.030 | |
RAlphaC | Pearson Correlation | 0.890 | |||||
Sig. (2-tailed) | 0.043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćirović, M.; Jeličić, L.; Maksimović, S.; Fatić, S.; Marisavljević, M.; Bošković Matić, T.; Subotić, M. EEG Correlates of Cognitive Functions in a Child with ASD and White Matter Signal Abnormalities: A Case Report with Two-and-a-Half-Year Follow-Up. Diagnostics 2023, 13, 2878. https://doi.org/10.3390/diagnostics13182878
Ćirović M, Jeličić L, Maksimović S, Fatić S, Marisavljević M, Bošković Matić T, Subotić M. EEG Correlates of Cognitive Functions in a Child with ASD and White Matter Signal Abnormalities: A Case Report with Two-and-a-Half-Year Follow-Up. Diagnostics. 2023; 13(18):2878. https://doi.org/10.3390/diagnostics13182878
Chicago/Turabian StyleĆirović, Milica, Ljiljana Jeličić, Slavica Maksimović, Saška Fatić, Maša Marisavljević, Tatjana Bošković Matić, and Miško Subotić. 2023. "EEG Correlates of Cognitive Functions in a Child with ASD and White Matter Signal Abnormalities: A Case Report with Two-and-a-Half-Year Follow-Up" Diagnostics 13, no. 18: 2878. https://doi.org/10.3390/diagnostics13182878
APA StyleĆirović, M., Jeličić, L., Maksimović, S., Fatić, S., Marisavljević, M., Bošković Matić, T., & Subotić, M. (2023). EEG Correlates of Cognitive Functions in a Child with ASD and White Matter Signal Abnormalities: A Case Report with Two-and-a-Half-Year Follow-Up. Diagnostics, 13(18), 2878. https://doi.org/10.3390/diagnostics13182878