Diagnostic and Therapeutic Potential of Selected microRNAs in Colorectal Cancer: A Literature Review
Simple Summary
Abstract
1. Biogenesis and Mechanisms of miRNA Action
2. Techniques and Challenges in miRNA Detection
3. Diagnostic Utility of miRNA in Colorectal Cancer
Therapeutic Potential of miRNA in Colorectal Cancer
4. Methods
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Fabian, M.R.; Sonenberg, N. The Mechanics of MiRNA-Mediated Gene Silencing: A Look under the Hood of MiRISC. Nat. Struct. Mol. Biol. 2012, 19, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Sheu-Gruttadauria, J.; MacRae, I.J. Phase Transitions in the Assembly and Function of Human MiRISC. Cell 2018, 173, 946–957.e16. [Google Scholar] [CrossRef]
- Ha, M.; Kim, V.N. Regulation of MicroRNA Biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Jungers, C.F.; Djuranovic, S. Modulation of MiRISC-Mediated Gene Silencing in Eukaryotes. Front. Mol. Biosci. 2022, 9, 832916. [Google Scholar] [CrossRef]
- Truscott, M.; Islam, A.B.M.M.K.; Frolov, M.V. Novel Regulation and Functional Interaction of Polycistronic MiRNAs. RNA 2016, 22, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Chong, M.M.W.; Zhang, G.; Cheloufi, S.; Neubert, T.A.; Hannon, G.J.; Littman, D.R. Canonical and Alternate Functions of the MicroRNA Biogenesis Machinery. Genes. Dev. 2010, 24, 1951–1960. [Google Scholar] [CrossRef]
- Medley, J.C.; Panzade, G.; Zinovyeva, A.Y. MicroRNA Strand Selection: Unwinding the Rules. WIREs RNA 2021, 12, e1627. [Google Scholar] [CrossRef]
- Mitra, R.; Adams, C.M.; Jiang, W.; Greenawalt, E.; Eischen, C.M. Pan-Cancer Analysis Reveals Cooperativity of Both Strands of MicroRNA That Regulate Tumorigenesis and Patient Survival. Nat. Commun. 2020, 11, 968. [Google Scholar] [CrossRef]
- Yang, J.-S.; Maurin, T.; Lai, E.C. Functional Parameters of Dicer-Independent MicroRNA Biogenesis. RNA 2012, 18, 945–957. [Google Scholar] [CrossRef]
- Stavast, C.; Erkeland, S. The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation. Cells 2019, 8, 1465. [Google Scholar] [CrossRef]
- Kupec, T.; Bleilevens, A.; Iborra, S.; Najjari, L.; Wittenborn, J.; Maurer, J.; Stickeler, E. Stability of Circulating MicroRNAs in Serum. PLoS ONE 2022, 17, e0268958. [Google Scholar] [CrossRef] [PubMed]
- Precazzini, F.; Detassis, S.; Imperatori, A.S.; Denti, M.A.; Campomenosi, P. Measurements Methods for the Development of MicroRNA-Based Tests for Cancer Diagnosis. Int. J. Mol. Sci. 2021, 22, 1176. [Google Scholar] [CrossRef]
- Kakimoto, Y.; Tanaka, M.; Kamiguchi, H.; Ochiai, E.; Osawa, M. MicroRNA Stability in FFPE Tissue Samples: Dependence on GC Content. PLoS ONE 2016, 11, e0163125. [Google Scholar] [CrossRef] [PubMed]
- Glinge, C.; Clauss, S.; Boddum, K.; Jabbari, R.; Jabbari, J.; Risgaard, B.; Tomsits, P.; Hildebrand, B.; Kääb, S.; Wakili, R.; et al. Stability of Circulating Blood-Based MicroRNAs—Pre-Analytic Methodological Considerations. PLoS ONE 2017, 12, e0167969. [Google Scholar] [CrossRef]
- Sandau, U.S.; Wiedrick, J.T.; McFarland, T.J.; Galasko, D.R.; Fanning, Z.; Quinn, J.F.; Saugstad, J.A. Analysis of the Longitudinal Stability of Human Plasma MiRNAs and Implications for Disease Biomarkers. Sci. Rep. 2024, 14, 2148. [Google Scholar] [CrossRef]
- Petkevich, A.A.; Abramov, A.A.; Pospelov, V.I.; Malinina, N.A.; Kuhareva, E.I.; Mazurchik, N.V.; Tarasova, O.I. Exosomal and Non-Exosomal MiRNA Expression Levels in Patients with HCV-Related Cirrhosis and Liver Cancer. Oncotarget 2021, 12, 1697–1706. [Google Scholar] [CrossRef] [PubMed]
- Nik Mohamed Kamal, N.N.S.B.; Shahidan, W.N.S. Non-Exosomal and Exosomal Circulatory MicroRNAs: Which Are More Valid as Biomarkers? Front. Pharmacol. 2020, 10, 1500. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Q.; Zhang, R.; Dai, X.; Chen, W.; Xing, D. Circulating MicroRNAs: Biomarkers of Disease. Clin. Chim. Acta 2021, 516, 46–54. [Google Scholar] [CrossRef]
- Van Der Hofstadt, M.; Cardinal, A.; Lepeltier, M.; Boulestreau, J.; Ouedraogo, A.; Kahli, M.; Champigneux, P.; Molina, L.; Molina, F.; Van, T.N.N. Assessment of Salivary MicroRNA by RT-QPCR: Facing Challenges in Data Interpretation for Clinical Diagnosis. PLoS ONE 2024, 19, e0314733. [Google Scholar] [CrossRef]
- Ye, J.; Xu, M.; Tian, X.; Cai, S.; Zeng, S. Research Advances in the Detection of MiRNA. J. Pharm. Anal. 2019, 9, 217–226. [Google Scholar] [CrossRef]
- RT-QPCR MiRNA Normalisation. Available online: https://gene-quantification.com/micro-rna-6.html#microrna-norm (accessed on 30 January 2025).
- Want, A.; Staniak, K.; Grabowska-Pyrzewicz, W.; Fesiuk, A.; Barczak, A.; Gabryelewicz, T.; Kulczyńska-Przybik, A.; Mroczko, B.; Wojda, U. Optimized RT-QPCR and a Novel Normalization Method for Validating Circulating MiRNA Biomarkers in Ageing-Related Diseases. Sci. Rep. 2023, 13, 20869. [Google Scholar] [CrossRef]
- Naranbat, D.; Herdes, E.; Tapinos, N.; Tripathi, A. Review of MicroRNA Detection Workflows from Liquid Biopsy for Disease Diagnostics. Expert Rev. Mol. Med. 2025, 27, e11. [Google Scholar] [CrossRef] [PubMed]
- Hawke, D.C.; Watson, A.J.; Betts, D.H. Selecting Normalizers for MicroRNA RT-QPCR Expression Analysis in Murine Preimplantation Embryos and the Associated Conditioned Culture Media. J. Dev. Biol. 2023, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Faraldi, M.; Gomarasca, M.; Sansoni, V.; Perego, S.; Banfi, G.; Lombardi, G. Normalization Strategies Differently Affect Circulating MiRNA Profile Associated with the Training Status. Sci. Rep. 2019, 9, 1584. [Google Scholar] [CrossRef]
- Krepelkova, I.; Mrackova, T.; Izakova, J.; Dvorakova, B.; Chalupova, L.; Mikulik, R.; Slaby, O.; Bartos, M.; Ruzicka, V. Evaluation of MiRNA Detection Methods for the Analytical Characteristic Necessary for Clinical Utilization. Biotechniques 2019, 66, 277–284. [Google Scholar] [CrossRef] [PubMed]
- MiREIA. Available online: https://www.biovendor.com/mirna (accessed on 30 January 2025).
- Ahmed, F.E.; Gouda, M.M.; Ahmed, N.C.; Hussein, L. Quantification of Micrornas by Absolute Dpcr for the Diagnostic Screening of Colon Cancer. J. Colon Rectal Cancer 2019, 1, 10–37. [Google Scholar] [CrossRef]
- Gattuso, G.; Longo, F.; Spoto, G.; Ricci, D.; Lavoro, A.; Candido, S.; Di Cataldo, A.; Broggi, G.; Salvatorelli, L.; Magro, G.; et al. Diagnostic and Prognostic Significance of a Four-MiRNA Signature in Colorectal Cancer. Int. J. Mol. Sci. 2025, 26, 1219. [Google Scholar] [CrossRef]
- Coleman, D.; Kuwada, S. MiRNA as a Biomarker for the Early Detection of Colorectal Cancer. Genes 2024, 15, 338. [Google Scholar] [CrossRef]
- Busato, F.; Ursuegui, S.; Deleuze, J.-F.; Tost, J. Multiplex Digital PCR for the Simultaneous Quantification of a MiRNA Panel. Anal. Chim. Acta 2025, 1335, 343440. [Google Scholar] [CrossRef]
- MicroRNA in Situ Hybridization for Cancer Diagnosis. Available online: https://biogenex.com/microrna-in-situ-hybridization-for-cancer-diagnosis/ (accessed on 29 January 2025).
- Sasi, S.; Singh, S.; Walia, T.; Meena, R.C.; Thakur, S. Role of MicroRNA In Situ Hybridization in Colon Cancer Diagnosis. In Colon Cancer Diagnosis and Therapy; Springer International Publishing: Cham, Switzerland, 2021; pp. 67–89. [Google Scholar]
- Nielsen, B.S. MicroRNA in Situ Hybridization. Methods Mol. Biol. 2012, 822, 67–84. [Google Scholar] [PubMed]
- Koshiol, J.; Wang, E.; Zhao, Y.; Marincola, F.; Landi, M.T. Strengths and Limitations of Laboratory Procedures for MicroRNA Detection. Cancer Epidemiol. Biomark. Prev. 2010, 19, 907–911. [Google Scholar] [CrossRef]
- Forero, D.A.; González-Giraldo, Y.; Castro-Vega, L.J.; Barreto, G.E. QPCR-Based Methods for Expression Analysis of MiRNAs. Biotechniques 2019, 67, 192–199. [Google Scholar] [CrossRef]
- Gondal, M.N.; Farooqi, H.M.U. Single-Cell Transcriptomic Approaches for Decoding Non-Coding RNA Mechanisms in Colorectal Cancer. Noncoding RNA 2025, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, X.; Peng, C.; Du, R.; Hong, X.; Xu, J.; Chen, J.; Li, X.; Tang, Y.; Li, Y.; et al. Machine Learning-Aided Identification of Fecal Extracellular Vesicle MicroRNA Signatures for Noninvasive Detection of Colorectal Cancer. ACS Nano 2025, 19, 10013–10025. [Google Scholar] [CrossRef]
- Willems, A.; Panchy, N.; Hong, T. Using Single-Cell RNA Sequencing and MicroRNA Targeting Data to Improve Colorectal Cancer Survival Prediction. Cells 2023, 12, 228. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Singer, R.H. Single-Molecule Imaging of MicroRNA-Mediated Gene Silencing in Cells. Nat. Commun. 2022, 13, 1435. [Google Scholar] [CrossRef]
- Stoffel, E.M.; Murphy, C.C. Epidemiology and Mechanisms of the Increasing Incidence of Colon and Rectal Cancers in Young Adults. Gastroenterology 2020, 158, 341–353. [Google Scholar] [CrossRef]
- Xing, J.; Liao, Y.; Zhang, H.; Zhang, W.; Zhang, Z.; Zhang, J.; Wang, D.; Tang, D. Impacts of MicroRNAs Induced by the Gut Microbiome on Regulating the Development of Colorectal Cancer. Front Cell Infect. Microbiol. 2022, 12, 804689. [Google Scholar] [CrossRef]
- Xu, C.; Fan, L.; Lin, Y.; Shen, W.; Qi, Y.; Zhang, Y.; Chen, Z.; Wang, L.; Long, Y.; Hou, T.; et al. Fusobacterium Nucleatum Promotes Colorectal Cancer Metastasis through MiR-1322/CCL20 Axis and M2 Polarization. Gut Microbes 2021, 13, 1980347. [Google Scholar] [CrossRef]
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of Colorectal Cancer: Incidence, Mortality, Survival, and Risk Factors. Gastroenterol. Rev. 2019, 14, 89–103. [Google Scholar] [CrossRef]
- Bretthauer, M.; Løberg, M.; Wieszczy, P.; Kalager, M.; Emilsson, L.; Garborg, K.; Rupinski, M.; Dekker, E.; Spaander, M.; Bugajski, M.; et al. Effect of Colonoscopy Screening on Risks of Colorectal Cancer and Related Death. N. Engl. J. Med. 2022, 387, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- Moleyar-Narayana, P.; Leslie, S.W.; Ranganathan, S. Cancer Screening; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Di Martino, M.T.; Tagliaferri, P.; Tassone, P. MicroRNA in Cancer Therapy: Breakthroughs and Challenges in Early Clinical Applications. J. Exp. Clin. Cancer Res. 2025, 44, 126. [Google Scholar] [CrossRef]
- Baker, A.H.; Giacca, M.; Thum, T. MiRNA Discovery to Therapy: The Field Is Sufficiently Mature to Assess the Value of MiRNA-Based Therapeutics. Mol. Ther. 2025, 33, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Seyhan, A.A. Trials and Tribulations of MicroRNA Therapeutics. Int. J. Mol. Sci. 2024, 25, 1469. [Google Scholar] [CrossRef] [PubMed]
- Barjasteh, A.H.; Jaseb Mazhar AleKassar, R.; Al-Asady, A.M.; Latifi, H.; Avan, A.; Khazaei, M.; Ryzhikov, M.; Hassanian, S.M. Therapeutic Potentials of MiRNA for Colorectal Cancer Liver Metastasis Treatment: A Narrative Review. Iran. J. Med. Sci. 2025, 50, 202–219. [Google Scholar] [CrossRef]
- Tian, H.; Cheng, L.; Liang, Y.; Lei, H.; Qin, M.; Li, X.; Ren, Y. MicroRNA Therapeutic Delivery Strategies: A Review. J. Drug Deliv. Sci. Technol. 2024, 93, 105430. [Google Scholar] [CrossRef]
- Sendi, H.; Yazdimamaghani, M.; Hu, M.; Sultanpuram, N.; Wang, J.; Moody, A.S.; McCabe, E.; Zhang, J.; Graboski, A.; Li, L.; et al. Nanoparticle Delivery of MiR-122 Inhibits Colorectal Cancer Liver Metastasis. Cancer Res. 2022, 82, 105–113. [Google Scholar] [CrossRef]
- Volpini, L.; Monaco, F.; Santarelli, L.; Neuzil, J.; Tomasetti, M. Advances in RNA Cancer Therapeutics: New Insight into Exosomes as MiRNA Delivery. Asp. Mol. Med. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Momin, M.Y.; Gaddam, R.R.; Kravitz, M.; Gupta, A.; Vikram, A. The Challenges and Opportunities in the Development of MicroRNA Therapeutics: A Multidisciplinary Viewpoint. Cells 2021, 10, 3097. [Google Scholar] [CrossRef]
- Jiang, R.; Chen, X.; Ge, S.; Wang, Q.; Liu, Y.; Chen, H.; Xu, J.; Wu, J. MiR-21-5p Induces Pyroptosis in Colorectal Cancer via TGFBI. Front. Oncol. 2021, 10, 610545. [Google Scholar] [CrossRef]
- Farasati Far, B.; Vakili, K.; Fathi, M.; Yaghoobpoor, S.; Bhia, M.; Naimi- Jamal, M.R. The Role of MicroRNA-21 (MiR-21) in Pathogenesis, Diagnosis, and Prognosis of Gastrointestinal Cancers: A Review. Life Sci. 2023, 316, 121340. [Google Scholar] [CrossRef] [PubMed]
- Javanmard, A.-R.; Dokanehiifard, S.; Bohlooli, M.; Soltani, B.M. LOC646329 Long Non-Coding RNA Sponges MiR-29b-1 and Regulates TGFβ Signaling in Colorectal Cancer. J. Cancer Res. Clin. Oncol. 2020, 146, 1205–1215. [Google Scholar] [CrossRef]
- Nguyen, T.T.P.; Suman, K.H.; Nguyen, T.B.; Nguyen, H.T.; Do, D.N. The Role of MiR-29s in Human Cancers—An Update. Biomedicines 2022, 10, 2121. [Google Scholar] [CrossRef]
- Shi, L.; Xi, J.; Xu, X.; Peng, B.; Zhang, B. MiR-148a Suppressed Cell Invasion and Migration via Targeting WNT10b and Modulating β-Catenin Signaling in Cisplatin-Resistant Colorectal Cancer Cells. Biomed. Pharmacother. 2019, 109, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Yang, T.; Gao, S.; Cheng, M.; Shao, Y.; Xi, Y.; Guo, L.; Zhang, D.; Gao, W.; Zhang, G.; et al. MiR-148a-3p Silences the CANX/MHC-I Pathway and Impairs CD8+ T Cell-mediated Immune Attack in Colorectal Cancer. FASEB J. 2021, 35, e21776. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, Q.; Zhang, Y.; Gu, R.; Liu, M.; Li, Q.; Zhang, J.; Yuan, H.; Feng, T.; Ou, D.; et al. DDX17 Induces Epithelial-Mesenchymal Transition and Metastasis through the MiR-149-3p/CYBRD1 Pathway in Colorectal Cancer. Cell Death Dis. 2023, 14, 1. [Google Scholar] [CrossRef]
- Ruan, Z.; Deng, H.; Liang, M.; Xu, Z.; Lai, M.; Ren, H.; Deng, X.; Su, X. Downregulation of Long Non-Coding RNA MAFG-AS1 Represses Tumorigenesis of Colorectal Cancer Cells through the MicroRNA-149-3p-Dependent Inhibition of HOXB8. Cancer Cell Int. 2020, 20, 511. [Google Scholar] [CrossRef]
- Pardini, B.; Ferrero, G.; Tarallo, S.; Gallo, G.; Francavilla, A.; Licheri, N.; Trompetto, M.; Clerico, G.; Senore, C.; Peyre, S.; et al. A Fecal MicroRNA Signature by Small RNA Sequencing Accurately Distinguishes Colorectal Cancers: Results From a Multicenter Study. Gastroenterology 2023, 165, 582–599.e8. [Google Scholar] [CrossRef]
- Simmonds, R.E. Transient Up-Regulation of MiR-155-3p by Lipopolysaccharide in Primary Human Monocyte-Derived Macrophages Results in RISC Incorporation but Does Not Alter TNF Expression. Wellcome Open Res. 2019, 4, 43. [Google Scholar] [CrossRef]
- Khoshinani, H.M.; Afshar, S.; Pashaki, A.S.; Mahdavinezhad, A.; Nikzad, S.; Najafi, R.; Amini, R.; Gholami, M.H.; Khoshghadam, A.; Saidijam, M. Involvement of MiR-155/FOXO3a and MiR-222/PTEN in Acquired Radioresistance of Colorectal Cancer Cell Line. Jpn J. Radiol. 2017, 35, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Hussen, B.M.; Sulaiman, S.H.A.; Abdullah, S.R.; Hidayat, H.J.; Khudhur, Z.O.; Eslami, S.; Samsami, M.; Taheri, M. MiRNA-155: A Double-Edged Sword in Colorectal Cancer Progression and Drug Resistance Mechanisms. Int. J. Biol. Macromol. 2025, 299, 140134. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, A.; Khajepour, F.; Dehghani, M.; Razmara, E.; Zangouey, M.; Abadi, M.F.S.; Nezhad, R.B.A.; Dabiri, S.; Garshasbi, M. Hsa-MiR-194-5p and Hsa-MiR-195-5p Are down-Regulated Expressed in High Dysplasia HPV-Positive Pap Smear Samples Compared to Normal Cytology HPV-Positive Pap Smear Samples. BMC Infect. Dis. 2024, 24, 182. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Wang, X.; Zou, Y.; Tao, X.; Li, J.; Ye, M.; Xu, W.; Deng, Y.; Liu, L.; et al. Cancer-Secreted Exosomal MiR-1246 Promotes Colorectal Cancer Liver Metastasis by Activating Hepatic Stellate Cells. Mol. Med. 2025, 31, 68. [Google Scholar] [CrossRef]
- Cai, Y.; Yan, P.; Zhang, G.; Yang, W.; Wang, H.; Cheng, X. Long Non-Coding RNA TP73-AS1 Sponges MiR-194 to Promote Colorectal Cancer Cell Proliferation, Migration and Invasion via up-Regulating TGFα. Cancer Biomark. 2018, 23, 145–156. [Google Scholar] [CrossRef]
- Klicka, K.; Grzywa, T.M.; Mielniczuk, A.; Klinke, A.; Włodarski, P.K. The Role of MiR-200 Family in the Regulation of Hallmarks of Cancer. Front. Oncol. 2022, 12, 965231. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Tu, Y.; Yuan, H.; Shi, Z.; Guo, Y.; Gong, W.; Tu, S. Regulatory Functions of MiR-200b-3p in Tumor Development (Review). Oncol. Rep. 2022, 47, 96. [Google Scholar] [CrossRef]
- Wei, F.; Guo, H.; Zhao, R.; Jiang, Q.; Xie, Y. MAGP2, a Component of Extracellular Matrix, Is Upregulated in Colorectal Cancer and Negatively Modulated by MiR-200b-3p. Technol. Cancer Res. Treat. 2019, 18, 1533033819870777. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, H.; Zhang, Y.; Chen, W. MiR-200b-3p Mitigates Oxaliplatin Resistance via Targeting TUBB3 in Colorectal Cancer. J. Gene Med. 2020, 22, e3178. [Google Scholar] [CrossRef]
- Ye, Z.-H.; Wen, D.-Y.; Cai, X.-Y.; Liang, L.; Wu, P.-R.; Qin, H.; Yang, H.; He, Y.; Chen, G. The Protective Value of MiR-204-5p for Prognosis and Its Potential Gene Network in Various Malignancies: A Comprehensive Exploration Based on RNA-Seq High-Throughput Data and Bioinformatics. Oncotarget 2017, 8, 104960–104980. [Google Scholar] [CrossRef]
- Duca, M.; Malagolini, N.; Pucci, M.; Cogez, V.; Harduin-Lepers, A.; Dall’Olio, F. Transcription Factor FOXD1 and MiRNA-204-5p Play a Major Role in B4GALNT2 Downregulation in Colon Cancer. Sci. Rep. 2025, 15, 1821. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Tian, L.; Li, Y.C.; Wu, Z.M.; Huang, Z.H. Targeted Therapy for Colorectal Cancer through MiR-204-5p Delivered by Nanobody-Engineered Exosomes: An Experimental Study. Zhonghua Zhong Liu Za Zhi 2025, 47, 385–394. [Google Scholar] [CrossRef]
- Liang, Y.; Li, S.; Tang, L. MicroRNA 320, an Anti-Oncogene Target MiRNA for Cancer Therapy. Biomedicines 2021, 9, 591. [Google Scholar] [CrossRef]
- Zhu, Y.; Qi, M.; Wu, D. MiR-320d Inhibits Progression of EGFR-Positive Colorectal Cancer by Targeting TUSC3. Front. Genet. 2021, 12, 738559. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liang, S.; Xiao, B.; Hu, J.; Pang, Y.; Liu, Y.; Yang, J.; Ao, J.; Wei, L.; Luo, X. MiR-323a Regulates ErbB3/EGFR and Blocks Gefitinib Resistance Acquisition in Colorectal Cancer. Cell Death Dis. 2022, 13, 256. [Google Scholar] [CrossRef]
- Hong, Z.; Chen, Z.; Pan, J.; Shi, Z.; Wang, C.; Qiu, C. MicroRNA-323a-3p Negatively Regulates NEK6 in Colon Adenocarcinoma Cells. J. Oncol. 2022, 2022, 7007718. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Chen, X.; Xu, B.; Zhang, Y.; Liang, S.; Hu, J.; Liu, R.; Luo, X.; Wang, Y. Engineered Multitargeting Exosomes Carrying MiR-323a-3p for CRC Therapy. Int. J. Biol. Macromol. 2023, 247, 125794. [Google Scholar] [CrossRef]
- Im, J.; Nam, S.K.; Lee, H.S. MicroRNA-552 Expression in Colorectal Cancer and Its Clinicopathological Significance. J. Pathol. Transl. Med. 2021, 55, 125–131. [Google Scholar] [CrossRef]
- Li, P.; Cai, J.-X.; Han, F.; Wang, J.; Zhou, J.-J.; Shen, K.-W.; Wang, L.-H. Expression and Significance of MiR-654-5p and MiR-376b-3p in Patients with Colon Cancer. World J. Gastrointest. Oncol. 2020, 12, 492–502. [Google Scholar] [CrossRef]
- Yao, H.; Xia, D.; Li, Z.; Ren, L.; Wang, M.; Chen, W.; Hu, Z.; Yi, G.; Xu, L. MiR-382 Functions as Tumor Suppressor and Chemosensitizer in Colorectal Cancer. BioSci. Rep. 2019, 39, BSR20180441. [Google Scholar] [CrossRef]
- Jin, Y.; Zhan, X.; Zhang, B.; Chen, Y.; Liu, C.; Yu, L. Polydatin Exerts an Antitumor Effect Through Regulating the MiR-382/PD-L1 Axis in Colorectal Cancer. Cancer Biother. Radiopharm. 2020, 35, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Song, J.; Han, T.; Huang, M.; Jiang, H.; Qiao, H.; Shi, J.; Wang, Y. MiR-382 Inhibits Cell Growth and Invasion by Targeting NR2F2 in Colorectal Cancer. Mol. Carcinog. 2016, 55, 2260–2267. [Google Scholar] [CrossRef] [PubMed]
- Khalili, E.; Afgar, A.; Rajabpour, A.; Aghaee-Bakhtiari, S.H.; Jamialahmadi, K.; Teimoori-Toolabi, L. MiR-548c-3p through Suppressing Tyms and Abcg2 Increases the Sensitivity of Colorectal Cancer Cells to 5-Fluorouracil. Heliyon 2023, 9, e21775. [Google Scholar] [CrossRef]
- Lukosevicius, R.; Alzbutas, G.; Varkalaite, G.; Salteniene, V.; Tilinde, D.; Juzenas, S.; Kulokiene, U.; Janciauskas, D.; Poskiene, L.; Adamonis, K.; et al. 5′-Isoforms of MiR-1246 Have Distinct Targets and Stronger Functional Impact Compared with Canonical MiR-1246 in Colorectal Cancer Cells In Vitro. Int. J. Mol. Sci. 2024, 25, 2808. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Liu, T.; Rao, X.; Jie, X.; Chen, Y.; Wu, Z.; Deng, H.; Zhang, D.; Wang, J.; Wu, G. Targeting Diacylglycerol Kinase α Impairs Lung Tumorigenesis by Inhibiting Cyclin D3. Thorac. Cancer 2023, 14, 1179–1191. [Google Scholar] [CrossRef]
- Roshani, R.; Ashrafi, F.; Moslemi, E.; Khaledi, H.R. Alterations of MiR-4772-3p and MiR-3173-3p Expression in Tissue Compared to Normal Tissue by Real-Time PCR. Thrita J. Neuron 2022, 11, e129435. [Google Scholar] [CrossRef]
- Yu, W.-Q.; Ji, N.-F.; Gu, C.-J.; Sun, Z.-X.; Wang, Z.-X.; Chen, Z.-Q.; Ma, Y.; Wu, Z.-Z.; Wang, Y.-L.; Wu, C.-J.; et al. Downregulation of MiR-4772-3p Promotes Enhanced Regulatory T Cell Capacity in Malignant Pleural Effusion by Elevating Helios Levels. Chin. Med. J. 2019, 132, 2705–2715. [Google Scholar] [CrossRef]
- Yan, S.; Jiang, Y.; Liang, C.; Cheng, M.; Jin, C.; Duan, Q.; Xu, D.; Yang, L.; Zhang, X.; Ren, B.; et al. Exosomal MiR-6803-5p as Potential Diagnostic and Prognostic Marker in Colorectal Cancer. J. Cell Biochem. 2018, 119, 4113–4119. [Google Scholar] [CrossRef] [PubMed]
- Jenike, A.E.; Halushka, M.K. MiR-21: A Non-specific Biomarker of All Maladies. Biomark. Res. 2021, 9, 18. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Sun, G.; Zhang, X.; Ye, H.; Wang, P. Role of MiR-21 in the Diagnosis of Colorectal Cancer: Meta-Analysis and Bioinformatics. Pathol. Res. Pract. 2023, 248, 154670. [Google Scholar] [CrossRef]
- Fathi, S.; Aazzane, O.; Guendaoui, S.; Tawfiq, N.; Sahraoui, S.; Guessous, F.; Karkouri, M. A MiRNA Signature for Non-Invasive Colorectal Cancer Diagnosis in Morocco: MiR-21, MiR-29a and MiR-92a. Noncoding RNA 2025, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Zhu, K.; Wang, Y.; Yu, H.; Guo, J. Overexpression of MiR-21-5p Promotes Proliferation and Invasion of Colon Adenocarcinoma Cells through Targeting CHL1. Mol. Med. 2018, 24, 36. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, L.; Shan, N.; Ma, H.; Lu, S.; Chen, X.; Long, H. Establishing a Three-MiRNA Signature as a Prognostic Model for Colorectal Cancer through Bioinformatics Analysis. Aging 2021, 13, 19894–19907. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Leng, X.; Zhou, Q.; Wu, Y.; Sun, L.; Tan, Y.; Ni, H.; Dong, X.; Shen, T.; Liu, Y.; et al. Different MiR-21-3p Isoforms and Their Different Features in Colorectal Cancer. Int. J. Cancer 2017, 141, 2103–2111. [Google Scholar] [CrossRef]
- Ye, G.; Chen, Y. LncRNA FAM30A Predicts Adverse Prognosis and Regulates Cellular Processes in Colorectal Cancer via Modulating MiR-21-3p. Turk. J. Gastroenterol. 2024, 35, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.C.; Skiados, N.; Aftab, F.; Moreno, C.; Silva, L.; Corbilla, P.J.A.; Asara, J.M.; Hata, A.N.; Slack, F.J. MicroRNA-21 Guide and Passenger Strand Regulation of Adenylosuccinate Lyase-Mediated Purine Metabolism Promotes Transition to an EGFR-TKI-Tolerant Persister State. Cancer Gene Ther. 2022, 29, 1878–1894. [Google Scholar] [CrossRef]
- Yang, J.-R.; Yan, B.; Guo, Q.; Fu, F.; Wang, Z.; Yin, Z.; Wei, Y. The Role of MiR-29b in Cancer: Regulation, Function, and Signaling. OncoTargets Ther. 2015, 8, 539–548. [Google Scholar] [CrossRef]
- Leng, Y.; Chen, Z.; Ding, H.; Zhao, X.; Qin, L.; Pan, Y. Overexpression of MicroRNA-29b Inhibits Epithelial-Mesenchymal Transition and Angiogenesis of Colorectal Cancer through the ETV4/ERK/EGFR Axis. Cancer Cell Int. 2021, 21, 17. [Google Scholar] [CrossRef]
- Inoue, A.; Yamamoto, H.; Uemura, M.; Nishimura, J.; Hata, T.; Takemasa, I.; Ikenaga, M.; Ikeda, M.; Murata, K.; Mizushima, T.; et al. MicroRNA-29b Is a Novel Prognostic Marker in Colorectal Cancer. Ann. Surg. Oncol. 2015, 22, 1410–1418. [Google Scholar] [CrossRef]
- Wang, B.; Li, W.; Liu, H.; Yang, L.; Liao, Q.; Cui, S.; Wang, H.; Zhao, L. MiR-29b Suppresses Tumor Growth and Metastasis in Colorectal Cancer via Downregulating Tiam1 Expression and Inhibiting Epithelial-Mesenchymal Transition. Cell Death Dis. 2014, 5, e1335. [Google Scholar] [CrossRef]
- Basati, G.; Razavi, A.E.; Pakzad, I.; Malayeri, F.A. Circulating Levels of the MiRNAs, MiR-194, and MiR-29b, as Clinically Useful Biomarkers for Colorectal Cancer. Tumor Biol. 2016, 37, 1781–1788. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Guo, Y.; Chen, Y.; Wang, J.; Zhen, L.; Guo, X.; Liu, J.; Jing, C. The Diagnostic Efficacy and Biological Effects of MicroRNA-29b for Colon Cancer. Technol. Cancer Res. Treat. 2016, 15, 772–779. [Google Scholar] [CrossRef]
- Poudyal, D.; Cui, X.; Le, P.M.; Hofseth, A.B.; Windust, A.; Nagarkatti, M.; Nagarkatti, P.S.; Schetter, A.J.; Harris, C.C.; Hofseth, L.J. A Key Role of MicroRNA-29b for the Suppression of Colon Cancer Cell Migration by American Ginseng. PLoS ONE 2013, 8, e75034. [Google Scholar] [CrossRef] [PubMed]
- MirBase: Hsa-Mir-148a. Available online: https://www.mirbase.org/hairpin/MI0000253 (accessed on 25 February 2025).
- Martino, E.; Balestrieri, A.; Aragona, F.; Bifulco, G.; Mele, L.; Campanile, G.; Balestrieri, M.L.; D’Onofrio, N. MiR-148a-3p Promotes Colorectal Cancer Cell Ferroptosis by Targeting SLC7A11. Cancers 2023, 15, 4342. [Google Scholar] [CrossRef]
- Perkins, R.S.; Singh, R.; Abell, A.N.; Krum, S.A.; Miranda-Carboni, G.A. The Role of WNT10B in Physiology and Disease: A 10-Year Update. Front. Cell Dev. Biol. 2023, 11, 1120365. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yu, D.; Zhu, L.; Zhong, S.; Zhao, J.; Tang, J. MiR-149 in Human Cancer: A Systemic Review. J. Cancer 2018, 9, 375–388. [Google Scholar] [CrossRef]
- Lin, L.; Xu, F.; Zhou, C.; Quan, Z.; Jiang, H. Association of MiR-149 with Nutritional Risk Assessment and Postoperative Complications of Patients with Colorectal Cancer. Iran. Red Crescent Med. J. 2021, 23, e1259. [Google Scholar] [CrossRef]
- Kalkusova, K.; Taborska, P.; Stakheev, D.; Smrz, D. The Role of MiR-155 in Antitumor Immunity. Cancers 2022, 14, 5414. [Google Scholar] [CrossRef]
- Li, Y.; Duo, Y.; Bi, J.; Zeng, X.; Mei, L.; Bao, S.; He, L.; Shan, A.; Zhang, Y.; Yu, X. Targeted Delivery of Anti-MiR-155 by Functionalized Mesoporous Silica Nanoparticles for Colorectal Cancer Therapy. Int. J. Nanomed. 2018, 13, 1241–1256. [Google Scholar] [CrossRef]
- Testa, U.; Pelosi, E.; Castelli, G.; Labbaye, C. MiR-146 and MiR-155: Two Key Modulators of Immune Response and Tumor Development. Noncoding RNA 2017, 3, 22. [Google Scholar] [CrossRef]
- Hu, J.; Huang, S.; Liu, X.; Zhang, Y.; Wei, S.; Hu, X. MiR-155: An Important Role in Inflammation Response. J. Immunol. Res. 2022, 2022, 7437281. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, X.; Song, Y.; Si, M.; Sun, Y.; Liu, X.; Cui, S.; Qu, X.; Yu, X. Exosomal MiR-146a-5p and MiR-155-5p Promote CXCL12/CXCR7-Induced Metastasis of Colorectal Cancer by Crosstalk with Cancer-Associated Fibroblasts. Cell Death Dis. 2022, 13, 380. [Google Scholar] [CrossRef]
- Hino, K.; Tsuchiya, K.; Fukao, T.; Kiga, K.; Okamoto, R.; Kanai, T.; Watanabe, M. Inducible Expression of MicroRNA-194 Is Regulated by HNF-1α during Intestinal Epithelial Cell Differentiation. RNA 2008, 14, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shen, Z.; Gao, Z.; Zhao, G.; Wang, C.; Yang, Y.; Zhang, J.; Yan, Y.; Shen, C.; Jiang, K.; et al. MiR-194, Commonly Repressed in Colorectal Cancer, Suppresses Tumor Growth by Regulating the MAP4K4/c-Jun/MDM2 Signaling Pathway. Cell Cycle 2015, 14, 1046–1058. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, L.; Chen, X.; Zhou, C.; Rao, X.; Li, W.; Li, W.; Liu, Y.; Fang, L.; Zhang, H.; et al. MicroRNA–Messenger RNA Regulatory Network Mediates Disrupted TH17 Cell Differentiation in Depression. Front. Psychiatry 2022, 13, 824209. [Google Scholar] [CrossRef]
- Chang, H.-Y.; Ye, S.-P.; Pan, S.-L.; Kuo, T.-T.; Liu, B.C.; Chen, Y.-L.; Huang, T.-C. Overexpression of MiR-194 Reverses HMGA2-Driven Signatures in Colorectal Cancer. Theranostics 2017, 7, 3889–3900. [Google Scholar] [CrossRef]
- Cai, H.; Chen, X.; Tang, Y.; Deng, Y. MicroRNA-194 Modulates Epithelial–Mesenchymal Transition in Human Colorectal Cancer Metastasis. OncoTargets Ther. 2017, 10, 1269–1278. [Google Scholar] [CrossRef]
- Liu, T.; Fang, Y. MiR-194-3p Modulates the Progression of Colorectal Cancer by Targeting KLK10. Histol. Histopathol. 2022, 37, 301–309. [Google Scholar] [CrossRef]
- Lv, Z.; Wei, J.; You, W.; Wang, R.; Shang, J.; Xiong, Y.; Yang, H.; Yang, X.; Fu, Z. Disruption of the C-Myc/MiR-200b-3p/PRDX2 Regulatory Loop Enhances Tumor Metastasis and Chemotherapeutic Resistance in Colorectal Cancer. J. Transl. Med. 2017, 15, 257. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Zhu, Y.; Zhu, J.; Lai, Q. MiR-200b-3p Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer by Targeting Wnt1. Mol. Med. Rep. 2018, 18, 2571–2580. [Google Scholar] [CrossRef]
- Bai, J.-X.; Yan, B.; Zhao, Z.-N.; Xiao, X.; Qin, W.-W.; Zhang, R.; Jia, L.-T.; Meng, Y.-L.; Jin, B.-Q.; Fan, D.-M.; et al. Tamoxifen Represses MiR-200 MicroRNAs and Promotes Epithelial-to-Mesenchymal Transition by Up-Regulating c-Myc in Endometrial Carcinoma Cell Lines. Endocrinology 2013, 154, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Sun, G.; Peng, C.; Chen, J.; Quan, J.; Wu, C.; Lian, X.; Tang, W.; Xiang, D. ZEB1 Promotes Colorectal Cancer Cell Invasion and Disease Progression by Enhanced LOXL2 Transcription. Int. J. Clin. Exp. Pathol. 2021, 14, 9–23. [Google Scholar] [PubMed]
- Yang, X.; Li, G.; Tian, Y.; Wang, X.; Xu, J.; Liu, R.; Deng, M.; Shao, C.; Pan, Y.; Wu, X.; et al. Identifying the E2F3-MEX3A-KLF4 Signaling Axis That Sustains Cancer Cells in Undifferentiated and Proliferative State. Theranostics 2022, 12, 6865–6882. [Google Scholar] [CrossRef]
- Gong, W.; Guo, Y.; Yuan, H.; Chai, R.; Wan, Z.; Zheng, B.; Hu, X.; Chen, B.; Gao, S.; Dai, Q.; et al. Loss of Exosomal MiR-200b-3p from Hypoxia Cancer-Associated Fibroblasts Promotes Tumorigenesis and Reduces Sensitivity to 5-Flourouracil in Colorectal Cancer via Upregulation of ZEB1 and E2F3. Cancer Gene Ther. 2023, 30, 905–916. [Google Scholar] [CrossRef]
- Yang, F.; Bian, Z.; Xu, P.; Sun, S.; Huang, Z. MicroRNA-204-5p: A Pivotal Tumor Suppressor. Cancer Med. 2023, 12, 3185–3200. [Google Scholar] [CrossRef]
- Pucci, M.; Gomes Ferreira, I.; Orlandani, M.; Malagolini, N.; Ferracin, M.; Dall’Olio, F. High Expression of the Sda Synthase B4GALNT2 Associates with Good Prognosis and Attenuates Stemness in Colon Cancer. Cells 2020, 9, 948. [Google Scholar] [CrossRef]
- Yi, R.; Pasolli, H.A.; Landthaler, M.; Hafner, M.; Ojo, T.; Sheridan, R.; Sander, C.; O’Carroll, D.; Stoffel, M.; Tuschl, T.; et al. DGCR8-Dependent MicroRNA Biogenesis Is Essential for Skin Development. Proc. Natl. Acad. Sci. USA 2009, 106, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Hsa-MiR-320a Hairpin. Available online: https://www.mirbase.org/hairpin/MI0000542 (accessed on 27 February 2025).
- Tadano, T.; Kakuta, Y.; Hamada, S.; Shimodaira, Y.; Kuroha, M.; Kawakami, Y.; Kimura, T.; Shiga, H.; Endo, K.; Masamune, A.; et al. MicroRNA-320 Family Is Downregulated in Colorectal Adenoma and Affects Tumor Proliferation by Targeting CDK6. World J. Gastrointest. Oncol. 2016, 8, 532–542. [Google Scholar] [CrossRef]
- Wan, C.; Wen, J.; Liang, X.; Xie, Q.; Wu, W.; Wu, M.; Liu, Z. Identification of MiR-320 Family Members as Potential Diagnostic and Prognostic Biomarkers in Myelodysplastic Syndromes. Sci. Rep. 2021, 11, 183. [Google Scholar] [CrossRef]
- Tsikitis, V.L.; Larson, D.W.; Huebner, M.; Lohse, C.M.; Thompson, P.A. Predictors of Recurrence Free Survival for Patients with Stage II and III Colon Cancer. BMC Cancer 2014, 14, 336. [Google Scholar] [CrossRef]
- Hur, K.; Toiyama, Y.; Schetter, A.J.; Okugawa, Y.; Harris, C.C.; Boland, C.R.; Goel, A. Identification of a Metastasis-Specific MicroRNA Signature in Human Colorectal Cancer. JNCI J. Natl. Cancer Inst. 2015, 107, dju492. [Google Scholar] [CrossRef]
- Fang, Z.; Tang, J.; Bai, Y.; Lin, H.; You, H.; Jin, H.; Lin, L.; You, P.; Li, J.; Dai, Z.; et al. Plasma Levels of MicroRNA-24, MicroRNA-320a, and MicroRNA-423-5p Are Potential Biomarkers for Colorectal Carcinoma. J. Exp. Clin. Cancer Res. 2015, 34, 86. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Dong, T.; Zhou, H.; Wang, L.; Huang, A.; Feng, B.; Quan, Y.; Jin, R.; Zhang, W.; Sun, J.; et al. MiR-320a Suppresses Colorectal Cancer Progression by Targeting Rac1. Carcinogenesis 2014, 35, 886–895. [Google Scholar] [CrossRef]
- Wan, L.-Y.; Deng, J.; Xiang, X.-J.; Zhang, L.; Yu, F.; Chen, J.; Sun, Z.; Feng, M.; Xiong, J.-P. MiR-320 Enhances the Sensitivity of Human Colon Cancer Cells to Chemoradiotherapy in Vitro by Targeting FOXM1. Biochem. Biophys. Res. Commun. 2015, 457, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Vishnubalaji, R.; Hamam, R.; Yue, S.; Al-Obeed, O.; Kassem, M.; Liu, F.-F.; Aldahmash, A.; Alajez, N.M. MicroRNA-320 Suppresses Colorectal Cancer by Targeting SOX4, FOXM1, and FOXQ1. Oncotarget 2016, 7, 35789–35802. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, Q.; Guo, K.; Qin, W.; Liao, W.; Wang, S.; Ding, Y.; Lin, J. TUSC3 Promotes Colorectal Cancer Progression and Epithelial-Mesenchymal Transition (EMT) through WNT/β-Catenin and MAPK Signalling. J. Pathol. 2016, 239, 60–71. [Google Scholar] [CrossRef]
- Jin, K.; Li, T.; van Dam, H.; Zhou, F.; Zhang, L. Molecular Insights into Tumour Metastasis: Tracing the Dominant Events. J. Pathol. 2017, 241, 567–577. [Google Scholar] [CrossRef]
- Lee, I.H.; Kim, G.; Kwak, S.G.; Baek, D.W.; Kang, B.W.; Kim, H.J.; Park, S.Y.; Park, J.S.; Choi, G.-S.; Hur, K.; et al. Predictive Value of Circulating MiRNAs in Lymph Node Metastasis for Colon Cancer. Genes 2021, 12, 176. [Google Scholar] [CrossRef]
- Krasinskas, A.M. EGFR Signaling in Colorectal Carcinoma. Patholog. Res. Int. 2011, 2011, 932932. [Google Scholar] [CrossRef]
- Zhang, N.; Yin, Y.; Xu, S.-J.; Chen, W.-S. 5-Fluorouracil: Mechanisms of Resistance and Reversal Strategies. Molecules 2008, 13, 1551–1569. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, C.; Hou, Z.; Wang, G.; Lv, J.; Wang, H.; Yang, J.; Zhang, Z.; Zhang, H. Serum MicroRNA-376 Family as Diagnostic and Prognostic Markers in Human Gliomas. Cancer Biomark. 2017, 19, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Sundram, V.; Ganju, A.; Hughes, J.E.; Khan, S.; Chauhan, S.C.; Jaggi, M. Protein Kinase D1 Attenuates Tumorigenesis in Colon Cancer by Modulating β-Catenin/T Cell Factor Activity. Oncotarget 2014, 5, 6867–6884. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, J.; Ren, Y.; Zuo, Z.; Ni, S.; Cai, J. MEG3 Can Affect the Proliferation and Migration of Colorectal Cancer Cells through Regulating MiR-376/PRKD1 Axis. Am. J. Transl. Res. 2019, 11, 5740–5751. [Google Scholar]
- Bhavsar, S.; Lokke, C.; Flaegstad, T.; Einvik, C. Hsa-miR-376c-3p Targets Cyclin D1 and Induces G1-cell Cycle Arrest in Neuroblastoma Cells. Oncol. Lett. 2018, 16, 6786–6794. [Google Scholar] [CrossRef]
- Wang, K.; Jin, J.; Ma, T.; Zhai, H. MiR-376c-3p Regulates the Proliferation, Invasion, Migration, Cell Cycle and Apoptosis of Human Oral Squamous Cancer Cells by Suppressing HOXB7. Biomed. Pharmacother. 2017, 91, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Tu, L.; Zhao, E.; Zhao, W.; Zhang, Z.; Tang, D.; Zhang, Y.; Wang, C.; Zhuang, C.; Cao, H. Hsa-MiR-376c-3p Regulates Gastric Tumor Growth Both In Vitro and In Vivo. Biomed. Res. Int. 2016, 2016, 9604257. [Google Scholar] [CrossRef]
- Fraile-Bethencourt, E.; Khou, S.; Wilson, R.; Baris, A.; Ruhl, R.; Espinosa-Diez, C.; Anand, S. DNA Damage-Induced LncRNA MEG9 Impacts Angiogenesis. bioRxiv 2022. [Google Scholar] [CrossRef]
- Sakshi, S.; Jayasuriya, R.; Ganesan, K.; Xu, B.; Ramkumar, K.M. Role of CircRNA-MiRNA-MRNA Interaction Network in Diabetes and Its Associated Complications. Mol. Ther. Nucleic Acids 2021, 26, 1291–1302. [Google Scholar] [CrossRef]
- Xie, L.; Pan, Z. Circular RNA Circ_0000467 Regulates Colorectal Cancer Development via MiR-382-5p/EN2 Axis. Bioengineered 2021, 12, 886–897. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, X.; Chen, D.; Zhang, L.; Pan, Y.; Liu, D.; Shen, M.; Chen, M. Circ_0022340 Promotes Colorectal Cancer Progression via HNRNPC/EBF1/SYT7 or MiR-382-5p/ELK1 Axis. Cell Mol. Biol. 2022, 68, 107–116. [Google Scholar] [CrossRef]
- Wang, J.; Luo, J.; Liu, G.; Li, X. Circular RNA Hsa_circ_0008285 Inhibits Colorectal Cancer Cell Proliferation and Migration via the MiR-382-5p/PTEN Axis. Biochem. Biophys. Res. Commun. 2020, 527, 503–510. [Google Scholar] [CrossRef]
- Liang, T.; Guo, L.; Liu, C. Genome-Wide Analysis of Mir-548 Gene Family Reveals Evolutionary and Functional Implications. J. Biomed. Biotechnol. 2012, 2012, 679563. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, M.; Yin, X.; Zhang, W.; Li, H.; Gao, C. Exosomes-Derived MiR-548am-5p Promotes Colorectal Cancer Progression. Cell Mol. Biol. 2023, 69, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Gu, R.; Yan, B. Downregulation of Exosome-encapsulated MiR-548c-5p Is Associated with Poor Prognosis in Colorectal Cancer. J. Cell Biochem. 2019, 120, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Ivashchenko, A.T.; Issabekova, A.S.; Berillo, O.A. MiR-1279, MiR-548j, MiR-548m, and MiR-548d-5p Binding Sites in CDSs of Paralogous and Orthologous PTPN12, MSH6, and ZEB1 Genes. Biomed. Res. Int. 2013, 2013, 902467. [Google Scholar] [CrossRef]
- Shen, N.; Li, L.; Xu, W.; Tian, J.; Yang, Y.; Zhu, Y.; Gong, Y.; Ke, J.; Gong, J.; Chang, J.; et al. A Missense Variant in PTPN12 Associated with the Risk of Colorectal Cancer by Modifying Ras/MEK/ERK Signaling. Cancer Epidemiol. 2019, 59, 109–114. [Google Scholar] [CrossRef]
- Nielsen, D.L.; Palshof, J.; Brünner, N.; Stenvang, J.; Viuff, B.M. Implications of ABCG2 Expression on Irinotecan Treatment of Colorectal Cancer Patients: A Review. Int. J. Mol. Sci. 2017, 18, 1926. [Google Scholar] [CrossRef]
- Zhang, F.; Ye, J.; Guo, W.; Zhang, F.; Wang, L.; Han, A. TYMS-TM4SF4 Axis Promotes the Progression of Colorectal Cancer by EMT and Upregulating Stem Cell Marker. Am. J. Cancer Res. 2022, 12, 1009–1026. [Google Scholar]
- Xu, Y.; Zhong, Y.-D.; Zhao, X.-X. MiR-548b Suppresses Proliferative Capacity of Colorectal Cancer by Binding WNT2. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 10535–10541. [Google Scholar] [CrossRef]
- Arabzadeh, A.; Farzollahpour, M.; Seyedsadegi, M.; Pourfarzi, F.; Ghodsinezhad, V.; Bandehagh, H.; Pahlavan, Y. Expression Level of MiR-548aa in Tissue Samples of Patients with Colorectal Cancer. Mol. Biol. Rep. 2025, 52, 127. [Google Scholar] [CrossRef]
- Zhu, M.; Luo, Y.; Xu, A.; Xu, X.; Zhong, M.; Ran, Z. Long Noncoding RNA TCONS_00026334 Is Involved in Suppressing the Progression of Colorectal Cancer by Regulating MiR-548n/TP53INP1 Signaling Pathway. Cancer Med. 2020, 9, 8639–8649. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Li, C.; Ma, L.; Wu, D.; Liu, Y.; Zhao, L.; Wang, M. Potentially Functional Genetic Variants in Interferon Regulatory Factor Family Genes Are Associated with Colorectal Cancer Survival. Mol. Carcinog. 2024, 63, 1669–1681. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Han, B.; Gao, S.; Wang, X.; Wang, Z.; Wang, F.; Zhang, J.; Xu, D.; Sun, B. Exosome-Encapsulated MicroRNAs as Circulating Biomarkers for Colorectal Cancer. Oncotarget 2017, 8, 60149–60158. [Google Scholar] [CrossRef]
- Ge, J.; Li, J.; Na, S.; Wang, P.; Zhao, G.; Zhang, X. MiR-548c-5p Inhibits Colorectal Cancer Cell Proliferation by Targeting PGK1. J. Cell Physiol. 2019, 234, 18872–18878. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, M.; Deng, B. MiR-548a-3p Weakens the Tumorigenesis of Colon Cancer Through Targeting TPX2. Cancer Biother. Radiopharm. 2022, 37, 917–926. [Google Scholar] [CrossRef]
- Sahoo, K.; Sundararajan, V. IL-1β and Associated Molecules as Prognostic Biomarkers Linked with Immune Cell Infiltration in Colorectal Cancer: An Integrated Statistical and Machine Learning Approach. Discov. Oncol. 2025, 16, 252. [Google Scholar] [CrossRef]
- Xu, Y.-F.; Hannafon, B.N.; Khatri, U.; Gin, A.; Ding, W.-Q. The Origin of Exosomal MiR-1246 in Human Cancer Cells. RNA Biol. 2019, 16, 770–784. [Google Scholar] [CrossRef]
- Pruseth, B.; Ghosh, A.; Pradhan, D.; Purkait, S.; Guttula, P.K. Analysis of Overexpressed MiRNA in Circulation and Cancer Tissue to Develop a Potential MicroRNA Panel for the Diagnosis of Colorectal Cancer. MicroRNA 2021, 10, 250–262. [Google Scholar] [CrossRef]
- Broseghini, E.; Dika, E.; Londin, E.; Ferracin, M. MicroRNA Isoforms Contribution to Melanoma Pathogenesis. Noncoding RNA 2021, 7, 63. [Google Scholar] [CrossRef]
- Si, G.; Li, S.; Zheng, Q.; Zhu, S.; Zhou, C. MiR-1246 Shuttling from Fibroblasts Promotes Colorectal Cancer Cell Migration. Neoplasma 2021, 68, 317–324. [Google Scholar] [CrossRef]
- He, X.; Lan, H.; Jin, K.; Liu, F. Cholesterol in Colorectal Cancer: An Essential but Tumorigenic Precursor? Front. Oncol. 2023, 13, 1276654. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Eng, C.; Shen, J.; Lu, Y.; Takata, Y.; Mehdizadeh, A.; Chang, G.J.; Rodriguez-Bigas, M.A.; Li, Y.; Chang, P.; et al. Serum Exosomal MiR-4772-3p Is a Predictor of Tumor Recurrence in Stage II and III Colon Cancer. Oncotarget 2016, 7, 76250–76260. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.; Wei, Y.; Li, J.; Xu, M.; Xie, H.; Huang, J.; Deng, L.; Li, C. MiRNAs and Neutrophil-Related Membrane Proteins from Plasma-Derived Extracellular Vesicles for Early Prediction of Organ Dysfunction and Prognosis in Septic Patients. J. Inflamm. Res. 2024, 17, 10347–10369. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Cheng, M.; Duan, Q.; Wang, Z.; Gao, W.; Ren, B.; Xu, D. MiR-6803-5p Promotes Cancer Cell Proliferation and Invasion via PTPRO/NF- κ B Axis in Colorectal Cancer. Mediat. Inflamm. 2019, 2019, 8128501. [Google Scholar] [CrossRef]
miRNA | Type of miRNA | Main Targets | Pathways | Clinical Significance | Detected in: | Source |
---|---|---|---|---|---|---|
miR-21-5p | onco-miRNA | TGFβR2, CHL1 | TGF-β, PI3K/Akt | Diagnostic biomarker, resistance to treatment | Plasma, tissue | [56,57] |
miR-29b-3p | suppressor | Wnt, TGFβ, MAPK, TIAM1 | Wnt/β-catenin, EMT | Prognostic biomarker, increase sensitivity to 5-FU | Plasma, tissue | [58,59] |
miR-148a-3p | suppressor | SLC7A11, GPX4, MHC I (CANX), WNT10b | Ferroptosis, Wnt | Tumour suppression, immunomodulation | Tissue | [48,60,61] |
miR-149-3p | suppressor | CYBRD1, HOXB8 | Wnt, AKT | Increase sensitivity to 5-FU | Plasma, stool | [62,63,64] |
miR-155-5p | onco-miRNA | PTEN, FOXO3a, NF-κB | PI3K/Akt, immune response | Regulator of immune systems, metastasis formation, inflammatory response | Exosomes, tissue | [65,66,67] |
miR-194-5p/3p | suppressor | MAP4K4, KLK10, TGFα, VAPA | MAPK, EMT | Tumour growth and metastasis inhibitor | Tissue | [68,69,70] |
miR-200b-3p | suppressor | Wnt1, Akt2, ZEB1, E2F3, MAGP2 | Wnt/β-catenin, c-Myc | Inhibits metastasis and treatment resistance | Tissue, exosomes | [71,72,73,74] |
miR-204-5p | suppressor | CREB1, RAB22, B4GALNT2 | Wnt/β-catenin, glicosylation | Tumour growth and metastasis inhibitor | Tissue | [75,76,77] |
miR-320a-3p | suppressor | CDK6, FOXM1, β-catenin, TUSC3 | Wnt, MAPK | Diagnostic biomarker (in a panel), chemosensitivity | Plasma, exosomes | [78,79] |
miR-323a-3p | suppressor | EGFR/Erb3, TYMS, NEK6 | PI3K/Akt, EGFR | Increase sensitivity to 5-FU and TKI | Tissue | [80,81,82] |
MiR-376b-3p | suppressor | SMAD, PRKD1 | TGF-β, β-catenin | Prognostic biomarker | Plasma | [83,84] |
miR-382-5p | suppressor | NRF2, PD-L1, KLF12, HIPK3 | Metabolic and metastatic pathways | Inhibits metastases, biomarker | Tissue | [85,86,87] |
miR-548c-3p | Various | TYMS, ABCG2, | EMT, mTOR, PI3K/Akt | Modulates sensitivity to 5-FU | Tissue, exosomes | [88] |
miR-607-5p | suppressor | Replications genes | undefined | Diagnostic biomarker (stool miRNA panel) | Stool | [64] |
miR-1246 | onco-miRNA | AXIN, CCND3, INSIG1, p53 | Wnt/β-catenin, cell cycle | Promotes metastases | Exosomes, plasma | [67,89,90] |
miR-4772-3p | suppressor | TFRC, RTN4I, RAB9A, IKZF2 | EMT, immunologic regulation | Prognostic and relapse biomarker | Plasma, exosomes | [91,92] |
miR-6803-5p | onco-miRNA | PTPRO | NF-κB, EMT | Worse prognosis biomarker, correlated with metastases | Tissue | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sychowski, G.; Romanowicz, H.; Ciesielski, W.; Hogendorf, P.; Durczyński, A.; Smolarz, B. Diagnostic and Therapeutic Potential of Selected microRNAs in Colorectal Cancer: A Literature Review. Cancers 2025, 17, 2135. https://doi.org/10.3390/cancers17132135
Sychowski G, Romanowicz H, Ciesielski W, Hogendorf P, Durczyński A, Smolarz B. Diagnostic and Therapeutic Potential of Selected microRNAs in Colorectal Cancer: A Literature Review. Cancers. 2025; 17(13):2135. https://doi.org/10.3390/cancers17132135
Chicago/Turabian StyleSychowski, Grzegorz, Hanna Romanowicz, Wojciech Ciesielski, Piotr Hogendorf, Adam Durczyński, and Beata Smolarz. 2025. "Diagnostic and Therapeutic Potential of Selected microRNAs in Colorectal Cancer: A Literature Review" Cancers 17, no. 13: 2135. https://doi.org/10.3390/cancers17132135
APA StyleSychowski, G., Romanowicz, H., Ciesielski, W., Hogendorf, P., Durczyński, A., & Smolarz, B. (2025). Diagnostic and Therapeutic Potential of Selected microRNAs in Colorectal Cancer: A Literature Review. Cancers, 17(13), 2135. https://doi.org/10.3390/cancers17132135