Benign/Cancer Diagnostics Based on X-Ray Diffraction: Comparison of Data Analytics Approaches
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Breast Tissue Specimens
2.1.2. X-Ray Diffraction (XRD) Measurements
2.2. Data Analysis
2.2.1. Image Preprocessing
2.2.2. Fourier Coefficient Representation
2.2.3. Measurements-to-Patients Transition
2.2.4. Data Analysis Procedure and Machine Learning Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coles, C.E.; Earl, H.; Anderson, B.O.; Barrios, C.H.; Bienz, M.; Bliss, J.M.; Cameron, D.A.; Cardoso, F.; Cui, W.; Francis, P.A.; et al. The Lancet Breast Cancer Commission. Lancet 2024, 403, 1895–1950. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer (accessed on 18 March 2025).
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Migowski, A. Early detection of breast cancer and the interpretation of results of survival studies. Cienc. Saude Coletiva 2015, 20, 1309. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.; McGale, P.; Probert, J.; Broggio, J.; Charman, J.; Darby, S.C.; Kerr, A.J.; Whelan, T.; Cutter, D.J.; Mannu, G.; et al. Breast cancer mortality in 500,000 women with early invasive breast cancer diagnosed in England, 1993–2015: Population based observational cohort study. BMJ 2023, 381, e074684. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.rcpath.org/discover-pathology/public-affairs/the-pathology-workforce.html (accessed on 18 March 2025).
- Lewis, R.A.; Rogers, K.D.; Hall, C.J.; Towns-Andrews, E.; Slawson, S.; Evans, A.; Pinder, S.E.; Ellis, I.O.; Boggis, C.R.M.; Hufton, A.P.; et al. Breast cancer diagnosis using scattered X-rays. J. Synchrotron Rad. 2000, 7, 348–352. [Google Scholar] [CrossRef]
- Fernandez, M.; Keyrilainen, J.; Serimaa, R.; Torkkeli, M.; Karjalainen-Lindsberg, M.-L.; Tenhunen, M.; Thomlinson, W.; Urban, V.; Suortti, P. Small-angle x-ray scattering studies of human breast tissue samples. Phys. Med. Biol. 2002, 47, 577–592. [Google Scholar] [CrossRef]
- Sidhu, S.; Siu, K.K.W.; Falzon, G.; Nazaretian, S.; Hart, S.A.; Fox, J.G.; Susil, B.J.; Lewis, R.A. X-ray scattering for classifying tissue types associated with breast disease. Med. Phys. 2008, 35, 4660–4670. [Google Scholar] [CrossRef]
- Conceição, A.L.; Antoniassi, M.; Poletti, M.E. Analysis of breast cancer by small angle X-ray scattering. Analyst 2009, 134, 1077–1082. [Google Scholar] [CrossRef]
- Sidhu, S.; Siu, K.K.W.; Falzon, G.; Hart, S.A.; Fox, J.G.; Lewis, R.A. Mapping structural changes in breast tissue disease using x-ray scattering. Med. Phys. 2009, 36, 3211–3217. [Google Scholar] [CrossRef]
- Conceiçao, A.L.C.; Antoniassi, M.; Geraldelli, W.; Poletti, M.E. Mapping transitions between healthy and pathological lesions in human breast tissues by diffraction enhanced imaging computed tomography (DEI-CT) and small angle x-ray scattering (SAXS). Radiat. Phys. Chem. 2014, 95, 313–316. [Google Scholar] [CrossRef]
- Conceicao, A.L.C.; Meehan, K.; Antoniassi, M.; Piacenti-Silva, M.; Poletti, M.E. The influence of hydration on the architectural rearrangement of normal and neoplastic human breast tissues. Heliyon 2019, 5, e01219. [Google Scholar] [CrossRef] [PubMed]
- Mohd Sobri, S.N.; Abdul Sani, S.F.; Sabtu, S.N.; Looi, L.M.; Chiew, S.F.; Pathmanathan, D.; Chio-Srichan, S.; Bradley, D.A. Structural Studies of Epithelial Mesenchymal Transition Breast Tissues. Sci. Rep. 2020, 10, 1997. [Google Scholar] [CrossRef] [PubMed]
- Kidane, G.; Speller, R.D.; Royle, G.J.; Hanby, A.M. X-ray scatter signatures for normal and neoplastic breast tissues. Phys. Med. Biol. 1999, 44, 1791. [Google Scholar] [CrossRef]
- Poletti, M.E.; Gonçalves, O.D.; Mazzaro, I. X-ray scattering from human breast tissues and breast-equivalent materials. Phys. Med. Biol. 2002, 47, 47–63. [Google Scholar] [CrossRef]
- Oliveira, O.R.; Conceiçao, A.L.C.; Cunha, D.M.; Poletti, M.E.; Pela, C.A. Identification of neoplasias of breast tissues using a powder diffractometer. J. Radiat. Res. 2008, 49, 527–532. [Google Scholar] [CrossRef]
- Conceicao, A.L.C.; Antoniassi, M.; Poletti, M.E. Assessment of the differential linear coherent scattering coefficient of biological samples. Nucl. Instr. Meth. Phys. Res. A 2010, 619, 67–70. [Google Scholar] [CrossRef]
- Griffiths, J.A.; Royle, G.J.; Hanby, A.M.; Horrocks, J.A.; Bohndiek, S.E.; Speller, R.D. Correlation of energy dispersive diffraction signatures and microCT of small breast tissue samples with pathological analysis. Phys. Med. Biol. 2007, 52, 6151–6164. [Google Scholar] [CrossRef]
- Cunha, D.M.; Oliveira, O.R.; Pérez, C.A.; Poletti, M.E. X-ray scattering profiles of some normal and malignant human breast tissues. X-ray Spectrom. 2006, 35, 370–374. [Google Scholar] [CrossRef]
- Conceicao, A.L.C.; Antoniassi, M.; Cunha, D.M.; Ribeiro-Silva, A.; Poletti, M.E. Multivariate analysis of the scattering profiles of healthy and pathological human breast tissues. Nucl. Instr. Meth. Phys. Res. A 2011, 652, 870–873. [Google Scholar] [CrossRef]
- Available online: https://breastcancernow.org/our-research/information-for-researchers/apply-to-our-biobank/ (accessed on 18 March 2025).
- Denisov, S.; Blinchevsky, B.; Friedman, J.; Gerbelli, B.; Ajeer, A.; Adams, L.; Greenwood, C.; Rogers, K.; Mourokh, L.; Lazarev, P. Vitacrystallography: Structural Biomarkers of Breast Cancer Obtained by X-ray Scattering. Cancers 2024, 16, 2499. [Google Scholar] [CrossRef]
- Alekseev, A.; Yuk, D.; Lazarev, A.; Labelle, D.; Mourokh, L.; Lazarev, P. Canine Cancer Diagnostics by X-ray Diffraction of Claws. Cancers 2024, 16, 2422. [Google Scholar] [CrossRef] [PubMed]
- Alekseev, A.; Avdieiev, O.; Murokh, S.; Yuk, D.; Lazarev, A.; Labelle, D.; Mourokh, L.; Lazarev, P. Fourier Transformation-Based Analysis of X-Ray Diffraction Pattern of Keratin for Cancer Detection. Crystals 2025, 15, 57. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Available online: https://scikit-learn.org/stable/ (accessed on 18 March 2025).
- Available online: https://lightgbm.readthedocs.io/en/stable/ (accessed on 18 March 2025).
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Available online: https://xgboost.readthedocs.io/en/stable/ (accessed on 18 March 2025).
Train | Test | Total | |||||
---|---|---|---|---|---|---|---|
Benign | Cancer | Total | Benign | Cancer | Total | ||
Patients | 35 | 144 | 179 | 12 | 20 | 32 | 211 |
Samples | 80 | 283/284 | 363/364 | 25 | 40 | 65 | 428/429 |
Measurements | 623/622 | 1960/1969 | 2583/2591 | 208 | 256 | 464 | 3047/3055 |
Steps and Classifiers | Sen_M | Spec_M | AUC_M | BA_M | Sen_P | Spec_P | AUC_P | BA_P | |
---|---|---|---|---|---|---|---|---|---|
1W | 2DF, BR or BRF, LPF, Re, LR | 0.54 | 0.99 | 0.77 | 0.78 | 0.95 | 1 | 0.97 | 0.975 |
2W | 2DF, BR, Am, LR | 0.85 | 0.82 | 0.91 | 0.83 | 1 | 0.92 | 0.95 | 0.96 |
3W | 2DF, BR, Am, XGB | 0.94 | 0.66 | 0.87 | 0.8 | 1 | 0.92 | 0.93 | 0.96 |
4W | 2DF, LPF, STD, Re, PCA_50, XGB | 0.95 | 0.74 | 0.9 | 0.845 | 0.95 | 0.92 | 0.96 | 0.935 |
5W | 2DF, BR or BRF, Re, XGB | 0.88 | 0.84 | 0.93 | 0.86 | 0.95 | 0.92 | 0.95 | 0.935 |
Steps and Classifiers | Sen_M | Spec_M | AUC_M | BA_M | Sen_P | Spec_P | AUC_P | BA_P | |
---|---|---|---|---|---|---|---|---|---|
1S | 1D, STD, LR | 0.8 | 0.91 | 0.905 | 0.855 | 1 | 0.92 | 0.95 | 0.96 |
2S | 2DF, BR or BRF, LPF, Re, SVC | 0.92 | 0.76 | 0.91 | 0.84 | 0.9 | 1 | 0.97 | 0.95 |
3S | 1D, STD, SVC | 0.92 | 0.88 | 0.935 | 0.9 | 0.95 | 0.92 | 0.95 | 0.935 |
4S | 2DF, BR, Am, SVC | 0.76 | 0.87 | 0.89 | 0.815 | 0.9 | 0.92 | 0.92 | 0.91 |
5S | 1D, STD, PCA_3, SVC | 0.8 | 0.92 | 0.89 | 0.86 | 0.9 | 0.92 | 0.915 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alekseev, A.; Shcherbakov, V.; Avdieiev, O.; Denisov, S.A.; Kubytskyi, V.; Blinchevsky, B.; Murokh, S.; Ajeer, A.; Adams, L.; Greenwood, C.; et al. Benign/Cancer Diagnostics Based on X-Ray Diffraction: Comparison of Data Analytics Approaches. Cancers 2025, 17, 1662. https://doi.org/10.3390/cancers17101662
Alekseev A, Shcherbakov V, Avdieiev O, Denisov SA, Kubytskyi V, Blinchevsky B, Murokh S, Ajeer A, Adams L, Greenwood C, et al. Benign/Cancer Diagnostics Based on X-Ray Diffraction: Comparison of Data Analytics Approaches. Cancers. 2025; 17(10):1662. https://doi.org/10.3390/cancers17101662
Chicago/Turabian StyleAlekseev, Alexander, Viacheslav Shcherbakov, Oleksii Avdieiev, Sergey A. Denisov, Viacheslav Kubytskyi, Benjamin Blinchevsky, Sasha Murokh, Ashkan Ajeer, Lois Adams, Charlene Greenwood, and et al. 2025. "Benign/Cancer Diagnostics Based on X-Ray Diffraction: Comparison of Data Analytics Approaches" Cancers 17, no. 10: 1662. https://doi.org/10.3390/cancers17101662
APA StyleAlekseev, A., Shcherbakov, V., Avdieiev, O., Denisov, S. A., Kubytskyi, V., Blinchevsky, B., Murokh, S., Ajeer, A., Adams, L., Greenwood, C., Rogers, K., Jones, L. J., Mourokh, L., & Lazarev, P. (2025). Benign/Cancer Diagnostics Based on X-Ray Diffraction: Comparison of Data Analytics Approaches. Cancers, 17(10), 1662. https://doi.org/10.3390/cancers17101662