The Implication of NT-proBNP in the Assessment of the Clinical Phenotype of Patients with Type 2 Diabetes Mellitus, Without Established Cardiovascular Disease
Abstract
:1. Introduction
2. Material and Methods
2.1. Setting
2.2. Sample
2.3. Bioethics
2.4. Measurements
2.5. Cardiac Ultrasound and Ergometric Parameters
2.6. Cardiac Magnetic Resonance Imaging
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Limitations
4.2. Novelties—Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC/AHA | American College of Cardiology and American Heart Association |
ASCVD | Atherosclerotic Cardiovascular Disease |
CAD | Coronary artery disease |
CI | 95% confidence intervals |
CMR | Cardiac magnetic resonance imaging |
CPET | Cardiopulmonary exercise test |
CVD | Cardiovascular disease |
E/A | Early-to-late diastolic transmitral flow velocity |
E/e′ | Early diastolic mitral inflow velocity to early diastolic mitral annulus velocity |
EDV | End-diastolic volume |
eGFR | Estimated glomerular filtration rate |
ESC/EASD | European Society of Cardiology/European Association for the Study of Diabetes |
ESV | End-systolic volume |
FA | Flip angle |
FOV | Field of view |
GLPS | Global longitudinal strain of the left ventricle |
HbA1c | Glycated hemoglobin |
HFpEF | Heart failure with preserved ejection fraction |
HF | Heart failure |
LA | Left atrial |
LV | Left ventricular/ventricle |
LVEF | Left ventricular ejection fraction |
LVM | Left ventricular mass |
METS | Metabolic equivalents per min/day |
NP | Natriuretic peptides |
non-HDL | Non-high-density lipoprotein |
NT-proBNP | N-terminal pro b-type natriuretic peptide |
OR | Odds ratio |
OUES | Uptake efficiency slope |
PS | Peak strain |
RAAS | Renin–angiotensin–aldosterone system |
RAS | Renin Angiotensin System |
SRV | Systolic tissue doppler of right ventricle |
SSFP | Steady-state free precession |
SV | Stroke volume |
TDI | Tissue doppler imaging |
T2DM | Diabetes mellitus type 2 |
TE | Time to echo |
TR | Repetition time |
VE | Ventilation |
VE/VCO2 | Ratio of minute ventilation/carbon dioxide production |
VO2max | Maximum oxygen consumption |
VO2 pre % | Predicted Maximal Oxygen Uptake |
VO2/HR | Ratio of oxygen consumption to heart rate (otherwise oxygen pulse) |
References
- Wilson Tang, W.H.; Maroo, A.; Young, J.B. Ischemic heart disease and congestive heart failure in diabetic patients. Med. Clin. N. Am. 2004, 88, 1037–1061. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, S.; Arcidiacono, B.; Chiefari, E.; Brunetti, A.; Indolfi, C.; Foti, D.P. Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links. Front. Endocrinol. 2018, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ai, C.; Bai, M.; Niu, J.; Zhang, Z. NLRP3 Inflammasome/Pyroptosis: A Key Driving Force in Diabetic Cardiomyopathy. Int. J. Mol. Sci. 2022, 23, 10632. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Wang, Y.; Liu, H.; Shi, M.; Wang, J.; Wang, Y. The Molecular Mechanisms of Defective Copper Metabolism in Diabetic Cardiomyopathy. Oxidative Med. Cell. Longev. 2022, 2022, 5418376. [Google Scholar] [CrossRef]
- Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circ. Res. 2018, 122, 624–638. [Google Scholar] [CrossRef]
- Longo, M.; Scappaticcio, L.; Cirillo, P.; Maio, A.; Carotenuto, R.; Maiorino, M.I.; Bellastella, G.; Esposito, K. Glycemic Control and the Heart: The Tale of Diabetic Cardiomyopathy Continues. Biomolecules 2022, 12, 272. [Google Scholar] [CrossRef]
- Huelsmann, M.; Neuhold, S.; Resl, M.; Strunk, G.; Brath, H.; Francesconi, C.; Adlbrecht, C.; Prager, R.; Luger, A.; Pacher, R.; et al. PONTIAC (NT-proBNP Selected PreventiOn of cardiac eveNts in a populaTion of dIabetic patients without A history of Cardiac disease): A Prospective Randomized Controlled Trial. J. Am. Coll. Cardiol. 2013, 62, 1365–1372. [Google Scholar] [CrossRef]
- Welsh, P.; Woodward, M.; Hillis, G.S.; Li, Q.; Marre, M.; Williams, B.; Poulter, N.; Ryan, L.; Harrap, S.; Patel, A.; et al. Do Cardiac Biomarkers NT-proBNP and hsTnT Predict Microvascular Events in Patients With Type 2 Diabetes? Results From the ADVANCE Trial. Diabetes Care 2014, 37, 2202–2210. [Google Scholar] [CrossRef]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes: Developed by the task force on the management of cardiovascular disease in patients with diabetes of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar]
- American Diabetes Association Professional Practice Committee 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2024. Diabetes Care 2023, 47, S179–S218. [Google Scholar]
- Pieske, B.; Tschöpe, C.; de Boer, R.A.; Fraser, A.G.; Anker, S.D.; Donal, E.; Edelmann, F.; Fu, M.; Guazzi, M.; Lam, C.S.P.; et al. How to diagnose heart failure with preserved ejection fraction: The HFA-PEFF diagnostic algorithm: A consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. Heart J. 2019, 40, 3297–3317. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e263–e421. [Google Scholar] [PubMed]
- Pop-Busui, R.; Januzzi, J.L.; Bruemmer, D.; Butalia, S.; Green, J.B.; Horton, W.B.; Knight, C.; Levi, M.; Rasouli, N.; Richardson, C.R. Heart Failure: An Underappreciated Complication of Diabetes. A Consensus Report of the American Diabetes Association. Diabetes Care 2022, 45, 1670–1690. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar]
- Nagueh, S.F.; Appleton, C.P.; Gillebert, T.C.; Marino, P.N.; Oh, J.K.; Smiseth, O.A.; Waggoner, A.D.; Flachskampf, F.A.; Pellikka, P.A.; Evangelista, A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J. Am. Soc. Echocardiogr. 2009, 22, 107–133. [Google Scholar] [CrossRef]
- Guglielmo, M.; Fusini, L.; Baessato, F.; Baggiano, A.; Mushtaq, S.; Annoni, A.; Carerj, M.L.; Cilia, F.; Fazzari, F.; Formenti, A.; et al. PROGnostic RolE of strain measurements in stress cardiac MRI in predicting major adverse cardiac events. Int. J. Cardiol. 2024, 412, 132337. [Google Scholar] [CrossRef]
- Chrysohoou, C.; Skoumas, J.; Georgiopoulos, G.; Liontou, C.; Vogiatzi, G.; Tsioufis, K.; Lerakis, S.; Soulis, D.; Pitsavos, C.; Tousoulis, D. Exercise capacity and haemodynamic response among 12,327 individuals with cardio-metabolic risk factors undergoing treadmill exercise. Eur. J. Prev. Cardiol. 2017, 24, 1627–1636. [Google Scholar] [CrossRef]
- Chrysohoou, C.; Fragoulis, C.; Leontsinis, I.; Gastouniotis, I.; Fragouli, D.; Georgopoulos, M.; Mantzouranis, E.; Noutsou, M.; Tsioufis, K.P. Cardiometabolic Care: Assessing Patients with Diabetes Mellitus with No Overt Cardiovascular Disease in the Light of Heart Failure Development Risk. Nutrients 2023, 15, 1384. [Google Scholar] [CrossRef]
- Li, X.-M.; Shi, K.; Jiang, L.; Wang, J.; Yan, W.-F.; Gao, Y.; Shen, M.-T.; Shi, R.; Zhang, G.; Liu, X.-J.; et al. Assessment of subclinical LV myocardial dysfunction in T2DM patients with diabetic peripheral neuropathy: A cardiovascular magnetic resonance study. Cardiovasc. Diabetol. 2024, 23, 217. [Google Scholar] [CrossRef]
- Huelsmann, M.; Neuhold, S.; Strunk, G.; Moertl, D.; Berger, R.; Prager, R.; Abrahamian, H.; Riedl, M.; Pacher, R.; Luger, A.; et al. NT-proBNP has a high negative predictive value to rule-out short-term cardiovascular events in patients with diabetes mellitus. Eur. Heart J. 2008, 29, 2259–2264. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.J. BNP: Biomarker Not Perfect in heart failure with preserved ejection fraction. Eur. Heart J. 2022, 43, 1952–1954. [Google Scholar] [CrossRef] [PubMed]
- Anjan, V.Y.; Loftus, T.M.; Burke, M.A.; Akhter, N.; Fonarow, G.C.; Gheorghiade, M.; Shah, S.J. Prevalence, clinical phenotype, and outcomes associated with normal B-type natriuretic peptide levels in heart failure with preserved ejection fraction. Am. J. Cardiol. 2012, 110, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Verbrugge, F.H.; Omote, K.; Reddy, Y.N.V.; Sorimachi, H.; Obokata, M.; Borlaug, B.A. Heart failure with preserved ejection fraction in patients with normal natriuretic peptide levels is associated with increased morbidity and mortality. Eur. Heart J. 2022, 43, 1941–1951. [Google Scholar] [CrossRef]
- Kondo, T.; Campbell, R.; Jhund, P.S.; Anand, I.S.; Carson, P.E.; Lam, C.S.P.; Shah, S.J.; Vaduganathan, M.; Zannad, F.; Zile, M.R.; et al. Low Natriuretic Peptide Levels and Outcomes in Patients With Heart Failure and Preserved Ejection Fraction. JACC Heart Fail. 2024, 12, 1442–1455. [Google Scholar] [CrossRef]
- SCORE2-Diabetes Working Group and the ESC Cardiovascular Risk Collaboration SCORE2-Diabetes: 10-year cardiovascular risk estimation in type 2 diabetes in Europe. Eur. Heart J. 2023, 44, 2544–2556. [CrossRef]
- Woolley, R.J.; Ceelen, D.; Ouwerkerk, W.; Tromp, J.; Figarska, S.M.; Anker, S.D.; Dickstein, K.; Filippatos, G.; Zannad, F.; Metra, M.; et al. Machine learning based on biomarker profiles identifies distinct subgroups of heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2021, 23, 983–991. [Google Scholar] [CrossRef]
- Lindström, J.; Louheranta, A.; Mannelin, M.; Rastas, M.; Salminen, V.; Eriksson, J.; Uusitupa, M.; Tuomilehto, J. Finnish Diabetes Prevention Study Group The Finnish Diabetes Prevention Study (DPS): Lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care 2003, 26, 3230–3236. [Google Scholar]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
- Paul, M.; Eggerschwiler, A.; Meyer, G.; Studer, C.; Hürlimann, U.; Brändle, M.; Wiesli, P.; Gastaldi, G.; Arrigo, M.; Meyer, P.; et al. Recommendations for early identification of heart failure in patients with diabetes: Consensus statement of the Swiss Society of Endocrinology and Diabetology and the Heart Failure Working Group of the Swiss Society of Cardiology. Swiss Med. Wkly. 2024, 154, 4000. [Google Scholar] [CrossRef]
- Sojo-Vega, L.; Recasens, M.; Martínez, J.; Aguilera, A.; Ayala, M.; Admetlla, N.; Pellicer, P.; Blay, C.; Fabregat, B.; Esteve-Serra, M.; et al. Unseen threat: How subclinical atherosclerosis increases mortality risk in patients with type 1 diabetes. Cardiovasc. Diabetol. 2024, 23, 366. [Google Scholar] [CrossRef]
- Xiao, Y.; Yao, X.-Y.; Wang, Y.-H.; Han, L.-W.; Li, L.-X.; Li, M.; Gao, S. Relationship Between Subclinical Cardiovascular Diseases and Cardiac Morpho-Functional Parameters in Preclinical Stage A/B Heart Failure Adults with Type 2 Diabetes. Diabetes Metab. Syndr. Obes. 2022, 15, 3923–3931. [Google Scholar] [CrossRef]
Age, years | 67.1 ± 8.5 |
Male sex, n (%) | 61 (61%) |
Body mass index, (kg/m2) | 27.7 |
History of hypertension, % | 65% |
History of hyperlipidemia, % | 82% |
Exercise, % | 22% |
Duration of diabetes, years | 16.1 |
Current smoking, % | 20% |
NT-proBNP > 125 pg/mL, % | 28% |
E/e′ | 7.95 |
Global longitudinal strain of left ventricle | −13.5% |
Left atrial volume index, (mL/m2) | 22.7 |
Left ventricular mass index, (gr/m2) | 56.9 |
LVEF, % | 52.9% |
Left atrial strain rate, % | 30% |
Four-chamber right ventricular longitudinal strain, % | −12.6 |
SRV, (cm/s) | 37.8 |
METs at peak exercise in CPET, (kcal/kg/h) | 6.9 |
Maximum heart rate in CPET | 152.8 |
Maximum systolic blood pressure in CPET, (mmHg) | 221 |
VE in CPET, (L/min) | 64.9 |
VO2max in CPET, (mL/kg/min) | 24.1 |
VE/VCO2 slope in CPET | 32 |
VO2/HR in CPET, mL/min/W | 14 |
VO2 pre % in CPET | 94.2 |
OUES in CPET | 2.0864 |
CMR right atrial ejection fraction, % | 62.4 |
CMR right ventricle ejection fraction, % | 57 |
CMR right ventricle EDV, (mL) | 145.6 |
1st Tertile (<55 pg/mL) | 2nd Tertile (55–107 pg/mL) | 3rd Tertile (>107 pg/mL) | p-Value | |
---|---|---|---|---|
Age, years | 63.5 | 68.3 | 70.25 | 0.03 |
Male sex, (%) | 67% | 45% | 69% | 0.105 |
Body mass index, kg/m2 | 27.8 | 28.3 | 26.9 | 0.56 |
Smoking, current (%) | 5% | 16.1% | 31.3% | 0.092 |
Physical activity, (%) | 80% | 60% | 74% | 0.1 |
History of hypertension, (%) | 58.3% | 70.9% | 65% | 0.51 |
History of hyperlipidemia, (%) | 83% | 77,4% | 81.2% | 0.4 |
Years since T2DM diagnosis | 16.9 | 15.6 | 16.09 | 0.81 |
H2FPEF Score | 1.74 | 1.62 | 3.19 | <0.01 |
Cardiac Ultrasound Parameters | ||||
E/A | 0.79 | 0.76 | 0.74 | 0.78 |
E/e′ | 7.58 | 7.46 | 8.7 | 0.10 |
Ejection fraction, % | 57.4 | 57.5 | 55 | 0.11 |
Left ventricle EDV, (mL) | 149.6 | 135.8 | 122.1 | 0.31 |
Left atrial volume index, (mL/m2) | 20.6 | 25.5 | 20.8 | 0.25 |
Left atrial strain rate, % | 24.8 | 26.4 | 23.1 | 0.86 |
SRV, (cm/s) | 13.1 | 13 | 17.1 | 0.41 |
Four-chamber right ventricular longitudinal strain, % | −12.1 | −16 | −10.3 | 0.06 |
Right ventricle ejection fraction, % | 56 | 60.7 | 56.7 | 0.08 |
Right ventricle EDV, (mL) | 130 | 124.4 | 128.9 | 0.91 |
Right atrial ejection fraction, % | 59 | 62.7 | 70 | 0.37 |
Global longitudinal strain of left ventricle | −13.7 | −14.7 | −13.2 | 0.74 |
Cardiac Ergometric Parameters | ||||
METs at peak exercise in CPET, (kcal/kg/h) | 6.89 | 15.44 | 11.65 | 0.14 |
VO2max in CPET, (mL/kg/min) | 31.4 | 40.1 | 32.2 | 0.75 |
VE predicted % | 54.4 | 55.6 | 51.3 | 0.58 |
VE/VCO2 slope | 31.3 | 30.5 | 30 | 0.58 |
OUES slope | 1880 | 1936 | 2314 | 0.01 |
Cardiac Magnetic Resonance Imaging | ||||
Myocardial extracellular volume fraction, % | 31.8 | 61.2 | 28.5 | 0.82 |
Right ventricle EDV, (mL) | 116.4 | 135.8 | 142.6 | 0.16 |
Right ventricle ejection fraction, % | 57.8 | 56.5 | 59.2 | 0.52 |
Global longitudinal strain of left ventricle, % | −15.8 | −16.6 | −15.9 | 0.76 |
Independent Factor | 2nd vs. 1st NT-proBNP Tertile | 3rd vs. 1st NT-proBNP Tertile |
---|---|---|
E/e′ ratio, per 1 unit | 0.92 (0.72, 1.19) | 0.22 (0.01, 60.94) |
VE/VCO2 slope, per 1 unit | 1.01 (0.87, 1.17) | 1.19 (1.04, 1.38) ** |
Right ventricular ejection fraction, per 1% | 1.58 (1.07, 2.33) * | 1.10 (0.85, 1.40) |
LVEF, per 1% | 1.10 (0.90, 1.35) | 1.00 (0.83, 1.20) |
T1 native blood ms, per 1 | 1.02 (0.99, 1.03) | 1.02 (0.99, 1.03) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gastouniotis, I.; Fragoulis, C.; Antonopoulos, A.; Kouroutzoglou, A.; Noutsou, M.; Thanopoulou, A.; Chrysohoou, C.; Tsioufis, K.P. The Implication of NT-proBNP in the Assessment of the Clinical Phenotype of Patients with Type 2 Diabetes Mellitus, Without Established Cardiovascular Disease. Biomedicines 2024, 12, 2718. https://doi.org/10.3390/biomedicines12122718
Gastouniotis I, Fragoulis C, Antonopoulos A, Kouroutzoglou A, Noutsou M, Thanopoulou A, Chrysohoou C, Tsioufis KP. The Implication of NT-proBNP in the Assessment of the Clinical Phenotype of Patients with Type 2 Diabetes Mellitus, Without Established Cardiovascular Disease. Biomedicines. 2024; 12(12):2718. https://doi.org/10.3390/biomedicines12122718
Chicago/Turabian StyleGastouniotis, Ioannis, Christos Fragoulis, Alexis Antonopoulos, Alexandrina Kouroutzoglou, Marina Noutsou, Anastasia Thanopoulou, Christina Chrysohoou, and Konstantinos P. Tsioufis. 2024. "The Implication of NT-proBNP in the Assessment of the Clinical Phenotype of Patients with Type 2 Diabetes Mellitus, Without Established Cardiovascular Disease" Biomedicines 12, no. 12: 2718. https://doi.org/10.3390/biomedicines12122718
APA StyleGastouniotis, I., Fragoulis, C., Antonopoulos, A., Kouroutzoglou, A., Noutsou, M., Thanopoulou, A., Chrysohoou, C., & Tsioufis, K. P. (2024). The Implication of NT-proBNP in the Assessment of the Clinical Phenotype of Patients with Type 2 Diabetes Mellitus, Without Established Cardiovascular Disease. Biomedicines, 12(12), 2718. https://doi.org/10.3390/biomedicines12122718