Cd Stress Response in Emmer Wheat (Triticum dicoccum Schrank) Varieties Under In Vitro Conditions and Remedial Effect of CaO Nanoparticles
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Tissue Culture and Callus Formation
2.3. Green Synthesis and Characterization of CaO NPs
2.4. CdCl2 Stress and CaO NP Application
2.5. RT-qPCR Analyses
2.6. Determination of Proline and Soluble Sugar Contents
2.7. Determination of H2O2 and Malondialdehyde Content
2.8. Energy Dispersive X-Ray Spectroscopy (SEM-EDX)
2.9. Statistical Analysis
3. Results
3.1. Callus Formation
3.2. Quantitative Real-Time Analyses
3.3. Proline and Soluble Sugar Contents
3.4. H2O2 and MDA Contents
3.5. Energy Dispersive X-Ray Spectroscopy (SEM-EDX)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, K.; Li, Y.; Yang, W.; Wu, F.; Zhu, P.; Zhang, L. Cadmium contamination of soil and crops is affected by intercropping and rotation systems in the lower reaches of the Minjiang River in south-western China. Environ. Geochem. Health 2016, 38, 811–820. [Google Scholar] [CrossRef]
- Abedi, T.; Mojiri, A. Cadmium uptake by wheat (Triticum aestivum L.): An overview. Plants 2020, 9, 500. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, N.; Ahmed, T.; Noman, M.; Shahid, M.; Nazir, M.M.; Ali, L.; Alnusaire, T.S.; Li, B.; Schulin, R.; Wang, G. Iron Oxide Nanoparticles Ameliorated the Cadmium and Salinity Stresses in Wheat Plants, Facilitating Photosynthetic Pigments and Restricting Cadmium Uptake. Sci. Total Environ. 2021, 769, 145221. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Meunier, J.D.; Davidian, J.C.; Pokrovsky, O.S.; Bovet, N.; Keller, C. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ. Sci. Pollut. Res. 2016, 23, 1414–1427. [Google Scholar] [CrossRef]
- Alcantara, E.; Romera, F.J.; Canete, M.; De La Guardia, M.D. Effects of heavy metals on both induction and function of root Fe (III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J. Exp. Bot. 1994, 45, 1893–1898. [Google Scholar] [CrossRef]
- Anand, K.; Reshma, M.; Kannan, M.; Selvan, S.M.; Chaturvedi, S.; Shalan, E.; Govindaraju, K. Preparation and characterization of calcium oxide nanoparticles from marine molluscan shell waste as nutrient source for plant growth. J. Nanostruct Chem. 2021, 7, 1–4. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Huang, D.; Gong, X.; Liu, Y.; Zeng, G.; Lai, C.; Bashir, H.; Zhou, L.; Wang, D.; Xu, P.; Cheng, M. Effects of calcium at toxic concentrations of cadmium in plants. Planta 2017, 245, 863. [Google Scholar] [CrossRef]
- Zeng, L.; Zhu, T.; Gao, Y.; Wang, Y.; Ning, C.; Bjorn, L.O.; Chen, D.; Li, S. Effects of Ca addition on the uptake, translocation, and distribution of Cd in Arabidopsis thaliana. Ecotoxicol. Environ. Saf. 2017, 139, 228–237. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Lou, Z.; Dong, J. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 2007, 67, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y. Envirotyping for deciphering environmental impacts on crop plants. Theor. Appl. Genet. 2016, 129, 653–673. [Google Scholar] [CrossRef] [PubMed]
- Younis, A.A.; Khattab, H.; Emam, M.M. Impacts of silicon and silicon nanoparticles on leaf ultrastructure and TaPIP1 and TaNIP2 gene expressions in heat stressed wheat seedlings. Biol. Plant 2020, 64, 343–352. [Google Scholar] [CrossRef]
- Xiao, Y.; Du, Z.; Qi, X. RNA-sequencing analysis reveals transcriptional changes in the roots of low-cadmium-accumulating winter wheat under cadmium stress. Acta Physiol. Plant 2019, 41, 13. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, C.; Du, B.; Cui, H.; Fan, X.; Zhou, D.; Zhou, J. Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: Comparison of soft vs. durum wheat cultivars. J. Hazard. Mater. 2021, 402, 123546. [Google Scholar] [CrossRef]
- Hashimoto, H.; Arai, K.; Hayashi, S.; Okamoto, H.; Takahashi, J.; Chikuda, M.; Obara, Y. Effects of astaxanthin on antioxidation in human aqueous humor. J. Clin. Biochem. Nutr. 2013, 53, 1–7. [Google Scholar] [CrossRef]
- Gao, W.; Chen, Y.; Zhang, Y.; Zhang, Q.; Zhang, L. Nanoparticle-based local antimicrobial drug delivery. Adv. Drug Deliv. Rev. 2018, 127, 46–57. [Google Scholar] [CrossRef]
- Auffan, M.; Rose, J.; Orsiere, T.; De Meo, M.; Thill, A. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology 2019, 3, 161–167. [Google Scholar] [CrossRef]
- Larue, C.; Veronesi, G.; Flank, A.M.; Surble, S.; Herlin-Boime, N.; Carriere, M. Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J. Toxicol. Environ. Health A 2012, 75, 722–734. [Google Scholar] [CrossRef]
- Feizi, H.; Agheli, N.; Sabahi, H. Titanium dioxide nanoparticles alleviate cadmium toxicity in lentil (lens culinaris medic) seeds. Acta Agric. Slov. 2020, 116, 59–68. [Google Scholar] [CrossRef]
- Hussain, M. Zinc-oxide nanoparticles ameliorated the phytotoxic hazards of cadmium toxicity in maize plants by regulating primary metabolites and antioxidants activity. Front. Plant Sci. 2024, 15, 1346427. [Google Scholar] [CrossRef] [PubMed]
- Saleh, S.M.; El-Tawil, O.S.; Mahmoud, M.B.; Abd El-Rahman, S.S.; El-Saied, E.M.; Noshy, P.A. Do Nanoparticles of Calcium Disodium EDTA Minimize the Toxic Effects of Cadmium in Female Rats? Biol. Trace Elem. Res. 2024, 202, 2228–2240. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M. Application of zinc oxide nanoparticles to mitigate cadmium toxicity: Mechanisms and future prospects. Plants 2024, 13, 1706. [Google Scholar] [CrossRef]
- Ankanna, S.; Prasad, T.N.V.K.V.; Elumalai, E.K.; Savithramma, N. Production of biogenic silver, nanoparticles using Boswellaovali foliolata stem bark. Dig. J. Nanomater. Biostruct. 2010, 5, 369–372. [Google Scholar]
- El-Dafrawy, S.M.; Youssef, H.M.; Toamah, W.O.; El-Defrawy, M.M. Synthesis of Nano-CaO Particles and Its Application for the Removal of Copper (II), Lead (II), Cadmium (II) and Iron (III) from Aqueous Solutions. Egypt. J. Chem. 2015, 58, 579–589. [Google Scholar] [CrossRef]
- Aqeel UAftab, T.; Khan, M.M.A.; Naeem, M.; Khan, M.N.A. Comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. Chemosphere 2020, 291, 132672. [Google Scholar] [CrossRef]
- Li, X.; Ziadi, N.; Bélanger, G.; Cai, Z.; Xu, H. Cadmium accumulation in wheat grain as affected by mineral n fertilizer and soil characteristics. Can. J. Soil Sci. 2011, 91, 521–531. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Abbas, T.; Zia-ur-Rehman, M.; Hannan, F.; Keller, C.; Al-Wabel, M.I.; Ok, Y. Cadmium minimization in wheat: A critical review. Ecotoxicol. Environ. Saf. 2016, 130, 43–53. [Google Scholar] [CrossRef]
- Ertugay, M.F.; Yangılar, F.; Çebi, K. Ice cream with organic Kavilca (Buckwheat) fibre: Microstructure, thermal, physicochemical and sensory properties. Carpathian J. Food Sci. Technol. 2020, 12, 1–16. [Google Scholar] [CrossRef]
- Elli, L.; Ferretti, F.; Orlando, S.; Vecchi, M.; Monguzzi, E.; Roncoroni, L.; Schuppan, D. Management of celiac disease in daily clinical practice. Eur. J. Intern. Med. 2019, 61, 15–24. [Google Scholar] [CrossRef]
- Rehman, M.Z.U.; Zafar, M.; Waris, A.A.; Rizwan, M.; Ali, S.; Sabir, M.; Usman, M.; Ayub, M.A.; Ahmad, Z. Residual effects of frequently available organic amendments on cadmium bioavailability and accumulation in wheat. Chemosphere 2020, 244, 125548. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F.A. Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Yazıcılar, B.; Böke, F.; Alaylı, A.; Nadaroğlu, H.; Gedikli, S.; Bezirganoğlu, I. In vitro effects of CaO nanoparticles on Triticale callus exposed to short and long-term salt stress. Plant Cell Rep. 2021, 40, 29–42. [Google Scholar] [CrossRef]
- Yazicilar, B.; Nadaroğlu, H.; Alayli, A.; Nadar, M.; Gedikli, S.; Bezirğanoğlu, İ. Mitigation of drought stress effects on alfalfa (Medicago sativa L.) callus through CaO nanoparticles and graphene oxide in tissue culture conditions. Plant Cell Tissue Organ Cult. (PCTOC) 2024, 157, 54. [Google Scholar] [CrossRef]
- Yazıcılar, B.; Bezirganoglu, I. Characterization of the SOS1, SERK1, and WEE1 Conferring a Defense Response to Salt Stress in alfalfa (Medicago sativa L.) Callus. J. Plant Growth Regul. 2023, 42, 7257–7265. [Google Scholar] [CrossRef]
- Spadafora, N.D.; Doonan, J.H.; Herbert, R.J.; Bitonti, M.B.; Wallace, E.; Rogers, H.J.; Francis, D. Arabidopsis T-DNA insertional lines for CDC25 are hypersensitive to hydroxyurea but not to zeocin or salt stress. Ann. Bot. 2011, 107, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.; Redman, R. Balancing the generation and elimination of reactive oxygen species. Proc. Natl. Acad. Sci. USA 2005, 102, 3175–3176. [Google Scholar] [CrossRef]
- Krivorotova, T.; Sereikaite, J. Determination of fructan exohydrolase activity in the crude extracts of plants. Electron. J. Biotechnol. 2014, 17, 329–333. [Google Scholar] [CrossRef]
- Sergiev, I.G.; Alexieva, V.; Karanov, E. Modulation of the paraquat toxicity in pea plants by some phenylurea derivatives. Compt Rend. Acad. Bulg. Sci. 2003, 56, 83–88. [Google Scholar]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the thiobarbituric acid-reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Abbas, T.; Rizwan, M.; Ali, S.; Zia-Ur-Rehman, M.; Qayyum, M.F.; Abbas, F.; Hannan, F.; Rinklebe, J.; Ok, Y.S. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicol. Environ. Saf. 2017, 140, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.M.; Li, Q.; Noman, M.; Ulhassan, Z.; Ali, S.; Ahmed, T.; Zhang, G. Calcium oxide nanoparticles have the role of alleviating arsenic toxicity of barley. Front. Plant Sci. 2022, 13, 843795. [Google Scholar] [CrossRef]
- Mazhar, M.W.; Ishtiaq, M.; Maqbool, M.; Ajaib, M.; Hussain, I.; Hussain, T.; Gul, A. Synergistic application of calcium oxide nanoparticles and farmyard manure induces cadmium tolerance in mung bean (Vigna radiata L.) by influencing physiological and biochemical parameters. PLoS ONE 2023, 18, e0282531. [Google Scholar] [CrossRef]
- Ye, W.; Wu, F.; Zhang, G.; Fang, Q.; Lu, H.; Hu, H. Calcium decreases cadmium concentration in root but facilitates cadmium translocation from root to shoot in rice. J. Plant Growth Regul. 2020, 39, 422–429. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Hussain, A.; Rehman, M.Z.; Ali, B.; Yousaf, B.; Wijaya, L.; Alyemeni, M.N.; Ahmad, P. Silicon nanoparticles enhances the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.). Plant Physiol. Biochem. 2019, 140, 1–8. [Google Scholar] [CrossRef]
- Ur Rahman, S.; Xuebin, Q.; Kamran, M.; Yasin, G.; Cheng, H.; Rehim, A.; Riaz, L.; Rizwan, M.; Ali, S.; Alsahli, A.A.; et al. Silicon elevated cadmium tolerance in wheat (Triticum aestivum L.) by endorsing nutrients uptake and antioxidative defense mechanisms in the leaves. Plant Physiol. Biochem. 2021, 166, 148–159. [Google Scholar] [CrossRef]
- Ilhan, D. The Evolution and Genetics of Turkish Emmer Wheat. Curr. Acad. Stud. Sci. Math. 2021, 93–107. [Google Scholar]
- Zhou, J.; Zhang, C.; Du, B.; Cui, H.; Fan, X.; Zhou, D.; Zhou, J. Effects of zinc application on cadmium (Cd) accumulation and plant growth through modulation of the antioxidant system and translocation of Cd in low- and high- Cd wheat cultivars. Environ. Pollut. 2020, 265, 115045. [Google Scholar] [CrossRef] [PubMed]
- Borad, V.; Sriram, S. Pathogenesis-related proteins for the plant protection. Asian J. Exp. Sci. 2008, 22, 189–196. [Google Scholar]
- Kishor, P.K.; Sangam, S.; Amrutha, R.N.; Laxmi, P.S.; Naidu, K.R.; Rao, K.S.; Sreenivasulu, N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr. Sci. 2005, 88, 424–438. [Google Scholar]
- Verslues, P.E.; Sharma, S. Proline metabolism and its implications for plant-environment interaction. Arab. Book/Am. Soc. Plant Biol. 2010, 8, e0140. [Google Scholar] [CrossRef]
- Zdunek-Zastocka, E.; Grabowska, A.; Michniewska, B.; Orzechowski, S. Proline concentration and its metabolism are regulated in a leaf age dependent manner but not by abscisic acid in pea plants exposed to cadmium stress. Cells 2021, 10, 946. [Google Scholar] [CrossRef] [PubMed]
- John, R.; Ahmad, P.; Gadgil, K.; Sharma, S. Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil. Environ. 2008, 54, 262. [Google Scholar] [CrossRef]
- Mishra, B.; Sangwan, R.S.; Mishra, S.; Jadaun, J.S.; Sabir, F.; Sangwan, N.S. Effect of cadmium stress on inductive enzymatic and nonenzymatic responses of ROS and sugar metabolism in multiple shoot cultures of Ashwagandha (Withania somnifera Dunal). Protoplasma 2014, 251, 1031–1045. [Google Scholar] [CrossRef]
- Hernandez, L.E.; Carpena-Ruiz, R.; Garate, A. Alterations in the mineral nutrition of pea seedlings exposed to cadmium. J. Plant Nutr. 1996, 19, 1581–1598. [Google Scholar] [CrossRef]
- Hernandez, L.E.; Garate, A.; Carpena-Ruiz, R. Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum. Plant Soil 1997, 189, 97–106. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Thind, S.; Hussain, I.; Rasheed, R.; Ashraf, M.A.; Perveen, A.; Ditta, A.; Hussain, S.; Khalil, N.; Ullah, Z.; Mahmood, Q. Alleviation of Cd stress by silicon nanoparticles during different phenological stages of Ujala wheat cultivar. Arab. J. Geosci. 2021, 14, 1028. [Google Scholar] [CrossRef]
- Nazir, M.M.; Noman, M.; Ahmed, T.; Ali, S.; Ulhassan, Z.; Zeng, F.; Zhang, G. Exogenous calcium oxide nanoparticles alleviate cadmium toxicity by reducing Cd uptake and enhancing antioxidative capacity in barley seedlings. J. Hazard. Mater. 2022, 438, 129498. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.; Bhatt, M.D.; Nath, M.; Dudhat, R.; Sharma, M.; Bisht, D.S. Application of nanoparticles in over-coming diferent environmental stresses. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives; Wiley Online Library: Hoboken, NJ, USA, 2020; pp. 635–654. [Google Scholar] [CrossRef]
- Geyik, M.Ş.; Yazıcılar, B.; Bezirganoglu, I. Microscopic and Physiological Analysis of Somatic Embryos under in vitro culture in Triticale. Icontech Int. J. Surv. Eng. Technol. 2022, 6, 73–80. [Google Scholar] [CrossRef]
- Bezirganoglu, I.; Yazıcılar, B.; Chang, Y.L. Salicylic acid improves somatic embryogenesis in callus derived from mature embryos of Triticale. Eurasian Mol. Biochem. Sci. 2023, 2, 14–18. [Google Scholar]
- Liu, C.Q. The Study of Somatic Embryogenesis Induction and Histocytology in Hippophae rhamnoides subsp. Sinensis Rousi and Sequoia sempervirens (Lamb.) Endl; China Environmental Science Press: Beijing, China, 2009; Volume 93, p. 136. [Google Scholar]
Gene Id | Forward Sequence | Reverse Sequence |
---|---|---|
Traes_5BL_9A790E8CF | TTGGTGAGGTGACATGGGA | TGTTGCTGTCGTGGTCGTAG |
Traes_6BL_986D595B9 | CCACCATACTGCTAAACCCTC | GCGTCGTTGAATGTGATGC |
Mtactin 18S rRNA | TGACGGAGAATTAGGGTTCG | CCTCCAATGGATCCTCGTTA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
İlhan, D.; Yazıcılar, B. Cd Stress Response in Emmer Wheat (Triticum dicoccum Schrank) Varieties Under In Vitro Conditions and Remedial Effect of CaO Nanoparticles. Biology 2025, 14, 394. https://doi.org/10.3390/biology14040394
İlhan D, Yazıcılar B. Cd Stress Response in Emmer Wheat (Triticum dicoccum Schrank) Varieties Under In Vitro Conditions and Remedial Effect of CaO Nanoparticles. Biology. 2025; 14(4):394. https://doi.org/10.3390/biology14040394
Chicago/Turabian Styleİlhan, Doğan, and Büşra Yazıcılar. 2025. "Cd Stress Response in Emmer Wheat (Triticum dicoccum Schrank) Varieties Under In Vitro Conditions and Remedial Effect of CaO Nanoparticles" Biology 14, no. 4: 394. https://doi.org/10.3390/biology14040394
APA Styleİlhan, D., & Yazıcılar, B. (2025). Cd Stress Response in Emmer Wheat (Triticum dicoccum Schrank) Varieties Under In Vitro Conditions and Remedial Effect of CaO Nanoparticles. Biology, 14(4), 394. https://doi.org/10.3390/biology14040394