Effects of Temperature and Salt Stress on Cereus fernambucensis Seed Germination
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fruit Collection and Seed Extraction Site
2.2. Setting Up and Conducting the Experiment
2.3. Design and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amaral, D.T.; Bonatelli, I.A.S.; Romeiro-Brito, M.; Telhe, M.C.; Moraes, E.M.; Zappi, D.C.; Taylor, N.P.; Franco, F.F. Comparative transcriptome analysis reveals lineage-and environment-specific adaptations in cacti from the Brazilian Atlantic Forest. Planta 2024, 260, 4. [Google Scholar] [CrossRef] [PubMed]
- Franco, F.F.; Jojima, C.L.; Perez, M.F.; Zappi, D.C.; Taylor, N.; Moraes, E.M. The xeric side of the Brazilian Atlantic Forest: The forces shaping phylogeographic structure of cacti. Ecol. Evol. 2017, 7, 9281–9293. [Google Scholar] [CrossRef] [PubMed]
- Agapito, B.P.; Catarino de Sá, C.F.; de Andrade, A.C.S.; de Araujo, D.S.D. The conservation value of forest fragments in a coastal “Restinga” forest in southeastern Brazil. J. Coast. Conserv. 2023, 27, 38. [Google Scholar] [CrossRef]
- Urban, M.C. Accelerating extinction risk from climate change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; 184p. [Google Scholar]
- Inague, G.M.; Zwiener, V.P.; Marques, M.C.M. Climate change threatens the woody plant taxonomic and functional diversities of the Restinga vegetation in Brazil. Perspect. Ecol. Conserv. 2021, 19, 53–60. [Google Scholar] [CrossRef]
- Centeno-Alvarado, D.; Silva, J.L.S.; Cruz-Neto, O.; Lopes, A.V. Climate change may reduce suitable habitats for Tacinga palmadora (Cactaceae) in the Caatinga dry forest: Species distribution modeling considering plant-pollinator interactions. Reg. Environ. Change 2022, 22, 16. [Google Scholar] [CrossRef]
- Hultine, K.R.; Hernández-Hernández, T.; Williams, D.G.; Albeke, S.E.; Tran, N.; Puente, R.; Larios, E. Global change impacts on cacti (Cactaceae): Current threats, challenges and conservation solutions. Ann. Bot. 2023, 132, 671–683. [Google Scholar] [CrossRef]
- Félix-Burruel, R.E.; Larios, E.; González, E.J.; Búrquez, A. Population decline of the saguaro cactus throughout its distribution is associated with climate change. Ann. Bot. 2024, 135, 317–328. [Google Scholar] [CrossRef]
- Sampaio, A.C.P.; Cavalcante, A.M.B.; Albuquerque, F.S.; von Randow, C. The impacts of the exposure of cactus species of the genus Tacinga to climate change in the Caatinga biome. Acta Bot. Bras. 2024, 38, e20230177. [Google Scholar] [CrossRef]
- Menezes, M.O.T.; Zappi, D.C.; Moraes, E.M.; Franco, F.F.; Taylor, N.P.; Costa, I.R.; Loiola, M.I.B. Pleistocene radiation of coastal species of Pilosocereus (Cactaceae) in eastern Brazil. J. Arid. Environ. 2016, 135, 22–32. [Google Scholar] [CrossRef]
- Silva, G.A.R.; Antonelli, A.; Lendel, A.; Moraes, E.M.; Manfrin, M.H. The impact of early Quaternary climate change on the diversification and population dynamics of a South American cactus species. J. Biogeogr. 2018, 45, 76–88. [Google Scholar] [CrossRef]
- Simões, S.S.; Zappi, D.; da Costa, G.M.; de Oliveira, G.; Aona, L.Y.S. Spatial niche modelling of five endemic cacti from the Brazilian Caatinga: Past, present and future. Austral. Ecol. 2020, 45, 35–47. [Google Scholar] [CrossRef]
- Cavalcante, A.M.B.; Sampaio, A.C.P.; Duarte, A.S.; dos Santos, M.A.F. Impacts of climate change on the potential distribution of epiphytic cacti in the Caatinga biome, Brazil. An. Acad. Bras. Ciênc. 2023, 95, e20200904. [Google Scholar] [CrossRef]
- Possley, J.; Lange, J.J.; Franck, A.R.; Gann, G.D.; Wilson, T.; Kolterman, S.; Duquesnel, J.; O’Brien, J. First US vascular plant extirpation linked to sea level rise? Pilosocereus millspaughii (Cactaceae) in the Florida Keys, USA. J. Bot. Res. Inst. Tex. 2024, 18, 211–223. [Google Scholar] [CrossRef]
- Marcos-Filho, J. Fisiologia de Sementes de Plantas Cultivadas, 2nd ed.; ABRATES: Londrina, Brazil, 2015. [Google Scholar]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Fisiologia e Desenvolvimento Vegetal, 6ª ed.; Artmed: Porto Alegre, Brazil, 2017. [Google Scholar]
- Silva, J.H.C.S.; de Azerêdo, G.A.; Ferreira, W.M.; de Souza, V.C. Water restriction in seeds of Cereus jamacaru DC. Rev. Bras. Ciencias Agrar. 2021, 16, e8431. [Google Scholar] [CrossRef]
- Meiado, M.V.; Rojas-Aréchiga, M.; de Siqueira-Filho, J.A.; Leal, I.R. Effects of light and temperature on seed germination of cacti of Brazilian ecosystems. Plant Species Biol. 2016, 31, 87–97. [Google Scholar] [CrossRef]
- Barrios, D.; Sánchez, J.A.; Flores, J.; Jurado, E. Seed traits and germination in the Cactaceae family: A review across the Americas. Bot. Sci. 2020, 98, 417–440. [Google Scholar] [CrossRef]
- Bauk, K.; Flores, J.; Ferrero, C.; Pérez-Sánchez, R.; Las Peñas, M.L.; Gurvich, D.E. Germination characteristics of Gymnocalycium monvillei (Cactaceae) along its entire altitudinal range. Botany 2017, 95, 419–428. [Google Scholar] [CrossRef]
- Flores, J.; Pérez-Sánchez, R.M.; Jurado, E. The combined effect of water stress and temperature on seed germination of Chihuahuan Desert species. J. Arid. Environ. 2017, 146, 95–98. [Google Scholar] [CrossRef]
- Gurvich, D.E.; Pérez-Sánchez, R.; Bauk, K.; Jurado, E.; Ferrero, M.C.; Funes, G.; Flores, J. Combined effect of water potential and temperature on seed germination and seedling development of cacti from a mesic Argentine ecosystem. Flora 2017, 227, 18–24. [Google Scholar] [CrossRef]
- de Oliveira, D.M.; Lima, A.T.; Rocha, E.A.; Meiado, M.V. O aumento da temperatura reduz a tolerância ao estresse hídrico na germinação de sementes de Pereskia grandifolia Haw. subsp. grandifolia (Cactaceae)? Gaia Sci. 2017, 11, 26–36. [Google Scholar] [CrossRef]
- Silva, J.H.C.S.; de Azerêdo, G.A.; Targino, V.A. Resposta germinativa de sementes de cactáceas colunares sob diferentes regimes de temperatura e de potencial hídrico. Sci. Plena 2020, 16, 123101. [Google Scholar] [CrossRef]
- Barrios, D.; Flores, J.; Sánchez, J.A.; González-Torres, L.R. Combined effect of temperature and water stress on seed germination of four Leptocereus spp. (Cactaceae) from Cuban dry forests. Plant Species Biol. 2021, 36, 512–522. [Google Scholar] [CrossRef]
- de Medeiros, R.L.S.; de Souza, V.C.; Azerêdo, G.A.; Barbosa Neto, M.A.; Barbosa, A.S.; Oliveira, I.S.S. Seed vigor and germination of facheiro plants (Pilosocereus catingicola (Gurke) Byles & Rowley subsp. salvadorensis (Werderm.) Zappi (Cactaceae) at different temperatures. Semin. Ciênc. Agrár. 2017, 38, 2873–2886. [Google Scholar] [CrossRef]
- Weather Spark. Climate and average weather year-round in Pitimbu, Paraíba, Brazil. 2024. Available online: https://weatherspark.com/ (accessed on 30 September 2024).
- Silva, W.N. A Dinâmica Natural e a ação do Homem na Transformação do meio: Uma Análise Geoambiental no Município de Pitimbu-PB. Master’s Thesis, Federal University of Paraíba, João Pessoa, Brazil, 2017. [Google Scholar]
- Salisbury, F.B.; Ross, C.W. Plant Physiology, 4th ed.; Wadworth: Belmont, CA, USA, 1991. [Google Scholar]
- Maguire, J.O. Speed of germination and in selection and evaluation for seedling emergence and vigor. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- Labouriau, L.F.G. Germinação das Sementes; Secretaria da OEA: Washington, DC, USA, 1983. [Google Scholar]
- Abdul-Baki, A.A.; Anderson, J.D. Vigor determination in soybean by multiple criteria. Crop Sci. 1973, 13, 630–633. [Google Scholar] [CrossRef]
- Brasil. Regras para Análise de Sementes; Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária, MAPA/ACS: Brasília, Brazil, 2009. [Google Scholar]
- Mahalanobis, P.C. On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 1936, 2, 49–55. [Google Scholar]
- Singh, D. The relative importance of characters affecting genetic divergence. Indian J. Genet. 1981, 41, 237–245. [Google Scholar]
- Gabriel, K.R. Analysis of meteorological data by means of canonical decomposition and biplots. J. Appl. Meteorol. 1972, 11, 1071–1077. [Google Scholar] [CrossRef]
- Cruz, C.D. Genes Software-extended and integrated with the R, Matlab and Selegen. Acta Sci. Agron. 2016, 38, 547–552. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 15 September 2024).
- Hong, T.D.; Ellis, R.H. Storage. In Tropical Tree Seed Manual; Vozzo, J.A., Ed.; United States Department of Agriculture Forest Service: Washington, DC, USA, 2002; pp. 125–136. [Google Scholar]
- Rendón-Luna, D.F.; Arroyo-Mosso, I.A.; De Luna-Valenciano, H.; Campos, F.; Segovia, L.; Saab-Rincón, G.; Cuevas-Velazquez, C.L.; Reyes, J.L.; Covarrubias, A.A. Alternative conformations of a group 4 Late Embryogenesis Abundant protein associated to its in vitro protective activity. Sci. Rep. 2024, 14, 2770. [Google Scholar] [CrossRef] [PubMed]
- Piña-Rodrigues, F.C.M.; Figliolia, M.B.; Silva, A. Sementes Florestais Tropicais: Da Ecologia à Produção.; ABRATES: Londrina, Brazil, 2015; p. 477. [Google Scholar]
- Vázquez-Castillo, S.; Miranda-Jácome, A.; Inzunza, E.R. Influence of the nurse-protégé interaction on the frugivory pattern of the columnar cactus Pilosocereus leucocephalus. Oecologia 2023, 202, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, J.P.B.; Meiado, M.V.; Siqueira-Filho, J.A. Seed germination of three endangered subspecies of Discocactus Pfeiff. (Cactaceae) in response to environmental factors. J. Seed Sci. 2018, 40, 253–262. [Google Scholar] [CrossRef]
- Meiado, M.V.; Albuquerque, L.S.C.; Rocha, E.A.; Rojas-Aréchiga, M.; Leal, I.R. Seed germination responses of Cereus jamacaru DC. ssp. jamacaru (Cactaceae) to environmental factors. Plant Species Biol. 2010, 25, 120–128. [Google Scholar] [CrossRef]
- Martins, L.S.T.; Pereira, T.S.; Carvalho, A.S.R.; Barros, C.F.; de Andrade, A.C.S. Seed germination of Pilosocereus arrabidae (Cactaceae) from a semiarid region of south-east Brazil. Plant Species Biol. 2012, 27, 191–200. [Google Scholar] [CrossRef]
- Lima, A.T.; Meiado, M.V. Discontinuous hydration alters seed germination under stress of two populations of cactus that occur in different ecosystems in Northeast Brazil. Seed Sci. Res. 2017, 27, 292–302. [Google Scholar] [CrossRef]
- Lima, A.T.; Oliveira, B.A.; Meiado, M.V. Gibberellic acid provides greater tolerance to saline stress in cactus seed germination. Commun. Plant Sci. 2020, 10, 80–84. [Google Scholar] [CrossRef]
- Silva, J.H.C.S.; de Azerêdo, G. A Germination of cactus seeds under saline stress. Rev. Caatinga 2022, 35, 79–86. [Google Scholar] [CrossRef]
- Panetta, F.D.; Campbell, S.; Brooks, S.; Brazier, D.; Chauhan, B.S. Germination responses of the invasive hedge cactus (Cereus uruguayanus) to environmental factors. Weed Sci. 2024, 72, 241–246. [Google Scholar] [CrossRef]
- El-Keblant, A.; Al-Rawai, A. Effects of salinity, temperature and light on germination of invasive Prosopis juliflora (Sw.) D.C. J. Arid. Environ. 2005, 61, 555–565. [Google Scholar] [CrossRef]
- Sergio, L.; De Paola, A.; Cantore, V.; Pieralice, M.; Cascarano, N.A.; Bianco, V.V.; Di Venere, D. Effect of salt stress on growth parameters, enzymatic antioxidant system, and lipid peroxidation in wild chicory (Cichorium intybus L.). Acta Physiol. Plant. 2012, 34, 2349–2358. [Google Scholar] [CrossRef]
- Masson, P.; Lushchekina, S. Conformational stability and denaturation processes of proteins investigated by electrophoresis under extreme conditions. Molecules 2022, 27, 6861. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ballesta, M.d.C.; Egea-Gilabert, C.; Conesa, E.; Ochoa, J.; Vicente, M.J.; Franco, J.A.; Bañon, S.; Martínez, J.J.; Fernández, J.A. The importance of ion homeostasis and nutrient status in seed development and germination. Agronomy 2020, 10, 504. [Google Scholar] [CrossRef]
Sources of Variation | df | Mean Squares 1 | |||
---|---|---|---|---|---|
GP (%) | GSI | MGT (Days) | VI | ||
Osmotic potential (Op) | 4 | 7687.6 *** | 59.744 *** | 32.761 *** | 16,748 *** |
Temperature (T) | 2 | 28,514.4 *** | 122.893 *** | 26.911 *** | 32,179 *** |
Op × T | 8 | 1080.1 *** | 10.355 *** | 203.027 *** | 2714 *** |
Residue | 45 | 110.1 | 0.405 | 3.193 | 131 |
CV (%) | 17.6 | 17.2 | 15.2 | 18.8 | |
SL (cm) | SA (cm2) | SFM (mg) | SDM (mg) | ||
Osmotic potential (Op) | 4 | 3.1373 *** | 0.0652 *** | 981.62 *** | 2.0753 *** |
Temperature (T) | 2 | 0.6030 *** | 0.0239 *** | 200.51 *** | 3.1082 *** |
Op × T | 8 | 0.1024 *** | 0.0017 *** | 23.27 *** | 0.2672 *** |
Residue | 45 | 0.0117 | 0.0002 | 2.84 | 0.0332 |
CV (%) | 12.7 | 15.7 | 16.2 | 24.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.H.C.S.; Rodrigues, C.M.; Souza, A.d.G.; Nascimento, N.F.F.d.; Alves, E.U. Effects of Temperature and Salt Stress on Cereus fernambucensis Seed Germination. Biology 2025, 14, 393. https://doi.org/10.3390/biology14040393
Silva JHCS, Rodrigues CM, Souza AdG, Nascimento NFFd, Alves EU. Effects of Temperature and Salt Stress on Cereus fernambucensis Seed Germination. Biology. 2025; 14(4):393. https://doi.org/10.3390/biology14040393
Chicago/Turabian StyleSilva, João Henrique Constantino Sales, Caroline Marques Rodrigues, Aline das Graças Souza, Naysa Flávia Ferreira do Nascimento, and Edna Ursulino Alves. 2025. "Effects of Temperature and Salt Stress on Cereus fernambucensis Seed Germination" Biology 14, no. 4: 393. https://doi.org/10.3390/biology14040393
APA StyleSilva, J. H. C. S., Rodrigues, C. M., Souza, A. d. G., Nascimento, N. F. F. d., & Alves, E. U. (2025). Effects of Temperature and Salt Stress on Cereus fernambucensis Seed Germination. Biology, 14(4), 393. https://doi.org/10.3390/biology14040393